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Abstract— We present a novel biased sampling technique,
Cloud RRT∗, for efficiently computing high-quality collision-
free paths, while maintaining the asymptotic convergence to
the optimal solution. Our method uses sampling cloud for
allocating samples on promising regions. Our sampling cloud
consists of a set of spheres containing a portion of the C-space.
Especially, each sphere projects to a collision-free spherical
region in the workspace. We initialize our sampling cloud
by conducting a workspace analysis based on the generalized
Voronoi graph. We then update our sampling cloud to refine
the current best solution, while maintaining the global sampling
distribution for exploring understudied other homotopy classes.
We have applied our method to a 2D motion planning problem
with kinematic constraints, i.e., the Dubins vehicle model, and
compared it against the state-of-the-art methods. We achieve
better performance, up to three times, over prior methods in
a robust manner.

I. INTRODUCTION

Many motion planning algorithms have been proposed to
find a collision-free trajectory given constraints (e.g., kine-
matics of vehicles). Among proposed techniques sampling-
based algorithms such as PRM [1] and RRT [2] have been
widely used for multiple and single queries, because of
their capability of solving high-dimensional motion planning
problems. These algorithms have been shown to guarantee
probabilistic completeness. Thanks to their theoretical sim-
plicity and possibility of extension to other related problems
they have encouraged many follow-on researches.

Most early works for sampling-based techniques focused
on finding the existence of a solution for their problems.
Recently RRT∗ [3] was proposed to achieve convergence
to the optimal solution and thus has been drawing a lot of
attentions in finding the optimal solution for single-query
motion planning problems. Especially, for mobile robots such
as autonomous vehicles (e.g., Google self-driving car) it is
important to compute a shorter path to a given goal for saving
the limited fuel/power.

Some of recent works [4], [5], [6] introduced different
sampling heuristics to accelerate the convergence to the
optimal solution, while maintaining the optimality guarantee
of RRT∗. These techniques proposed an explicit or implicit
way to approximate or detect promising areas, where the
optimal solution is likely to exist, and biased their sampling
patterns. While these prior approaches provide improvement
on the convergence speed in some extent, we have found
that they can be less efficient to find better solutions in other
homotopy classes (Sec. V). Especially for environments with
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complex configurations of obstacles and narrow passages,
these prior techniques may not work well.

Main contributions. In this paper we propose Cloud
RRT∗ to achieve a better convergence to the optimal solution,
while maintaining the asymptotic convergence of the original
RRT∗. Our method introduces sampling cloud as a decom-
position of the configuration space of the robot (Sec. IV-
A) and generates samples according to the sampling cloud.
Our sampling cloud consists of a set of spheres, each of
which is projected to a collision-free spherical region in the
workspace. To initialize our sampling cloud, we construct
Generalized Voronoi Graph (GVG) as a geometric analysis
on the workspace (Sec. IV-B) and generate an initial set
of spheres to cover computed GVG. We then update our
sampling cloud as we identify a better solution to the current
one (Sec. IV-C). We design our update method to locally
sample more for refining the current best solution, while
maintaining the global sampling distribution for exploring
less studied other homotopy classes. We also prune sampling
spheres that cannot contribute to shorten the current optimal
solution (Sec. IV-D).

We have applied our method to a motion planning problem
for Dubins vehicles with kinematic constraints in the 2D
workspace. We have compared our method against the state-
of-the-art techniques on achieving better convergence rate to
the original RRT∗ including RRT∗-Smart [4] and local bias-
ing/rejection technique [5]. Our method shows a performance
improvement to the optimal solutions over all the other tested
methods. Moreover, given a fixed cost, our method reduces
the computation time by a factor of up to three for finding a
solution over prior work, while guaranteeing the asymptotic
convergence to the optimal solution. This demonstrates the
usefulness of our method for refining the current best solution
and exploring other regions.

II. RELATED WORK

In this section we discuss prior works on sampling based
motion planning, and techniques to estimate promising area
and speedup the convergence toward the optimal.

A. Sampling based Motion Planning

Sampling based motion planning has been well studied and
a few good books/surveys are available [7], [8]. Among these
techniques, PRM [9] and RRT [10] are the most well known
algorithms. The basic concept of PRM is to take random
samples in a given configuration space, to check whether they
are collision-free, and to use a local planner to connect each
other configurations for building the roadmap that is used for
runtime queries. On the other hand, the RRT algorithm can



be considered as a random search biasing towards exploring
largest Voronoi regions. It samples a random configuration at
each iteration, and then attempts to connect it to the closest
configuration in the tree.

RRT is generally known as a more suitable method for
the single query problem, while PRM is for the multi
query. For this reason RRT has been preferred for a real-
time motion planning against dynamic environments [2].
RRT∗ [3] is a recent extension of the RRT algorithm. Its main
characteristics is that it guarantees asymptotic optimality
without having substantial computational overheads. Further-
more it can work with numerous existing extensions such
as bi-directional RRT [10], anytime RRT [11]. In particular
anytime RRT∗ [12] is an execution-time replanning algorithm
for RRT∗ and progressively converges toward the optimal
by exploiting additional execution time. We are mainly
interested in computing collision-free paths for mobile robots
and thus we build our proposed method based upon the RRT∗

approach that can compute the optimal path for cluttered
environments.

B. Workspace Analysis

Workspace analysis [13], [14], [15] is mainly used as a
process of analyzing a given environment to relieve hardness
of finding narrow passages and to generate a safe path to the
goal with enough clearance to the nearest obstacles.

The narrow passage problem still remains a challenging
issue in the motion planning field, and many algorithms
have been proposed to address this issue. Since a sam-
pling policy considering the surrounding environment can
generate a collision-free path more effectively by avoiding
oversampling in undesired regions, many techniques have
been proposed to utilize various information derived from the
workspace. At a high level, they include filtering samples to
explore important regions more [16], [17], [18], utilizing free
space information [19], and retraction-based approaches [20]
that generate more samples on the boundary of the obstacle
space.

To perform various workspace analysis and use its de-
rived information many approaches have used diverse de-
composition methods such as Generalized Voronoi Graph
(GVG) [14], [13], uniform grid [21], and quad/octree [15].
After constructing such data structures planners use biased
sampling towards the medial axis that has the maximum
clearance to the obstacles or other desired directions guided
by decomposition. As another technique of decomposition,
there is a sphere expansion [22] constructing a tree, where
each node represents a sphere-shaped free space. A set of
these spheres can be considered as an approximation of con-
tinuously connected free space volume, and few works [23],
[24] use this technique to analyze a given workspace. For
initializing the sampling cloud in our method we take ad-
vantage of GVG, whose vertices and edges are associated
with distance to the nearest obstacles to estimate collision-
free space and promising area.

C. Optimality

Recently optimizing paths in terms of various measures
including path lengths has been receiving growing attention
because of its usability in various motion planning problems
or theoretical interest. Some of them proposed a set of heuris-
tics to optimize the path lengths or a principled approach for
showing probabilistic optimality.

These algorithms can be roughly categorized into two large
groups. One group is based on exploitation, i.e. local biasing
techniques on a specific homotopy class of solutions such as
sampling nearby current best solutions or shortcutting [4],
[5], [6]. Another group is based on exploration to find a
new homotopy class. Techniques in this group typically
adopt workspace/geometry analysis [25], [26] to get more
information from the given space. It is well known that
there is a trade-off relationship between exploitation and
exploration [25], and the balance control is a key to address
the optimality issue [5].

In our method we design our sampling update method
based on milestones for achieving a rapid convergence
toward a local optimum, while ensuring the possibility of
finding the global optimum by maintaining sampling proba-
bilities in other homotopy classes.

III. OVERVIEW

We first define our motion planning problem, followed by
a brief review of RRT* and its problems. We then give an
overview of our method.

A. Problem Definition

Let X and U be the state space and control space,
respectively. Let x0 ∈ X the initial state. We then have
the following dynamical system describing the relationship
between control and state:

ẋ(t) = f (x(t),u(t)), x(0) = x0, (1)

where x(t) ∈ X and u(t) ∈ U are the state of the robot
and a control input at time t, respectively. f is a contin-
uously differentiable function with respect to its variables.
Let Xobs,Xgoal ⊂ X to represent obstacle and goal regions,
respectively. The obstacle-free region then can be denoted
by X f ree = X\Xobs. A path that connects x0 to xn consists of
a sequence of control inputs u0,u1, . . . ,un and corresponding
state xi can be obtained sequentially by the integration of f .
Let g : τ(t)→ R be a cost function that associates a non-
zero cost, where τ : [0 : T ]→ X f ree indicates a continuous
measurable trajectory passing x(t). An example of g(τ(t))
can be simply a distance between two states for a rigid body.

Optimal motion planning. Given the dynamical system
described in Eq. 1, the motion planning problem is to find
a continuous path, τ : [0,T ]→X f ree such that τ(0) = x0 and
τ(T ) ∈Xgoal , while satisfying the control constraints or cor-
responding u(t),∀t ∈ [0,T ]. For an optimal motion planning,
there is an additional constraint to minimize the integral of
the cost function over the entire path,

∫ T
0 g(τ(t))dt.

In this paper we focus on the optimal motion planning for
a rigid body. Before we present our method, we first give



a brief review on RRT∗, designed for the optimal motion
planning with single queries.

B. Review of RRT∗ and Its Convergence

RRT∗ is an incremental sampling based motion planning
algorithm, and unlike the original RRT it asymptotically
converges to the optimal solution. Given a randomly sampled
configuration, the original RRT finds its nearest configuration
among existing nodes in the RRT to determine its parent. If a
feasible trajectory connecting from the parent to the sample is
found by a local planner, it then inserts an edge that connects
the sample and the parent into the RRT. Once the relationship
between the pair of sample and parent nodes is determined,
it is fixed throughout the entire execution.

RRT∗, however, takes into account a cost from the initial
state to reach each parent candidate, which is located within
a circle with a certain radius to determine the optimal parent
in terms of cost. Furthermore, by using the rewire routine,
it can compute the optimal solution by finding shorter paths
between existing configurations, while growing the RRT.

RRT∗ provides an optimality guarantee for the solution as
we have an infinite amount of time. In practice, how quickly
it converges toward the optimal solution is a matter of
concern. Especially for mobile robots or vehicles, it is critical
to compute high-quality solutions in an efficient manner.

Recent prior techniques proposed local biasing tech-
niques [4], [5], [6] for providing improvement on the con-
vergence speed to some extent. We have found that these
approaches are good at refining a path in one homotopy
class, but have less tendency on discovering solutions in other
homotopy classes. As a result, in a complex work space
where various homotopy classes exist and the optimal lies
on a specific one with narrow passage, it might not provide
noticeable improvement.

C. Overview of Our Approach

We present a novel biased sampling technique to ef-
ficiently compute a high-quality collision-free path, while
maintaining the asymptotic convergence to the optimal solu-
tion. We aim to allocate a high sampling weight for a region
that is promising to compute the optimal solution. To achieve
the goal we first decompose the C-space as a set of spheres
with varying radii, sampling cloud, denoted by S .

To construct initial sampling cloud and compute an ini-
tial path in an efficient manner, we construct Generalized
Voronoi Graph (GVG) as a geometric analysis of the given
work space.

Whenever we found a better path during the execution of
planner, we define a milestone, which contains configurations
from the current best path over all the prior paths. We exploit
the milestone to guide the current sampling cloud for refining
the current best solution. For this we generate additional new
spheres to cover configurations on the milestone. Meanwhile
we sample other regions with existing sampling spheres to
identify a better solution that has a different homotopy to
that of the current best path.

IV. ALGORITHMS

In this section we discuss each component of our method.

A. Sampling Cloud

We use our sampling cloud for representing our sampling
distribution on the C-space. Since we need to use it for every
sample generating, it should be very efficient and flexible
for representing different sampling distributions. Given these
requirements we decide to represent our sampling cloud S
with a set of spheres.

Each sphere of the sampling cloud contains a portion of
the C-space, which is projected to a collision-free spherical
region in the workspace. Specifically, a subset, Xs, of C-
space associated with a sphere s is defined as follow:

Xs := {x | Pro j(x) ∈ s∧ x ∈ X}, (2)

where Pro j(·) is a projection function from the C-space to
the workspace. We utilize Xs to generate samples given the
sampling sphere s.

A sampling sphere, s, is associated with its center position
and radius defined in the workspace; the radius of s is
denoted as rs. Additionally the sphere s is associated with
an importance value, is, and an orientation range for each
orientation part in the C-space. The importance value is of
a sampling sphere s represents the sampling probability of s
among all the spheres of S . The importance value is used
at the sampling phase of our method. is is also initialized
proportional to the volume of sphere s in the workspace.
The orientation range is defined by two radian value: a main
orientation, φs, and its deviation value, θs. We then generate
samples in the range of [φs−θs,φs +θs].

In our method we generate random samples in the C-space
according to S instead of the C-space X. Specifically we
first choose a sphere s among S according to their impor-
tance values is. We then generate a configuration covered by
the sphere s in a uniform manner. In particular we generate
two dimensional positions within the spherical region of the
sphere s and then generate an orientation with the orientation
range associated with s.

Given this sampling procedure we can easily adjust our
sampling distribution by adding or delete spheres to/from
the sampling cloud. Multiple spheres can have overlap. In
this case the overlapped region has a higher probability to
be generated compared to other non-overlapped regions.

B. GVG-guided Initialization

We propose a GVG-guided initialization for our sampling
cloud. In the case of two dimensional problem, GVG has
a nice property that the global optimal solution is always
homotopic to one of the path in GVG, if it exists [27].
While GVG does not capture all the connectivity of the free-
space with dimensions higher than two, it can still provide
a reasonable view on the connectivity. We therefore use
GVG to guide an initial distribution of our sampling spheres
and cover important regions such as narrow passages for
computing collision-free paths.



Algorithm 1: GVG-BASED INITIALIZATION
Input: Obs, a set of obstacles
Output: S, a set of collision-free spheres

1 (VGV G,EGV G)←ConstructVoronoiGraph(Obs)
2 S ← /0; Q← /0
3 vinit ← FindVisiblePoint(VGV G,EGV G)
4 rinit ← DistacneToClosestObstacle(vinit ,Obs)
5 Q.push((vinit ,rinit)) // push a sphere with vinit and rinit
6 while Q isNotEmpty do
7 (v,r)← Q.pop() // fetch a sphere
8 V ←ConstructNeighborSpheres((v,r),VGV G,EGV G)
9 for each v ∈V // per each intersected vertex do

10 if IsNotContainedInOtherSpheres(v,S ) then
11 r← DistacneToClosestObstacle(v,Obs)
12 S ←S ∪{v,r}
13 Q.push((v,r))

14 return S

Many different construction techniques for GVG have
been available for two and three dimensional cases [28],
[29]. Some of them can be performed efficiently on GPUs for
two and three dimensional workspaces [29]. For our problem
we assume that input environments are two dimensional and
consist of points, line segments, and their combinations.

The pseudo code of our GVG-based initialization is given
in Algorithm 1. Spheres constructed by GVG in a simple
scene are depicted in Fig 1-(a).

We first compute Voronoi vertices and edges given obsta-
cle information. This is shown in the line number 1 in Alg. 1,
which is denoted by [1:Alg. 1] hereafter. These Voronoi
vertices and edges are shown in black curves/lines in Fig. 1.

As a position of our first sampling sphere, we find a
point, vinit , on GVG that is visible from the starting position
of a robot. For computing the visible point, we generate
random lines from the starting position and perform collision
detection between the lines and obstacles. The main reason
why we find the visible point is to avoid computing a point
of GVG that is inside an obstacle.

Once the first sphere is located at the visible point, we then
compute its radius such that it contains a largest collision-
free workspace. The maximum radius of the first sphere,
rinit , is computed by computing the nearest neighbor among
obstacles from the visible point. This process is performed
in the function of DistanceToClosestObstacle [4:Alg. 1]. To
construct other spheres we put our initial sphere in a queue.

We continue our GVG-based initialization by fetching a
sphere s from the queue. We then construct another sphere
to cover other Voronoi vertices and edges. Among possible
locations we incrementally compute candidate positions for a
new sphere in a way that the new sphere has an overlap with
the current sphere s. For this process we compute intersection
points between the sphere s and Voronoi edges of GVG
[8: Alg. 1]. We check whether these intersection points are
contained in existing spheres [10: Alg. 1]. If they are not

(a) An initial sampling cloud (b) An updated one

Fig. 1. The left figure shows sampling spheres computed by our GVG-
based initialization in a 2D example. Blue and black lines are obstacles
and Voronoi edges, respectively. The right figure shows updated sampling
spheres with a computed path between the initial position (shown in the red
box) and the goal (the green box); see the pdf file for better visual quality.

contained, we construct spheres centered at those locations in
the same manner to that of constructing our first sphere. We
also push constructed spheres into the queue. We continue
this process until the queue has no more spheres.

Fig. 1-(a) shows our initial sampling cloud in a simple
scene. In this figure regions shown in red colors have a higher
probability to be sampled than those with blue ones.

C. Updating Sampling Cloud

As we exploit and refine the current best path or explore
unvisited regions, we can find a better path with a smaller
cost than the current one. We update our sampling distribu-
tion to reflect the newly identified shorter path.

Given prior and new paths we define a milestone to contain
a set of new configurations from the new path, but that are not
included in all the prior old paths. As a result the milestone
of the new path represents a new path segments that have
not discovered in prior paths. At a high level we would like
to generate more samples near regions around the milestone,
while maintaining sampling probability for regions that are
far away from the milestone. In summary, we aim to preserve
the global sampling distribution, while focusing more on the
milestone locally.

For each configuration of the milestone, it is guaranteed
that the configuration is contained in at least one or multiple
sampling spheres, denoted by Sc; the subscript c of Sc
denotes Containing spheres. This is because the configuration
is generated from the current sampling cloud. We generate
a new sphere, n, centered for each configuration of the
milestone to locally sample more on regions related to the
milestone. The new sphere n should be more localized than
spheres of Sc. We therefore compute the radius, rn, of n by
reducing radii of Sc by a factor of α ∈ (0,1). We then set the
importance, in, of the new sphere to be computed relatively
to importances of Sc based to their radii. In summary, rn
and in of the new sphere n are defined as the following:

rn =
1
|Sc| ∑

s∈Sc

rs ·α, (3)

in =
1
|Sc| ∑

s∈Sc

is · rn

rs + rn
. (4)



We then reduce the importance of Sc by ∆is. Since we
want to maintain the sum of all the importance values before
and after the update operation, we set the sum of ∆is to
be equal to the added importance of the newly generated
spheres, i.e. in, and thus have the following equation:

∆is =
is · rn

(rs + rn) · |Sc|
,∀is ∈Sc. (5)

One can easily see that the sum of ∆is is equal to in.
The main orientation φn of n follows the orientation of

the configuration in the milestone. The deviation value θs is
calculated in the same manner to the radius as follows:

θn =
1
|Sc| ∑

s∈Sc

θs ·α. (6)

This process results in increasing the sampling probability
more locally on the milestone based on the new sphere n,
but reducing on its neighboring regions covered by Sc, while
maintaining the global sampling distribution to other regions
(Fig. 1-(b)). Because of maintaining the global sampling
distribution in other homotopy classes, we can effectively
explore such regions, while focusing on the current best
homotopy class containing the milestone.

Note that a milestone is designed to include newly identi-
fied configurations compared to those included in all the prior
milestones. Alternatively, a milestone may include all the
configurations from those prior milestones. We have found
that this approach results in excessive biasing toward a local
optimum.

D. Pruning Sampling Spheres

As we identify better solutions, we update our milestone
and sampling cloud to cover regions localized near the
milestone. In this process we generate additional spheres
while maintaining the global sampling distribution. Some
sampling spheres that seem promising for computing better
solutions, however, turns out to be ineffective later during
the optimization process.

In order to design more effective sampling process, we
prune sampling spheres among S that cannot provide a
better solution than the current one. For this purpose we
propose a simple pruning method. Given a sphere, we
compute a line based path starting from the start position
to the goal by passing a point in the sphere. When we
identify a point that minimizes the length of the line-based
trajectory, the length of the trajectory serves as a lower bound
of a solution that any samples of the sphere can achieve.
When the length is bigger that the length of the current best
solution, we can conservatively prune the sphere, since it
cannot contribute to optimize the path.

The point in the sphere minimizing the line-based tra-
jectory is the intersection point between the sphere and
the shortest line generated from the center of the sphere
to another line segment consisting of the start and goal
positions.

We perform our pruning method when a sphere is chosen
from our sampling cloud. Since we do not change its posi-
tion, all the computation of our pruning method is performed

Algorithm 2: Cloud RRT∗

Input: A sampling cloud S , an init. configuration,
qinit , and a goal region, Qgoal

Output: A random tree, T , and a solution path, Qsol
1 T ←{qinit} and Qsol ← /0
2 while not termination conditions are satisfied do
3 s← SampleSphere(S )
4 qs← Sample(s)
5 qn← Nearest(qs)
6 (qnew,unew)← Steer(qn,qs)
7 if IsCollisionFree(qnew,unew,qn) then
8 Qnear← Near(qnew)
9 qmin←ChooseParent(Qnear,qn,qnew)

10 T ← InsertNode(qmin,qnew,T ,s)
11 T ← Rewire(T ,Qnear,qmin,qnew)
12 if A better solution is found then
13 Qsol ←U pdateSolution(T )
14 M←U pdateMilestone(Qsol)
15 S ←U pdateSamplingCloud(S ,M)

16 return T

only one time and recorded. We then check its lower bound
with the length of the current best path. As a result, its
computation overhead is negligible.

E. Cloud RRT∗

In this section we explain an overall flow of cloud RRT∗,
whose pseudocode is shown in Alg. 2. At a high level the
structure of our cloud RRT∗ is similar to that of RRT∗ except
operations related to the sampling cloud and milestone.

We first choose a sphere, s, from the sampling cloud
S according to importance values of spheres, and prune
s, if possible. We then generate a random sample, qs [3-
4:Alg. 2]. We then compute a nearest neighbor node, qn,
from the sample qs by using Nearest(·), and compute a
feasible trajectory from qs to qn based on Steer(·). If the
trajectory does not have any collisions, we compute nearby
neighbor nodes within a radius by using Near(·). We then
compute an optimal parent node and its edge to the tree,
followed by the rewire operation [9-11: Alg. 2].

Whenever a better solution is found, we recompute a
milestone and then update our sampling cloud [15:Alg. 2],
as mentioned in Sec. IV-C.

V. RESULTS
We have tested our method on a machine that has 3.5GHz

Intel i7-2700K processor. We use a Voronoi diagram builder
in the well-known Boost library [30] for our GVG-guided
initialization.

To demonstrate benefits of our method, we have compared
our method with the original RRT∗, RRT∗-Smart [4], and
local biasing and node rejection techniques, denoted as LN,
proposed by Akgun et al. [5]. We have tested different
methods for a kinematic motion planning problem with the
Dubins vehicle model [31].



(a) Six squares (b) Four squares

(c) Many points

Fig. 2. These figures show two 2D environments for a kinematic car. Red
and green squares indicate initial and goal positions, respectively. The car
is drawn with its two circles of the minimum turning radius at its initial
position. Computed near-optimal paths are shown in red curves. Obstacles
in the scene of (c) are represented in blue dots, which mimic real-world
data.

A. Dubins Vehicle

We aim to generate optimal collision-free paths in an
efficient manner for autonomous vehicle models. For the
problem we use the Dubins vehicle model and need to
respect kinematics of the model for computing collision-free
paths. While our initial path is computed by only considering
the geometry of obstacles based on GVG, we would like
to demonstrate how our method behaves well with such
kinematic constraints.

The Dubins vehicle is a simple car model that moves at a
constant forward speed and has a maximum steering angle,
φ , which implies the minimum turning radius, ρ = L/tan(φ),
where L is a distance between front and rear axles, and φ <
π/2. Its system can be described by the following equations:

ẋ = vccosθ ,

ẏ = vcsinθ , (7)

θ̇ =
vc

L
· tan(u),

where vc is a constant speed of the vehicle, and u is a steering
input within U = [−φ ,φ ]. Its C-space is C = R2×S, and a
configuration in the C-space can be denoted by q= (x,y,θ)∈
X. In this case Pro j(q) used for defining Xs (Eq. 2) is
set to be (x,y). A local planner for the Dubins vehicle is
implemented based on the kinodynamic planner presented
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Fig. 3. This figure shows a graph of costs of solutions as a function of
computation time with different methods. Our method shows the best quality
over other methods that are even combined with GVG-based sampling.

by Karaman et al. [32]. We have tested three different
environments (Fig. 2) for the kinematic motion planning
problem.

In addition to testing the original RRT∗ with uniform
sampling (Uniform), RRT∗-Smart, LN, and ours, we have
also tested Uniform combined with GVG (Uniform + GVG),
RRT∗ + GVG, and LN + GVG, since GVG can be combined
with the tested prior methods. For prior methods combined
with GVG, we use our initial sampling cloud computed from
GVG (Sec. IV-B), but do not use our update nor pruning
methods. By comparing our method with those prior methods
combined with GVG, we can observe benefits of our update
and pruning methods.

For the experiments, we set biasing factor, b, for RRT∗-
Smart, to be 5, where 1 divided by b is a frequency of
intelligent sampling. As a result, for RRT∗-Smart, we use
its intelligent and uniform sampling in 1:4 ratio; we have
tried many different values and decided 5 for b, since it gives
the best result. For RRT∗-Smart + GVG, we use intelligent
sampling and our GVG based sampling in a 1:4 ratio. We set
the biasing factor β for LN as 0.2, i.e., use its sampling and
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Fig. 4. Graphs showing the time required to reach a cost of solutions
shown in the X-axis.

uniform sampling in a 1:4 ratio, since it also gives the best
result. For LN + GVG, we use our GVG-based sampling,
not the uniform sampling. Prior methods have their own
parameters and we set their values based on ones reported
in their original papers.

Fig. 3 show how different methods reduce the cost of solu-
tions as we have more computation time up to five seconds.
The computation time for our method includes all the op-
erations of our method including the GVG construction and
the initialization/update/pruning operations for our sampling
cloud. Our method clearly outperforms all the prior methods.
Furthermore, our method is able to compute shorter paths
over all the prior methods that are even combined with our
sampling cloud constructed with GVG. This demonstrates
benefits of updating and pruning our sampling cloud for
achieving better convergence rate.

In the scene with four squares, most methods find a path
that is homotopic to the optimal path, when they find a
path whose cost is less than 20. Our method finds such
a path faster than other methods. This is mainly because
we maintain the global sampling distribution that tends to
explore unvisited areas and prune unpromising sampling
spheres. Furthermore, our method keeps to reduce its cost
by finding shorter paths in the same homotopy class. Note
that as we have better solutions, we create more localized
sampling spheres for milestones by using smaller radii over
prior spheres containing those milestones. Also, reducing
orientation ranges of newly created spheres results in the
same localized sampling. As a result, we can exploit newly
better solutions and refine them in their homotopy classes.

Fig. 4 shows how long each tested method takes to
compute a solution path that has a given cost (shown in the
X-axis). This graph is another visualization of prior graphs

TABLE I
VARIOUS STATICS AVERAGED OVER 100 TRIALS WITH THE RUNNING

TIME BUDGET OF 5 SECONDS. NUMBERS IN PARENTHESES ARE

STANDARD DEVIATIONS.

(a) Six squares (Ground truth optimal cost ≈ 14.480858)
C f inal Nupdate Nnode Niteration

Uniform 20.39(10.21) 9.77 1099.83 2230.08
Uniform + GVG 15.46(0.57) 12.14 1261.92 2434.47

RRT∗-Smart 18.26(2.41) 18.70 1566.66 3652.32
RRT∗-Smart + GVG 15.44(0.55) 17.93 1344.37 2701.56

LN 17.21(6.23) 27.88 1250.41 4583.76
LN + GVG 14.95(0.37) 24.51 1236.80 4477.52

Ours 14.60(0.08) 21.65 1220.07 2982.75

(b) Four squares (Ground truth optimal cost ≈ 15.557956)
C f inal Nupdate Nnode Niteration

Uniform 19.08(1.79) 10.66 1624.96 3836.78
Uniform + GVG 17.36(0.81) 11.57 1792.89 3521.99

RRT∗-Smart 18.18(3.10) 17.96 1573.74 3716.09
RRT∗-Smart + GVG 16.82(0.91) 19.74 1704.48 3482.12

LN 18.34(3.35) 20.01 1506.20 3866.89
LN + GVG 16.70(0.68) 18.61 1519.68 3862.09

Ours 16.33(0.34) 19.13 1552.79 3261.21

(c) Many points (Ground truth optimal cost ≈ 18.9)
C f inal Nupdate Nnode Niteration

Uniform 21.82(0.578) 4.80 705.74 2906.62
Uniform + GVG 20.79(1.013) 8.55 750.70 2378.11

RRT∗-Smart 22.08(2.24) 11.11 682.21 2613.84
RRT∗-Smart + GVG 20.95(1.10) 13.55 735.30 2241.22

LN 22.16(1.84) 10.78 747.11 3096.56
LN + GVG 20.38(1.23) 16.40 689.75 2590.31

Ours 19.81(0.32) 15.10 750.70 2467.45

of Fig. 3, which show the computational time in the X-
axis. By summarizing results obtained from the tested three
benchmarks, performances of different methods reaching to a
particular cost can be ranked as follows: Uniform sampling
< Uniform + GVG < LN ' RRT∗-Smart < RRT∗-Smart
+ GVG < LN + GVG < Ours. Overall our method shows
performance improvement in a range between three and five
times over RRT∗-Smart and LN. Over those prior methods
combined with GVG, our method shows improvements in a
range between two and three times.

Discussions. Our method shows higher robustness over
all the other tested methods. For example, the performance
ranking of LN and RRT∗-Smart shown in Fig. 3(a) varies
depending on the available computation budget. Uniform
sampling combined with GVG shows even better perfor-
mance than LN+GVG and RRT∗-Smart around 600 ms, as
shown in Fig. 3(b). Also, in the scene with many points,
the uniform sampling is better than RRT∗-Smart and LN
for solutions with less than 20.25 (Fig. 4(b)). On the other
hand, our method shows higher performance over all the
other methods across most available time budgets and given
costs.

To confirm this, we have measured the standard deviation
of costs of solutions among 100 attempts. Our method shows
the lowest values over all the other methods across the three
tested environments, while achieving the shortest paths. More
information can be found in Table I showing various results
including a cost of the final solution, C f inal , with its std.
deviation, the average number of nodes, Nnode, the number of



TABLE II
STATISTICS RELATED TO OUR GVG-GUIDED INITIALIZATION.

Tgvg Tsphere Nver Nedge Ninit

Six squares 0.73 ms 2.34 ms 94 298 51
Four squares 0.56 ms 1.75 ms 168 214 47
Many points 4.92 ms 3.31 ms 1554 4670 71

solution updates, Nupdate, the number of iterations, Niteration,
and ground truth optimal path costs that are computed by
running our method in a few hours.

Table II shows the GVG construction time, Tgvg, and our
GVG-guided initialization time, Tinit . Overall they take a
small portion, less than 10 ms, in our tested environments.
The table also shows the number of computed Voronoi
vertices and edges, Nver and Nedge, as well as the number of
spheres, Ninit , constructed by the GVG-guided initialization.

VI. CONCLUSION
We have proposed Cloud RRT∗, which utilizes sampling

cloud, a set of sampling spheres initialized by GVG. Our
update method for the sampling cloud is based on newly
identified configurations of better solutions and we generate
additional spheres to locally exploit such regions. Further-
more, our update method maintains the global sampling
distribution pattern for sampling less explored homotopy
classes, by locally modifying sampling patterns related only
to milestones. We have also proposed a simple pruning
method for spheres to cull out unpromising spheres. We
have applied our method to the 2D motion planning problem
with kinematic constraints. We have found that our method
shows higher performance and better convergence rate over
the state-of-the-art methods in a robust manner.

There are many interesting research avenues. In this work
we have mainly tested with 2D problems. It requires addi-
tional efforts to handle three dimensional problems. All the
concepts and operations of sampling clouds are applicable to
3D workspace. On the other hand, GVG in 3D has problems
of disconnectivity [27] and can be slow because of its
time complexity. Fortunately, improving GVG has been well
studied. Hierarchical GVG and GPU-based efficient approx-
imation techniques are available [27], [29] for addressing
aforementioned issues. Nonetheless, integrating them within
our method in a way for achieving high performance is
left for future work. We would like to also investigate
efficient geometry/homotopy analysis and maintain multiple
local optimum located in different homotopy classes within
our sampling cloud.
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