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Abstract
We present a collision detection (CD) method for complex and large-scale fracturing models that have geomet-
ric and topological changes. We first propose a novel dual-cone culling method to improve the performance of
CD, especially self-collision detection among fracturing models. Our dual-cone culling method has a small com-
putational overhead and a conservative algorithm. Combined with bounding volume hierarchies (BVHs), our
dual-cone culling method becomes approximate. However, we found that our method does not miss any collisions
in the tested benchmarks. We also propose a novel, selective restructuring method that improves the overall per-
formance of CD and reduces performance degradations at fracturing events. Our restructuring method is based
on a culling efficiency metric that measures the expected number of overlap tests of a BVH. To further reduce the
performance degradations at fracturing events, we also propose a novel, fast BVH construction method that builds
multiple levels of the hierarchy in one iteration using a grid and hashing. We test our method with four different
large-scale deforming benchmarks. Compared to the state-of-the-art methods, our method shows a more stable
performance for CD by improving the performance by a factor of up to two orders of magnitude at frames when
deforming models change their mesh topologies.

1. Introduction

Simulating realistic fractures in deforming models is one
of the main challenges in computer animation, sculpt-
ing in CAD, virtual surgery, etc [OH99, SOG06, BHTF07,
WTGT09, PO09]. Simulating such complex phenomena re-
quires collision detection (CD) methods to avoid any inter-
collisions among deforming models and self-collisions (i.e.
intra-collisions) within each deforming model. Moreover,
fractures change the mesh connectivity (i.e. mesh topology),
in addition to changing the geometry (e.g., positions of ver-
tices) of the mesh. Also, at a fracture or merge event, multi-
ple parts of the same object can appear in a close proximity
(see Fig. 1), causing a higher computation time for CD. As a
result, CD including self-collision detection is typically the
main computational bottleneck of simulating these complex
phenomena [SOG06, BHTF07].

CD methods are commonly accelerated by using bound-
ing volume hierarchies (BVHs) constructed from deform-
ing models. The BVHs are hierarchically traversed to find
collisions among models. At the leaf nodes of BVHs, prim-
itive tests are performed between triangles stored in these
leaf nodes. In these BVH-based CD methods, detecting self-
collisions requires much longer computation time than de-
tecting inter-collisions [GKJ∗05]. This is mainly because
bounding volumes (BVs) of any neighboring triangles can
overlap and BVHs do not provide any culling for these over-
lapping BVs during the self-collision detection.

Moreover, these BVHs of deforming meshes should be
updated as deforming meshes change their geometry and
topology. At fracturing events, the geometry and topology
of deforming models undergo more drastic changes, com-
pared to deforming events that do not have any fractures.
Therefore, BVHs at fracturing events become to have lower
culling efficiencies, degrading the performance of CD more
significantly. As a result, users may experience noticeable

performance degradations at such fracturing events. Espe-
cially in interactive applications, providing a stable perfor-
mance to users is very important. Since the performance of
CD for large-scale fracturing simulations can be very slow,
such large-scale fracturing has not been widely employed in
various interactive applications.

At a high level, CD is classified into discrete CD (DCD)
and continuous CD (CCD) [LM03]. DCD finds collisions
only at discrete time steps. On the other hand, CCD models
a continuous motion for deforming geometry between two
discrete time steps and detects collisions at the first time-
of-contact in the continuous time interval defined by these
two discrete time steps. It is well known that CCD is more
expensive than DCD and thus presents more challenges for
achieving interactive performances with fracturing models.

To improve the performance of DCD and CCD, many
prior approaches have been proposed. They accelerate the
performance of CD by designing specialized algorithms for
certain types of models (e.g., rigid objects [RKC02] and
meshes with fixed topology [GKJ∗05]), developing various
culling methods [VT94, CTM08, TCYM08], designing effi-
cient BVH update methods [LAM06,OCSG07], or introduc-
ing parallel CD methods [KHH∗09,TMT09]. However, most
of these prior methods have not been tested with fracturing
models that have topological changes. Moreover, if we apply
these techniques to such models that consist of hundreds of
thousands of triangles, they may take prohibitive computa-
tion time at fracturing events in practice.

Main results: In this paper we propose a Fracturing-Aware
STable CD (FASTCD) method for complex and large-
scale fracturing models that have geometric and topological
changes. First, we introduce a Dual-Cone Theorem (Sec. 4)
that allows us to check whether a surface can have self-
collisions or not. The dual-cone consists of surface nor-
mal and binormal cones. We design a BVH-based hierarchi-
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(a) Exploding Dragon Benchmark (b) Breaking-Wall Benchmark

Figure 1: These figures show two complex fracturing benchmarks that have topological changes. (a) Three frames of a breaking dragon

benchmark that consists of 252 K triangles throughout the simulation. (b) Three frames of a breaking-wall benchmark that starts with 42 K

triangles and ends with 140 K triangles.

cal culling method that uses dual-cones for each node. Our
dual-cones can be efficiently updated even when deform-
ing models have drastic geometric and topological changes.
Our dual-cone theorem is conservative. However, our BVH-
based CD method integrated with dual-cones results in an
approximate culling method and could miss collisions in
theory. However, we found that our method does not miss
any collisions in the tested benchmarks. Second, we pro-
pose a selective restructuring method that locally modifies
only sub-BVHs that have low culling efficiencies (Sec. 5).
To measure the culling efficiency of a BVH, we propose a
novel cost metric that measures the expected number of BV
overlap tests that are performed recursively for CD includ-
ing self-collision detection. Also, in order to reduce perfor-
mance degradations at fracturing events, we propose a fast
BVH construction that builds multiple levels of the hierar-
chy in one iteration by using a grid and hashing.

To demonstrate the benefits of our method, we test dis-
crete and continuous CD methods integrated with our meth-
ods in four different complex deforming benchmarks that
consist of hundreds of thousands of triangles (Sec. 6). Com-
pared to the state-of-the-art techniques, our method im-
proves the performance for CD including self-collision de-
tection by a factor of up to two orders of magnitude at frac-
turing events when deforming meshes change their topology.
This results in a more stable performance of CD with large-
scale fracturing models.

2. Related Work

CD has been widely studied and excellent surveys are avail-
able [LM03, Eri04, TKH∗05].

2.1. Bounding Volume Hierarchies (BVHs)

BVHs have been widely used to accelerate the performance
of CD. Some of the common bounding volumes (BVs)
include spheres, axis-aligned bounding boxes (AABBs),
etc [LM03, Eri04]. Many top-down and bottom-up tech-
niques have been proposed to construct these BVHs from
meshes [TKH∗05].

BVH update methods: As models deform, their BVHs
should be updated. The simplest update method refits
each BV by traversing the BVH in a bottom-up man-
ner [TKH∗05]. This method runs quite fast, but shows lower
culling efficiencies as models deform drastically. Another
class of BVH update methods reconstructs the entire BVH
from scratch [WH06]. This method shows the best culling
efficiency, but runs quite slow for large-scale models. The

Figure 2: This figure shows (a) a cone definition, (b) a computed
binormal vector from a boundary edge, and (c) an example of a
binormal cone computed from a surface.

last, but the most widely used class of BVH update meth-
ods selectively restructures subsets of the BVHs [LAM06].
For fracturing models, Otaduy et al. [OCSG07] proposed
an AVL-based local restructuring method in order to com-
pute balanced BVHs. Zachmann and Weller [ZW06] pro-
posed event-based kinetic BVHs. This method showed an
optimal number of BVH updates for deforming models that
have fixed topologies.

Time-critical methods: In order to achieve interactive per-
formance of CD for large-scale models, many approxi-
mate CD methods have been proposed. Hubbard [Hub93]
introduced the concept of time-critical CD using sphere-
BVHs. Many other approximate techniques [OD01, OL03,
YSLM04] have been introduced based on the concept of
time-critical CD, to provide more stable CD performances
at fracturing events.

2.2. Culling Techniques for CD

Volino and Thalmann [VT94] proposed a culling condition
to identify regions that do not have any self-collisions for a
connected mesh at discrete time steps. This culling method
can be combined with BVH-based CD methods [Pro97] and
has been extended to CCD [TCYM08].

Another class of culling methods aims to reduce the num-
ber of primitive tests for CCD by considering the con-
nectivity of the meshes. These techniques are initially de-
signed for meshes with fixed connectivity [GKJ∗05] and
are extended to deforming models that have fixed topolo-
gies [CTM08, TCYM08].

3. Background

In this section we define terminologies for the rest of the
paper and introduce the background of our culling method.

Terminologies: We define a sub-BVH (n) to denote a sub-
BVH rooted at the BV node n. Also, nl and nr represent the
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left and right child nodes of the node n. We use a cone to
compute the tightest directional bounds of vectors. A cone
of vectors is constructed such that the cone (e.g., the violet
cone in Fig. 2-(c)) contains all the vectors (e.g., red vectors
in Fig. 2-(c)), when the origin of each vector is anchored
to a point. We define a cone C(~An,θn) by ~An, an axis, and
θn, half of the apex angle of the cone (Fig. 2-(a)). Unless
mentioned otherwise, the angle of a cone refers to θn. We
also define a binormal vector ~B of a boundary edge e of a
triangle to be the cross product between the surface normal
~N of the triangle and the boundary edge e. In particular, we
assume that the binormal vector ~B points outside the triangle
(Fig. 2-(b)). Ideally, a cone is valid, only if the angle of the
cone is less than pi

2 . However, we loosely use the term of a

cone, even if it has an angle that is equal or bigger than pi
2 ,

for the sake of compact explanations.

3.1. BVH-based CD

For BVHs of deforming models, we merge these BVHs into
a single BVH and then perform our CD method with the
merged BVH. In this case, inter-collisions among multiple
objects and self-collisions within each object can be com-
puted by performing self-collision detection with the merged
BVH [TKH∗05]. We initially perform a BV overlap test be-
tween two child nodes of the root node of the BVH. If there
is a collision between two nodes, we refine each of them and
perform overlap tests between the refined nodes. We perform
this process recursively until there are no collisions or we
reach leaf nodes. For leaf nodes, we perform primitive tests
between triangles stored in the leaf nodes.

3.2. Sufficient Conditions for Self-Colliding Surfaces

To improve the performance of self-collision detection,
which is the most time consuming part of CD for deform-
ing models, Volino and Thalmann [VT94] proposed that if
both of the following two conditions are satisfied for a given
continuous surface S bounded by a contour C, the surface
does not have any self-collisions:

• Surface normal test: There is a vector ~V such that (~N ·
~V ) > 0 for every point on the surface S, where ~N is the
normal vector for a point on the surface.

• Contour test: The projection of the contour C along the
vector ~V does not have any self-intersection on the pro-
jected plane.

Provot [Pro97] proposed an efficient method to check the
first condition using normal cones that bound surface nor-
mal vectors. However, the contour test has O(N2) time com-
plexity at the worst case, where N is the number of projected
edges in the projected plane. Tang et al. [TCYM08] extended
these two conditions to CCD by proposing the continuous
normal cone theorem and continuous contour tests. They
also proposed various optimization methods that improve the
performance of the continuous contour tests, by assuming
that the topologies of deforming models are fixed and pre-
computing various data. However, their pre-computations
can cause significant performance degradations whenever
deforming models change their topologies, as empirically
verified in Sec. 6.

4. Dual-Cone Method

In this section we present our culling method using dual-
cones for self-collision detection.

4.1. Culling Conditions using Dual-Cone

We first derive a culling condition that can identify regions
that do not have any self-collisions for planar surfaces, fol-
lowed by an extension to 3-D surfaces.

For the sake of simplicity, we assume that input meshes
for our culling method are 2-dimensional manifolds with
boundaries. Our method is naturally applicable to triangu-
lar meshes including non-manifold triangular meshes, by
decomposing non-manifold meshes into a set of manifold
meshes and ignoring any collisions among the decomposed
mesh boundaries.

We use two cones, the surface normal and binormal cones,
for a surface S to check whether the surface can have self-
collisions. The surface normal cone, SNC (~An,θn), bounds
all the surface normal vectors of the surface S. The binor-
mal cone, BNC (~Ab,θb), bounds all the binormal vectors of
the boundary of the surface S. Note that the angle of the sur-
face normal cone of a planar surface is either 0 or π

2 (i.e. the
surface has fold-overs).

Theorem 4.1 (Self-Colliding Planar Surface) Given a pla-
nar surface S that has SNC (~An,θn) and BNC (~Ab,θb), the
surface S that has self-collisions satisfies at least one of the
following two conditions:

θn = π/2, (1)
θb ≥ π/2. (2)

Proof: Let us suppose that the first condition (Eq. 1) is false,
i.e. normals of the surface point in one direction. In this case,
we will show that the second condition (Ineq. 2) is satisfied.

We define a planar minimal self-colliding surface to be
a planar self-colliding surface, whose self-collisions occur
only at the boundaries of the surface. One can compute such
a planar minimal self-colliding surface Sm from the planar
surface S, by trimming the surface S. If we prove that the
second condition is satisfied for Sm, then the second condi-
tion naturally holds for S, since Sm is a sub-surface of S and
the angle of the binormal cone of S is at least the angle of the
binormal cone of Sm. For the sake of simplicity, we assume
that there is a single self-colliding point on Sm; our proof can
be easily extended to planar minimal self-colliding surfaces
with multiple self-collisions.

A C

A C

(a) (b)

Figure 3: Planar mini-
mal self-colliding surfaces

Let two surface points, A
and C, be the two colliding
points on the boundary of the
surface Sm. Since the surface
Sm self-collides only at A and
C, the surface has two differ-
ent loops and these two loops
do not cross each other in any
other points except for A and
C. There are only two cases that satisfy this configuration:
one of these two loops is inside the other loop (Fig. 3-(a)) or
not (Fig. 3-(b)). Note that these two loops are not continuous
at A and C; they are piecewise regular.

If we compute a binormal cone for a continuous loop, the
angle of the binormal cone is π. However, in our piecewise
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regular loops, the maximum angle deviation between two bi-
normal vectors at these discontinuous points, A and C, is less
than π [dC76]. Therefore, the binormal cone for each piece-
wise regular loop has an angle that is equal to or bigger than
π/2. Due to a space limit, we provide this intuitive deriva-
tion that shows the binormal cone of each piecewise regular
loop has such angle. Nonetheless, this result can be more
formally derived from the Turning Tangent theorem [dC76].
�

We now present a lemma, followed by our main theorem,
which serves as a culling condition that can check whether
3-D surfaces cannot have any self-collisions.

Lemma 4.1 (Projection of a Cone) An orthographic pro-
jection of a cone, C(~A,θ), along a direction ~P results in a
projected 2-D cone, whose angle is less than π/2 if and only
if |~P ·~A|< cosθ.

The bi-implication of the Lemma can be easily shown by
choosing ~P inside and outside the cone. What Lemma 4.1
indicates is that the projection vector, ~P, must come from
outside of the cone, in order for the projected cone to span
less than π/2.

Theorem 4.2 (Dual-Cone Theorem) Given a 3-D surface S

that has SNC (~An,θn) and BNC (~Ab,θb), the surface S that
has self-collisions satisfies at least one of the following two
conditions:

θn ≥ π/2, (3)

|~An · ~Ab| ≥ cosθb. (4)

Proof: Assume that neither two conditions are satisfied for
the 3-D surface S that has self-collisions. Since the angle
of the normal cone of the surface is less than π/2 and an
orthographic projection of the surface S in the direction of
~An is surjective [dC76], the planar surface projected from
the surface S is a self-colliding planar surface, whose sur-
face normal vectors point in one direction; hence it negates
the first condition (Eq. 1) of Theorem 4.1. Also, since the
second condition (Ineq. 4) is not satisfied either, the binor-
mal cone of the projected surface should span less than π/2,
according to Lemma 4.1; this also negates the second con-
dition (Ineq. 2) of Theorem 4.1. Since both conditions of
Theorem 4.1 are not satisfied, we can apply the contrapo-
sition of Theorem 4.1. Therefore, we can conclude that the
planar surface projected from the surface S does not have
any self-collisions, which leads to a contradiction. �

The dual-cone theorem (Theorem 4.2) identifies two nec-
essary conditions for a 3-D surface that has self-collisions.
Therefore, the contraposition of the theorem provides a
culling algorithm that detects regions that cannot have any
self-collisions. In other words, if (θn < π/2) and (|~An · ~Ab|<
cosθb), then we can decide that the surface cannot have any
self-collisions.

Our dual-cone culling algorithm tests two simple inequal-
ities for a connected 3-D surface. However, our dual-cone
method is a very conservative culling technique; it may not
cull meshes although they do not have any self-collisions.
For example, the angle of the binormal cone of a planar sur-
face with a boundary always spans more than π/2, prevent-
ing any cullings for the surface, according to Theorem 4.2.
Therefore, in order to achieve a high culling ratio, we pro-
pose an approximate culling technique that integrates our
dual-cone method with a BVH-based CD method.

4.2. BVH-based Culling

Our dual-cone culling method can be easily applied to the
BVH-based CD method mentioned in Sec. 3.1. For this, we
compute the surface normal and binormal cones for a sub-
mesh contained in each BV. Also, a (surface normal or bi-
normal) cone of an intermediate BV node can be computed
by merging two cones of its two child BV nodes [Pro97].
As a result, once we compute dual-cones for leaf nodes of
a BVH, we can compute dual-cones of intermediate nodes
by traversing the BVH in a bottom-up manner. Therefore,
dual-cones associated with the BVH can be quite efficiently
updated even for fracturing models that have topological
changes.

At runtime, during the BVH traversal, we test our dual-
cone culling method for each BV node and may cull a sub-
mesh contained in the node from self-collision detection.
Although an input mesh has one connected component, a
sub-mesh contained in a BV node may have multiple com-
ponents. Therefore, we pre-compute whether a sub-mesh
contained in a BV node is connected as one component by
traversing the sub-mesh during the BVH construction and
record the information in the node. If the node has multiple
components, we do not perform our culling method on the
node during the BVH-based CD.

Internal boundary edges: The BVH-based CD method
combined with our method mentioned above is an approx-
imate approach, i.e. it may miss collisions. Suppose that we
have a penetrating pipe (Fig. 4-(a)). To build a BVH for the
object, we may partition triangles of the object with a hor-
izontal partitioning plane as shown in Fig. 4-(a) and then
compute two child BVs with two partitioned sub-objects.

Figure 4: A penetrating
pipe

Because of the high curva-
ture in the original object,
we cannot cull the object and
check two child BVs that
contain the partitioned sub-
objects. However, since the
lower child BV (shown in
a pink color in Fig 4-(a))
contains a near-flat connected
sub-object (Fig. 4-(b)), whose
boundary (shown in red thick
curves) is also near-flat, our dual-cone method culls the
BV from self-collision detection, although there are self-
collisions within the partitioned sub-object. This inaccu-
rate culling is caused by ignoring internal boundary edges
(shown in blue thick curves in Fig. 4-(b)) that are incident
on two triangles that are partitioned to two different BVs.
Our BVH-based CD method does not check any collisions
among them, since they are not in the original boundary of
the object.

To address this problem, we can also compute separate
dual-cones for these internal boundaries and design a conser-
vative BVH-based CD method. However, maintaining such
internal boundary edges and additional dual-cones can sig-
nificantly lower the performance. Note that the example con-
figuration that leads our method to miss collisions occurs
very rarely. This is because if we have complex internal
boundaries formed by a partitioning plane, it is likely that
we have a high curvature for the partitioned objects in many
cases. Moreover, we found that our simple BVH-based CD
method without considering these internal boundaries does
not miss any collisions in our tested benchmarks. Therefore,
we decide to use the simple BVH-based CD method without
any modifications.
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As a result, our method has O(1) time complexity, but is
approximate in theory. This is a different design choice from
the exact contour test of Volino and Thalmann’s method
that has a quadratic worst-case time complexity. Also, one
can ignore internal boundary edges and perform the exact
contour tests only for real boundary edges. However, this
method still has the non-linear time complexity, although
it can run faster than the original Volino and Thalmann’s
method. Moreover, the dual-cones of our method can be up-
dated quite efficiently even for fracturing models. We com-
pare these different techniques including our method and
demonstrate the performance benefits of our method with
fracturing models in Sec. 6.2.

4.3. Extension to CCD

To extend our culling method to CCD, we need to compute
the surface normal and binormal cones with the deforming
triangles in the time interval between two discrete time steps.
Tang et al. [TCYM08] computed the surface normal cone in
such time interval. We take a similar approach used for the
surface normal cone, to extend the binormal cone for CCD.
The detailed derivation is given in the supplementary report.

5. Mesh and BVH Update Method

In this section we propose our mesh and BVH update meth-
ods for efficient CD for fracturing models.

5.1. Mesh Update Interface

We define a body to be a set of triangles; also, a body can
have only one triangle. We use the body as a unit data struc-
ture for mesh deformations. We assume that simulation ap-
plications update meshes based on the following API:
• Add (·): Add a new body into a scene.
• Delete (·): Delete an existing body.
• Split (·): Split an existing body into a set of bodies.
• Merge (·): Merge a set of existing bodies to a body.
• Move (·): Modify the position of each vertex of a body.
All the functions other than Move(·) modify the topology
of a deforming model. After each API function is called,
we first update the BVH to reflect the changes of the mesh
(Sec. 5.3) and restructure only the sub-BVHs (Sec. 5.4) that
have a low culling efficiency, which is defined in the follow-
ing section.

5.2. Culling Efficiencies of BVHs

We define our traversal cost metrics to measure the expected
numbers of BV overlap tests that are performed recursively
to identify self-collisions and inter-collisions respectively
during the BVH-based CD method. Intuitively speaking, if
a sub-BVH has a higher traversal cost value, the sub-BVH
has a lower culling efficiency. For the simple derivation, we
measure the cost related only to BV overlap tests; our traver-
sal cost metric can be easily extended to also consider the
costs related to the primitives associated with leaf nodes.

We use a traversal cost, TCS(n), to measure the expected
number of BV overlap tests that are recursively performed to
identify self-collisions under a node n during the BVH-based
CD. A self-collision detection query on a node n requires 1)
an inter-collision detection query between two child nodes
of the node n and 2) two self-collision detection queries on

each of those two child nodes. Therefore, TCS(n) of the self-
collision detection query to the node n is defined as the fol-
lowing:

TCS(n) = TCI(nl ,nr)+ Inl ×TCS(nl)+ Inr ×TCS(nr), (5)
where Inl is an indicator variable that takes a value of 0
or 1, when nl is culled or not culled respectively for the
query based on our dual-cone method; Inr is defined simi-
larly. Also, TCI(nl ,nr) is a traversal cost of an inter-collision
query between two nodes nl and nr. This measures the num-
ber of BV overlap tests that are recursively performed to
identify any inter-collisions between those two nodes during
the BVH-based CD. Since the term of TCI(nl ,nr) is defined
for pairs of two arbitrary nodes, evaluating this term is inef-
ficient during a simple BVH traversal, i.e. during a BVH up-
date that is performed by traversing the BVH in a depth-first
or breadth-first order. Therefore, we decided to approximate
this term by using a traversal cost defined in each single node
of a BVH.

For this purpose, we define a traversal cost, TCI(n), to
measure the expected number of BV overlap tests that are
recursively performed for an inter-collision query between
the node n and an unknown node, m. Note that the node m
can be any node in the merged BVH and thus its BV can
be arbitrary. To perform the inter-collision query, we first
perform a BV overlap test between them. If there is a BV
overlap, then the two child nodes of the node n are tested
against the node m, to further localize colliding primitives.
Therefore, TCI(n) can be defined as the following:

TCI(n) = 1+P(nl)TCI(nl)+P(nr)TCI(nr), (6)
where P(nl) represents a probability that the node nl will
be intersected with another node m given its parent node n is
intersected; P(nr) is defined similarly. Fortunately, this prob-
ability was previously derived [YM06,Zac02] and following
its formulation [YM06], we define P(nl) as Vol(nl)/Vol(n),
where Vol(n) is the volume of the BV node n; P(nr) is also
defined similarly.

We then approximate TCI(nl ,nr) as TCI(nl) + TCI(nr),
since the number, TCl(nl ,nr), of BV overlap tests performed
recursively by refining two nodes nl and nr is highly likely
to have a linear correlation with the sum of TCI(nl) and
TCI(nr), each of which measures BV overlap tests per-
formed recursively by refining the nodes nl and nr sepa-
rately. As a result, our final traversal cost TCS(n) of a self-
collision query to the node n is formulated as the following:

TCS(n)≈TCI(nl)+TCI(nr)+Inl TCS(nl)+Inr TCS(nr). (7)

5.2.1. Validations

We verify how much correlation our traversal cost metrics,
TCS(n) (Eq. 7) and TCI(n) (Eq. 6), have with the observed
numbers of overlap tests in BVHs computed from various
models. We perform these validation tests with seven differ-
ent models including the Stanford bunny model, a club, a
gear, and our benchmark models. We use a simple median-
based BVH construction method and compute 500 differ-
ent versions of BVHs of each model by partitioning tri-
angles contained in a node with a randomly-chosen axis-
aligned partitioning plane. Then, we compute TCS(nR) and
TCI(nR), where the node nR is the root node of the BVH.
Also, in order to measure the observed number of the BV
overlap tests, we perform a self-collision query to nR of each
BVH of each model and perform 100 different inter-collision
queries between the model and a second model chosen from
the test set, after rotating and translating the second model
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randomly. We then compute linear correlations between our
traversal cost metric values and the numbers of BV over-
lap tests obtained from different BVHs; we use the average
number of overlap tests computed from those 100 different
inter-collision queries to compute the linear correlation for
the inter-collision query. For TCI(nR) of the inter-collision
detection, we found that linear correlations range from 0.6
to 0.77 with different models; the average linear correlation
is 0.71. Also, for TCS(nR) of the self-collision detection, the
linear correlation ranges from 0.28 to 0.76; the average is
0.48. Our metric values and observed numbers of BV over-
lap tests in the Standford bunny and the cloth benchmark are
shown in Fig. 10 and Fig. 11 of the supplementary report
respectively.

5.3. BVH Update Method

When a simulation changes the topology of a deforming
mesh, we first modify the tree structure of the BVH of the
mesh locally. To perform these local operations, we need to
know a BV node that contains a body. For this, we maintain
a pointer in each body that indicates a BV node that contains
the body.

Suppose that a simulation calls Merge (·). We compute
the lowest common ancestor, na, from nodes that contain
a given set of bodies. Then, we delete all the nodes from
the BVH and add the merged body at the lowest common
ancestor na. Then, starting from na, we recursively relocate
the merged body to the left or right node of na that yields a
lower traversal cost (Eq. 7), down to a leaf node in the BVH.
Once it reaches a leaf node, nlea f , we compute a sub-BVH
for the merged body and let the sub-BVH to be one of the
child nodes of the leaf node and use the unused child node
to contain the geometry stored in the leaf node nlea f . When
a simulation calls Split (·) that splits a body, b, into a set of
new bodies, we first identify the node that contains the body
b. Then, we simply replace the node and its sub-BVH with
a sub-BVH computed from the new bodies. When a simula-
tion calls Add (·), we have to recursively traverse the BVH
from its root node, add the given bodies to leaf nodes, and
construct sub-BVHs for these bodies. Note that since we add
these bodies without any hints on the relationship between
the given bodies and existing bodies in the BVH, the cost
required to perform this operation is typically higher than
that of Merge (·) or Split (·). For bodies that are called with
Delete (·), we remove nodes that contain the bodies.

Once we process all these mesh update functions, then we
traverse the BVH in a bottom-up manner to refit BVs of the
BVH to reflect geometric changes caused by Move (·). Dur-
ing this BV refitting process, we also update our dual-cones
and traversal cost metrics associated with each node. This
refitting process takes a small portion (e.g., 5% to 7%) of the
total CD time in our benchmark models. Although these lo-
cal modifications to tree structures, the BV-refitting method,
and the dual-cone update run quite fast, the culling efficiency
of the BVH can be quite low at complex fracturing cases,
leading a lower overall runtime performance. Therefore, we
perform a selective restructuring method as a final step of
our BVH update method.

5.4. Selective Restructuring

We consider two factors to decide whether we reconstruct a
sub-BVH or not: 1) a potential performance benefit caused

(a) Cloth Benchmark (b) N-Body Benchmark

Figure 5: These images show our cloth and N-body simulation

benchmarks, which consist of 92 K and 34 K triangles respectively.

These benchmarks have the same and fixed topology during the sim-

ulation.

by an improved culling efficiency by reconstructing the sub-
BVH and 2) a potential performance loss due to the time
spent on reconstructing the sub-BVH. During a simple top-
down BVH traversal such as a depth-first or breadth-first
traversal, we measure the potential performance benefit and
loss, and restructure a sub-BVH only if both of the following
two conditions are met: 1) the potential performance benefit
is bigger than the performance loss and 2) the potential per-
formance loss is not higher than p% of the overall CD time
at the previous frame.

To quantify these potential improvement and loss, we take
the following simple heuristics. To estimate the time that
would be spent on reconstructing a sub-BVH (n), we record
the number of triangles that are contained in the sub-BVH
to the node n and plug it to the time complexity function of
our reconstruction method. For this method, we also need to
estimate the constant factor in the time complexity function.
We can estimate it by running a simple micro-benchmark at
the startup of our method in a similar manner proposed in
a previous work [YCM07]. For the potential performance
improvement, we need to predict how much culling effi-
ciency of a sub-BVH we can improve by reconstructing the
sub-BVH. We simply assume that by reconstructing the sub-
BVH, its traversal cost metric value can be decreased to the
traversal cost metric value of a sub-BVH reconstructed at
the last time. By running a simple micro-benchmark, we can
estimate a constant factor between the traversal cost metric
value and the observed CD time and thus estimate how much
running time we can save by reconstructing a sub-BVH.

Our approximations, especially, the approximation of po-
tential performance improvements, are based on drastic sim-
plifications. One problem that we have observed is that when
we restructure a large sub-BVH by expecting a higher per-
formance improvement, it may cause a performance degra-
dation, because the performance improvement can be over-
estimated. In order to avoid this problem that can cause the
performance drop, we have the second condition in our se-
lective restructuring method. We use p to be 25 and found it
works well in our tested benchmarks.

5.5. Fast BVH Construction

In addition to constructing a BVH for a deforming model
at the initial frame, there are two other cases when we need
to construct or reconstruct sub-BVHs from scratch: 1) for
newly added bodies at any frame and 2) for the sub-mesh
contained in the node that is chosen for selective restructur-
ing at any frame. In order to further reduce the construction
time for these two cases, we propose a fast BVH construc-
tion method.
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Model Num. Frames Num. Tri. (K) Rep. Image
N-body simulation 149 (0) 32 to 32 Fig. 5-(b)
Cloth simulation 465 (0) 92 to 92 Fig. 5-(a)
Breaking walls 80 (8) 42 to 140 Fig. 1-(b)
Exploding dragon 250 (4) 252 to 252 Fig. 1-(a)

Table 1: Each benchmark model is shown with its representative

image, Rep. Image, and the number of total frames, Num. Frames,

with the number of frames that have topological changes. We also

report the number of triangles of the model at the initial and the last

frames under the column of Num. Tri.

Given a mesh consisting of N triangles, we compute a uni-
form grid that has 2k ×2k ×2k regular cells and encloses the
BV of the mesh. We also construct a balanced BVH on top
of the grid such that each leaf node of the BVH corresponds
to a cell of the grid. We let each cell to record a pointer to its
corresponding leaf node in the BVH. Then, we can add each
triangle of the mesh directly into a leaf node of the BVH in
a constant time, by computing a grid cell that contains the
centroid of the triangle and locating the leaf node associated
with the cell. This is one iteration of our BVH construction
method. Since each leaf node can have multiple triangles,
we also apply this same process for each leaf node until each
leaf node has less than G triangles. For leaf nodes that have
less than G triangles, we simply apply the common median-
based BVH construction method [TKH∗05].

Our fast BVH construction method has an O(N logN)
time complexity like many other BVH construction meth-
ods [TKH∗05]. However, our BVH construction method has
a lower constant factor and runs quite fast, since each iter-
ation of our method traverses triangles only one time and
uses a hashing method instead of using an expensive sort-
ing method. On the other hand, BVHs constructed by our
method can have a lower quality compared to BVHs con-
structed from other O(N logN) BVH construction methods,
since we do not consider the geometric distribution of trian-
gles at each iteration. Moreover, some of the leaf nodes may
not have any associated triangles, wasting memory space.
To minimize the negative sides of our method, we set k to be
1. Also, we found that setting G ranging from 100 to 1000
works well in our benchmarks.

6. Results and Comparisons

We have implemented DCD and CCD with our methods on
an Intel i7 desktop that has one 3.2 GHz quad-core CPU
and 2 GB main memory. We use axis-aligned bounding vol-
umes and use feature-based BVHs [CTM08] that avoid any
redundant elementary tests for CCD. Also, the feature-based
BVHs do not require much pre-computations and suit well
for handling fracturing models. We use a single CPU thread
for all the tests.

Benchmark models: We have tested our method with four
different benchmarks (Table 1) that have different character-
istics. Our first and second benchmarks are cloth and N-body
simulations (Fig. 5) that consist of 92 K and 34 K triangles
respectively, and do not have any topological changes. Our
third model is a breaking-wall model (Fig. 1), where a ball
breaks 8 different walls. When the ball collides with a wall,
the wall is first deformed to make a dent and then breaks
into multiple pieces. This benchmark is obtained by simulat-
ing fracturing (and denting) brittle materials [BHTF07]. This
model starts with 42 K triangles and ends with 140 K trian-
gles, with topological changes due to the fractures at 8 dif-
ferent frames among the total 80 frames. Our fourth model is

an exploding dragon benchmark, which has been tested fre-
quently in prior collision detection literature. In this model,
a bunny collides with a dragon model and then the dragon
model breaks into numerous pieces (Fig. 1). Originally, this
benchmark was created with a fixed topology by using pre-
cut fracture boundaries, but is modified to create fracture
boundaries during the thin-shell simulation and thus have
dynamic topology. This model has 252 K triangles through-
out the simulation, but has topological changes at four dif-
ferent frames among the total 250 frames.

6.1. Results

We perform DCD and CCD that include self-collision de-
tection with our benchmarks. Our method spends 252 ms
and 715 ms for DCD and CCD respectively with the dragon
benchmark. Also, our method achieves 97 ms for DCD
with the breaking-wall benchmark. Fig. 6 shows a frame
rate graph of CCD on the exploding dragon model. Also,
Fig. 7 shows a frame rate graph of DCD on the breaking-
wall benchmark. For deforming models that do not have any
topological changes, our method spends 345 ms and 17 ms
for CCD on the cloth and N-body benchmarks respectively.
We achieve a very high performance for the N-body bench-
mark, mainly because it has a smaller model complexity.

We also measure the times spent on different components
of our method with the exploding dragon model:1) the mesh
update, 2) the BVH update including BV-refitting, dual-cone
refitting, and selective restructuring, and 3) the BVH traver-
sal for CD; we report times spent on these components in
the order each component appears. In the case of CCD, each
component takes 8%, 24%, and 68% of the total CCD time;
DCD also has similar percentages for components. Note that
when deforming models change their topology, the BVH up-
date takes 35% of the total CCD time, which is not drasti-
cally increased from 24% computed from all the frames.

6.2. Comparisons

We compare our method with a CCD technique, T-CCD,
proposed by Tang et al. [TCYM08], which is one of the
state-of-the-art CCD methods for deforming models that
have fixed topologies. T-CCD performs continuous versions
of normal cone and contour tests in addition to employing
a selective restructuring method [LAM06], which uses the
median-based partitioning and a heuristic metric, the LM
metric, of identifying sub-BVHs that have low culling ef-
ficiencies. We also compare our method with an optimized
spatial hashing CD method [THM∗03] (S-Hash), which is
widely used for the finite element method (FEM) based sim-
ulations that can support fracturing.

6.2.1. Tests with benchmarks with fixed topologies

Our dual-cone method is mainly designed for fracturing
models. However, it can be also used with models that
have fixed topologies. To see benefits of our method, we
also compare our method over two modified versions, T-
CCD\CCT and T-CCD\CCT(Internal), of T-CCD. T-
CCD\CCT does not perform the continuous contour test,
as used in prior work [Pro97]. T-CCD\CCT(Internal)
performs continuous contour test only for real boundary
edges while ignoring internal boundary edges, as our BVH-
based culling method integrated with dual-cones ignores
self-collisions among internal boundary edges. These two
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Figure 6: This figure shows frame rate graphs of CCD for the

dragon benchmark with Tang et al.’s method (T-CCD), our method

(Ours), and Ours\(FBVH&TC) that does not use our fast BVH

construction method and traversal cost metric for the selective re-

structuring.

methods, T-CCD\CCT and T-CCD\CCT(Internal), in-
cluding our method are approximate. We obtained the orig-
inal source codes of T-CCD from its authors and integrated
our dual-cone culling method into T-CCD\CCT. We call
this T-CCD\CCT+Dual-Cone. Since Tang et al.’s original
implementation does not handle fracturing models, we use
the cloth benchmark for the test.

We measure the time spent on performing CCD with dif-
ferent methods in the cloth benchmark (Fig. 8). By using
T-CCD\CCT+Dual-Cone, we achieve 25% and 6% higher
performance than T-CCD and T-CCD\CCT(Internal) re-
spectively. We also observe only 5% lower performance
than T-CCD\CCT, because of the low overhead of evalu-
ating our dual-cone culling method. We found that T-CCD,
T-CCD\CCT+Dual-Cone, and T-CCD\CCT(Internal) do
not miss any collisions, while T-CCD\CCT misses col-
lisions during the cloth simulation benchmark. To check
whether an algorithm misses collisions or not, we compare
the collision results of each method with those of the naive
CD method that exhaustively checks collisions between all
the pairs of two triangles from the model.

We define a culling ratio of a culling method to be the
ratio of the numbers of BV overlaps with and without us-
ing each culling method, given the framework of T-CCD.
We found that our dual-cone method, T-CCD\CCT+Dual-
Cone, shows a comparable culling ratio (46.5%) to that
(48.9%) of the culling methods used in T-CCD. Although
our method has a bit lower culling ratio, we achieve a higher
performance (e.g., 25%) because of its lower computational
overhead, while detecting all the collisions.

6.2.2. Tests with benchmarks with varying topologies

To handle fracturing models with varying topologies, we
implement our own CD framework (Ours), a different CD
framework to that of T-CCD, since the CD framework of
T-CCD is not appropriate for handling fracturing models.
We compare the CCD performance of our method with that
of T-CCD for the breaking dragon benchmark. Since T-
CCD does not handle such fracturing models, we run the
T-CCD from scratch, whenever the simulation produces a
mesh that has different topology from that of the previous
frame. Although these two methods are designed for differ-
ent purposes, we compare them to shed light on their main
characteristics with fracturing models that have topological
changes.

As can be seen in Fig. 6, our method (Ours) shows a more
stable performance even when deforming models change
their topology. On the other hand, T-CCD shows drastic per-
formance degradations at such cases, mainly because they
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Figure 7: This figure shows frame rate graphs of DCD for

the breaking-wall benchmark with this spatial hashing method (S-

Hash), our method (Ours), and Ours\(FBVH&TC) that does not

use our BVH construction method and traversal cost metric.

have to reconstruct the BVH from scratch and re-compute
various data in order to improve the performance of exact
continuous contour tests; T-CCD\CCT(Internal) shows the
performance similar to that of T-CCD. More specifically
speaking, our method improves the CCD performance by
a factor of 260 times and 200 times over T-CCD and T-
CCD\CCT(Internal) respectively at frames where deform-
ing models change their topologies. The more graceful per-
formance degradation of our method is due to the fast con-
struction of our dual-cones and our selective restructuring
method that also uses our fast BVH construction method.

We also compare the DCD performance of our method
with that of S-Hash [THM∗03]. Our method (Ours) runs
20 times faster in the breaking-wall models (Fig. 7). The
inferior performance of S-Hash is mainly because many
parts of fracturing models come in a close proximity, causing
many grid cells to have multiple triangles. We also achieve
7 times and 56% improvements in the N-body and cloth
benchmarks respectively over S-Hash.

We also compare our method with its two variations: 1)
Ours\FBVH that does not use our fast BVH construction
method, but uses the median-based partitioning within our
CD framework and 2) Ours\(FBVH&TC) that does not use
our traversal cost metric additionally from Ours\FBVH. In-
stead, it uses the LM metric. We found that Ours achieves
76% and 27% performance improvements on average in
the exploding-wall model (Fig. 7) and in the dragon model
(Fig. 6) respectively over Ours\(FBVH&TC), because of
both of our traversal cost metric and the fast BVH construc-
tion method. Also, we found that because of our fast BVH
construction method, Ours achieves 84% improvement over
Ours\FBVH in the dragon model at frames when the de-
forming models change their topologies. Frame rate graphs
of Ours and Ours\FBVH are shown in Fig. 12 of the sup-
plementary report.

Overhead of supporting fracturing models: Recently,
Kim et al. [KHH∗09] showed interactive performances for
various deformable models that do not have any topological
changes by using multiple CPUs and GPUs. This method
uses the same type of BVs and BVHs with ours, while it
uses the LM metric and the median-based partitioning in its
selective restructuring method. We measure the overhead of
our CD framework that supports fracture models, by com-
paring the performances of ours and theirs. According to
their paper, their method spends 675 ms for the exploding
dragon simulation thats uses pre-cut boundaries and thus has
a fixed topology throughout the simulation. This result is
achieved by using a single CPU thread in a machine that
has the same CPU performance to that of our testing ma-
chine. In the same configuration, our method with the LM
method and the median-based partitioning spends 902 ms for
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Figure 8: This figure shows frame rate graphs of CCD with var-

ious methods in the cloth simulation benchmark. T-CCD refers to

the original Tang el al’s CCD framework. T-CCD\CCT does not

any contour tests in T-CCD. T-CCD\CCT+Dual-Cone indicates

our dual-cone method integrated in T-CCD\CCT.

the same exploding dragon model that is modified to create
fracturing boundaries and have topological changes. There-
fore, we can conjecture that our CD framework supporting
fracturing models has approximately 30% more overhead
compared to the CD framework supporting only deforming
models that do not have any topological changes. However,
by using our selective restructuring method and the fast BVH
construction method, our method becomes to spend 709 ms,
which is a comparable performance to the result, 675 ms,
achieved with the CD framework that does not support frac-
turing models.

6.3. Discussions

We discuss various aspects of our method and point out lim-
itations of our method.

Local vs. global BVH restructuring: Otaduy et
al. [OCSG07] proposed a BVH restructuring algorithm that
maintains balanced BVHs for fracturing models by using
AVL trees and applying simple local operations similar to
techniques mentioned in Sec. 5.3. However, this method
is suited mainly for fractures that occur progressively. For
instantaneous fractures with many fracturing pieces like
our two fracturing benchmarks, they suggest a full BVH
reconstruction instead. Our method shows much higher
performance than the full reconstruction, which has been
employed in T-CCD for fracturing events. In general, the
local BVH restructuring method may not show a high
culling efficiency for complex and large-scale fracturing
models similar to our benchmark models. Instead, our
selective restructuring method with culling efficiency
metrics can identify sub-BVHs with low-culling efficiency
and restructure them in a more global manner, leading to
more high-quality BVHs.

Low-level culling techniques: Recently, Tang et
al. [TMT10] proposed the deforming non-penetration
filters (DNFs) to improve the performance of low-level
elementary tests for CCD, in the framework of T-CCD. We
can take advantage of the performance benefit of the DNF,
since it improves the performance of low-level elementary
tests used for CCD, while our method belongs to a class
of high-level culling methods and improves overall perfor-
mance for DCD and CCD. To verify this, we have integrated
the DNFs within our method and variations of T-CCD
tested in the paper. We observe that the overall performance
of our method is improved and our method still achieves
similar improvements over those variations of T-CCD

integrated with the DNFs, compared to improvements over
the variations of T-CCD without using the DNFs.

GPU-based culling methods: Sud et al. [SGG∗06] pro-
posed a unified GPU-framework for various proximity
queries including DCD and CCD for deforming models. In
their paper, they tested only with fracturing models that have
pre-cut boundaries and the fixed topologies. However, we
conjecture that their method can show a similar performance
even for fracturing models with dynamic topologies, since
their method does not require pre-computations. We con-
tacted Sud et al. to get their binary, but were unable to get
their binary. Therefore, we provide the indirect comparison
in below. Recently, a hybrid parallel CD method that uses
CPUs and GPU [KHH∗09] outperforms Sud et al.’s method
by about 5 to 10 times. Note that our method can be paral-
lelized in the same manner of the hybrid parallel CD method,
since both of these two methods use the same BVH-based
CD method. Therefore, we expect that our method would
produce a higher performance than Sud et al.’s method, if
our method is parallelized with CPUs and GPUs.

Supporting volumetric representations: Our CD method
is mainly designed for surface-based deformable simula-
tions. However, it can be also applied to volume representa-
tions (e.g., tetrahedral meshes) that are widely used in FEM
based simulations. To do that, one has to extract boundary
surfaces from the volumetric representation and perform our
method with the boundary surfaces. Since our method is
much faster than the spatial hashing method for complex and
large-scale fracturing models as demonstrated in Sec.6.2,
this approach may be a viable option for such models.

Limitations: Our method has certain limitations. As men-
tioned earlier, our dual-cone method combined with BVHs
is approximate and thus may miss collisions, although our
method did not miss any collisions in our tested benchmarks.
Also, the memory requirement of our method is relatively
high. For example, our current implementation uses 92 bytes
for each BV node and requires 50 MB for the BVH of the
dragon model, the largest model in our tested benchmakrs.
Also, our culling efficiency metrics for self-collision and
inter-collision queries are probabilistically derived. There-
fore, our selective restructuring method with these metrics
does not guarantee to always improve the performance of
CD.

7. Conclusion and Future Work

We have presented dual-cone culling and selective restruc-
turing methods to improve the performance of CD including
self-collision detection among fracturing models. The inter-
play between the dual-cone method and our selective BVH
update method achieved a faster and more stable collision
detection performance even at fracturing events of large-
scale fracturing models. We believe that achieving fast and
stable performance of collision detection for fracturing mod-
els can trigger various new research efforts to create more
complex and realistic fracturing simulations.

Currently, we used only a single CPU thread and our
method did not show interactive performance (e.g., more
than 10 frames per second) in two of our testing benchmark
models. However, by adopting recent parallel CD meth-
ods [KHH∗09, TMT09] designed for the BVH-based CD
methods, we believe that our method can be interactive even
for all the large-scale fracturing models tested in this paper.
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There are many avenues for future work, in addition to ad-
dressing the limitations of our method. We found that most
primitive tests (e.g., 90% of total primitive tests in the ex-
ploding dragon benchmark) turned out to be false positives.
Therefore, we would like to design a more effective culling
method for self-collision queries. Although we achieved
a more stable performance with topological changes, our
method still shows lower performances at such cases. To
fundamentally address this problem, we would like to de-
sign an error-bounded multi-resolution CD method for high-
quality interactive fracturing simulations. Finally, in con-
current work, Schvartzman et al. [SPO10] proposed an ex-
act, yet effective contour test method for identifying self-
collision free regions. We would like to extend this work for
fracturing models and CCD.
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