
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010)
M. Otaduy and Z. Popovic (Editors)

Supplementary Report

FASTCD: Fracturing-Aware Stable Collision Detection

Jae-Pil Heo1, Joon-Kyung Seong1, DukSu Kim1, Miguel A. Otaduy2, Jeong-Mo Hong3, Min Tang4, Sung-Eui Yoon1

1 KAIST 2 URJC Madrid 3 Dongguk Univ. 4 Zhejiang Univ.

0

20000

40000

60000

80000

100000

120000

0 5 10 15 20

O
b

s
e

rv
e

d
 #

 o
f 

th
e

 B
V

 o
v
e

rl
a

p
 t

e
s
ts

TCI(nR)

Figure 10: This graph shows the relationship between TCI

values of the root nodes of BVHs of the Stanford bunny and
the observed numbers of the BV overlap tests to perform
inter-collision queries between the two Stanford bunny mod-
els that are randomly placed. The linear correlation between
them is 0.73.

Appendix A: Extension to CCD

We extend our dual-cone culling algorithm to CCD. CCD
computes intersecting primitives at the first time-of-contact
during a time interval between two discrete time steps.
CCD methods model continuous motions of primitives. Typ-
ically, a simple linear motion is one of the widely used
motions [Pro97]. In the CCD case, collisions arise in two
contact configurations, vertex-face (VF) case and edge-edge
(EE) cases. These two cases are detected by performing
VF and EE elementary tests, which reduce to solving cubic
equations given the linear continuous motion between two
discrete time steps [Pro97].

To extend our culling method for CCD, we need to com-
pute the surface normal and binormal cones with the deform-
ing triangles in the time interval between two discrete time
steps. Tang et al. [TCYM08] computed the surface normal
cone in such time interval. Therefore, we only focus on com-
puting a binormal cone for CCD.

Before presenting a theorem that computes a continuous
binormal cone, we define terms for the theorem. Given a
triangle T that deforms during a time interval [0,1], we let
at , bt , and ct to be positions of three vertices of a trian-
gle T , which are linearly interpolated in the time interval
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Figure 11: This graph shows the relationship between TCS

values of the root nodes of BVHs of the cloth simulation
benchmark model and the observed number of the BV over-
lap tests to perform a self-collision query to the same bench-
mark. The linear correlation between them is 0.72.

with respect to the time variable t ∈ [0,1] (see Fig. 13).

Also, ~N0 and ~N1 denote normals of the triangle T at time

0 and 1 respectively, i.e. ~N0 = (b0 − a0)× (c0 − a0) and
~N1 = (b1−a1)×(c1−a1). The triangle T has three different
edges, {(at ,bt),(bt ,ct),(ct ,at)}. We use (pt ,qt) to represent

one of such edges. Given an edge (pt ,qt), ~Vp represents the

vector that starts from p0 and ends at p1, i.e. ~Vp = p1 − p0;
~Vq, ~Va, ~Vb, and ~Vc are defined similarly with qt , at , bt , and ct

respectively.

Theorem A.1 (Continuous Binormal Cone) Given a trian-
gle T that deforms during a time interval [0,1], the binormal

vector ~Bt for an edge (pt ,qt) of the triangle T at time t, is
given by the following cubic Bezier curve:

~Bt =αB
3
0(t)+(3α+β)/3B

3
1(t)+(3α+2β+ γ)/3B

3
2(t)+

(α+β+ γ+ω)B3
3(t),

where B3
i (t) is the ith Bernstein polynomials of the degree

three,α = (q0 − p0)× ~N0,β = (q0 − p0)×~D+(~Vq − ~Vp)×
~N0,γ = (q0 − p0)×~L+ (~Vq − ~Vp)× ~D,ω = (~Vq − ~Vp)×~L,
~L = (~Vb − ~Va)× (~Vc − ~Va) , and ~D = ~N1 −~N0 −~L.

Proof:

c© The Eurographics Association 2010.
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Figure 12: This figure shows frame rate graphs of CCD
for the dragon benchmark with our method (Ours), and
Ours\FBVH that does not use our fast BVH construc-
tion method, but uses the median-based partitioning. It also
shows another graph of CCD with Ours\(FBVH&TC) that
does not use our traversal cost metric, but uses the LM met-
ric. By using our fast BVH construction method, we fur-
ther ameliorate the performance degradations at fracturing
events.

a
0

b
0

c
0

a
1

b
1

c
1

a
t

b
t

c
t

Nt

N0

N1Va

Vb

Vc

(a) (b)

B1

Bt

B0

ǩ

ǩ+Ǫ+ǫ+ȁ

3ǩ+Ǫ 3ǩ Ǫ+ǫ

Figure 13: Continuous Binormal Cone: This figure shows (a)

a deforming triangle in a time interval [0,1] and (b) one of three

binormal cones for edges of the triangle computed from four coeffi-

cients of a cubic Bezier curve.

The surface normal vector ~Nt of the triangle T at time t is
given by following equation [TCYM08] :

~Nt = ~N0B
2
0(t)+(~N0 +~N1 −~L)/2B

2
1(t)+~N1B

2
2(t)

= (1− t)2~N0 + t(1− t)(~N0 +~N1 −~L)+ t
2~N1

= ~N0 + t(~N1 −~N0 −~L)+ t
2~L

The binormal vector ~Bt for an edge (p,q) at time t is

~Bt = (qt − pt)×~Nt

= [(q0 + t~Vq)− (p0 + t~Vp)]×~Nt

= [(q0 − p0)+ t(~Vq −~Vp)]×~Nt

= (q0 − p0)×~Nt + t(~Vq −~Vp)×~Nt

By replacing ~Nt with ~N0 + t(~N1 −~N0 −~L)+ t2~L, we ob-
tain:

~Bt = (q0 − p0)× [~N0 + t(~N1 −~N0 −~L)+ t
2~L]

+t(~Vq −~Vp)× [~N0 + t(~N1 −~N0 −~L)+ t
2~L]

= (q0 − p0)×~N0

+t[(q0 − p0)× (~N1 −~N0 −~L)+(~Vq −~Vp)×~N0]

+t
2[(q0 − p0)×~L+(~Vq −~Vp)× (~N1 −~N0 −~L)]

+t
3(~Vq −~Vp)×~L

We define ~D as ~D = (~N1 −~N0 −~L)

By plugging ~D, we obtain:

~Bt = (q0 − p0)×~N0

+t[(q0 − p0)×~D+(~Vq −~Vp)×~N0]

+t
2[(q0 − p0)×~L+(~Vq −~Vp)×~D]

+t
3(~Vq −~Vp)×~L

To bound ~Bt using Bernstein polynomials of degree three,
we form following equation:

~Bt = x0B
3
0(t)+ x1B

3
1(t)+ x2B

3
2(t)+ x3B

3
3(t)

By solving above equation, we obtain:

x0 = α

x1 = (3α+β)/3

x2 = (3α+2β+ γ)/3

x3 = α+β+ γ+ω

where,

α = (q0 − p0)×~N0

β = (q0 − p0)×~D+(~Vq − ~Vp)×~N0

γ = (q0 − p0)×~L+(~Vq − ~Vp)×~D

ω = (~Vq − ~Vp)×~L

�
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