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Sampling-based Motion Planning
• Probabilistically complete 

• Scalable to high dimensions 

• RRT(Rapidly-exploring Random Tree),  
[LaValle & Kufner, IJRR 2001] 

• PRM(Probabilistic Roadmap Method)  
[Kavraki et al., IEEE T. Robotics  
and Automation 1996] 

!
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Karaman et al.,  
Anytime Motion Planning using RRT*, 2011

LaValle, Planning Algorithms 2006



Optimal Motion Planning
• RRT* : Asymptotically optimal version of RRT 

• No substantial, computing overhead compared to RRT
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(Karaman and Frazzoli, “Incremental Sampling-based Algorithms for Optimal Motion Planning”, IJRR 2011)



Exploration vs Exploitation

• Global Search vs Local Search 

‣ Refining local solutions (Exploitation) 

‣ Finding another solution (Exploration) 

• Trade-off between two strategies 
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Exploration vs Exploitation
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• Difficult choice for finding the global optimum



Exploration vs Exploitation
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• Identify all the homotopy classes



Exploration vs Exploitation
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• Exploit locally successful sampling regions, while  
exploring different homotopy classes



Our Goal

• Achieve a rapid convergence speed toward the 
optimal solution 

• Balance exploration and exploitation 

• Exploit locally successful sampling regions, while 
exploring different homotopy classes 
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Relevant Works
• RRT(Rapidly-exploring  

Random Tree) 
(S. M. LaValle, 1998)"

• RRT* (S. Karaman, IJRR’2011)"

• Balancing exploration & exploitation 
(M. Rickert, ICRA2008)"

• Ball-tree : Free-space approximation 
method (A Shkolnik, 2011)"

• Decomposition-based 
motion planning : Wavefront 
Expansion 
(O. Brock, ICRA2001)
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• Sampling Heuristics for rapid 
convergence toward optimal"
‣ Local Biasing & Node 

Rejection 
(B. Akgun, IROS2011)"

‣ RRT*-Smart 
(F. Islam, ICMA2012)"

‣ Refine the current best solution 
‣ Mainly consider the exploitation 

rather than exploration
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Algorithm Overview

• Sampling cloud: sampling space decomposition 

• Sampling & update rules for sampling cloud 

• Cloud RRT*: sampling cloud integrated with the 
original RRT* 

!
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Sampling Cloud

• Sampling cloud is a set of spheres, which 
represents a subset of C-space 

• A sampling sphere in sampling cloud has: 

‣ Center position"

‣ Radius"

‣ Orientation range"

‣ Importance value  
- A probability to be sampled. 

Overlapped region or one with high 
importance value is likely to be more 
frequently sampled
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GVG-guided initialization

• Based on GVG (Generalized Voronoi 
Graph) 

‣ Can cover all of the possible 
homotopy classes in 2D 

• Each component has the maximum 
clearance to the nearest obstacle 
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• Initialize the sampling cloud by  
sphere expansion (O. Brock, ICRA2001)
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Sampling Cloud Update
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mi

Two sampling spheres(blue, red) 
& a configuration in milestone  __mi

mi
mi

• Milestone  
‣ A set of configurations from the current best 

solution over all the prior paths 
•  For each configuration of the milestone       , find 
all sampling spheres containing        
!

•  Generate new sampling sphere 
centered at 
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Sampling Cloud Update
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Newly generated sampling sphere(purple) 
centered at  __ mi
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Examples of Sampling Cloud
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Initial state of sampling cloud After updated several times



Cloud RRT*
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Sampling Cloud

Current solution



Cloud RRT*
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Cloud RRT*
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Cloud RRT*

21



Cloud RRT*
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Cloud RRT*
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Cloud RRT*
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Cloud RRT*
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Cloud RRT*
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Cloud RRT*
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Cloud RRT*
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Cloud RRT*

29



Cloud RRT*
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Cloud RRT*
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Goal�



Cloud RRT* : Update

32



Cloud RRT* : Update
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Cloud RRT* : Update
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Cloud RRT*
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• Tested our algorithm on 3 different 2D environments 

• Dubins vehicle model (Dubin,1957) with kinematic constraints 

!

• Original RRT* (Uniform sampling) 
‣ Akgun & Stilman, Sampling Heuristic for Optimal 

motion planning in high dimensions, IROS2011"
‣ Islam et al., RRT*-Smart : Rapid convergence 

implementation of RRT* toward optimal solution, 
ICMA2012

Experimental Results: 
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Results: 
• Tested our algorithm on 3 different 2D environment 

• Dubins vehicle model with kinematic constraints 

• Compared with:  
‣ Original RRT* (Uniform sampling)"
‣ Akgun & Stilman, Sampling heuristic for optimal 

motion planning in high dimensions, IROS2011"
‣ Islam et al., RRT*-Smart : Rapid convergence 

implementation of RRT* toward optimal solution, 
ICMA2012
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Results: 4 squares

• Ru
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Time Budget : 5 seconds

Local biasing with"
Node rejection



Results: 4 squares
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RRT* - Smart



Results: 4 squares
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Combined algorithms}



Results: 4 squares

41

Ours



Results: 4 squares
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1.8x  improvement



Results: 6 squares
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3.8x  improvement



Conclusions
• Presented RRT* based sampling heuristic algorithm 

that:   

‣ Locally exploits solutions in different homotopy 
classes to achieve a better convergence speed 
toward optimal 

• Future work 

‣ 3D workspace problem
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Thanks

• For more details: 

donghyuk.kim@kaist.ac.kr"

http://sglab.kaist.ac.kr/CloudRRT/ 
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http://sglab.kaist.ac.kr/CloudRRT/

