
Timeline Scheduling for Out-of-Core Ray Batching:
Supplementary Report

Myungbae Son
KAIST

nedsociety@kaist.ac.kr

Sung-Eui Yoon
KAIST

sungeui@kaist.edu

ACM Reference format:

Myungbae Son and Sung-Eui Yoon. 2017. Timeline Scheduling for Out-of-
Core Ray Batching: Supplementary Report. In Proceedings of HPG ’17, Los

Angeles, CA, USA, July 28-30, 2017, 4 pages.
DOI: 10.1145/3105762.3105784

Treating data transfers as separate jobs allocated to channels. We
treat a data transfer as a separate job and let our scheduler to allocate
those jobs to memory channels. This abstraction is reasonable for
data transfers between main memory devices and between a disk
and main memory, thanks to the wide adoption of direct memory
access (DMA), enabling asynchronous access [Osborne 1980]. For
the data transfer between a CPU and a GPU, an asynchronous full-
duplex data transfer might not overlap with kernel execution based
on the internal engine implementation [Harris 2012]. In this case,
we simply create a dummy job to the GPU side, to mark it busy due
to processing the data transfer.

Detailed job structures. When a client requests rendering a frame
(ImageRequest) with a camera parameters (CameraInfo), it sets
up an empty Framebuffer for each device and the initial jobs
(RayIntersect) processing sets of primary rays (RayQueue). From
there, each secondary and shadow rays are queue up to (Shadow)RayQueue.
Each ray in (Shadow)RayQueue holds the reference to the Framebuffer
and the sample index, i.e. pixel location, to shade. Each queue
is associated with a SceneData block, defined by a scene subdi-
vision (e.g., uniform grid or kd-tree). They are then traced in
(Shadow)RayIntersect jobs. Finally, when all samples are pro-
cessed, the results are gathered back to the client in an Additive-

Compose job, where a set of partially shaded Framebuffers are
summed up to the result image.

Effects of job prediction. Our prediction method does not con-
sider actual geometry, but considers the average behavior given a
ray queue for fast prediction performance. To see its effects, we
have measured the miss rate of our prediction method, and its av-
erage improvement over the other case that does not perform any
prediction.

Specifically, we analyzed two types of prediction misses. First,
for two or more jobs with the same fetching overhead, it is possible
that the prediction results in incorrect number of rays, causing a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HPG ’17, Los Angeles, CA, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5101-0/17/07. . . $15.00
DOI: 10.1145/3105762.3105784

job with lower granularity (that is, a job with a smaller number
of rays) to be preferred over the jobs with a higher granularity,
which causes mis-ordering of job allocation. It is measured by the
ratio of wrong choices on the predicted E-job selection. Another
case is that when rays are distributed in non-uniform ways, the
scheduler predicts imaginary ray queues to be generated, causing
unnecessary T-jobs to be scheduled, resulting in mis-fetching. It
is measured by the ratio of T-jobs for predicted E-jobs that are
non-existent.

Boeing777 SponzaMuseum

Mis-ordering 11.4 % 10.8 %
Mis-fetching 21.5 % 13.1 %

Total prediction miss rate 32.9 % 24.0 %
Avg. improvement 68.1 % 84.5 %

Table 2: This table shows miss rates of our prediction

method and the average improvement of our method over

the case running w/o any prediction. This data is computed

by averaging inspections per scene over 50 runs in the ho-

mogeneous 4-node setup.

In Table 2, we have measured the rate of such prediction misses,
and the average peak throughput improvement compared to a non-
prediction case where job prediction is disabled. Boeing777 causes
higher rates of predicting mis-fetching jobs due to the non-uniform
distribution of rays and high model complexity. Nonetheless, it is
clear that our prediction miss rate is reasonably low (e.g., less than
40 %) and the benefit of our job prediction exceeds its overhead
caused by incorrect predictions.

Per-bounce analysis. It has been well known that as rays get more
incoherent, it becomes harder to maintain a higher throughput and
bigger data granularity for each ray queue [Pharr et al. 1997]. In
the SponzaMuseum scene where indirect illumination dominates, it
tends to generate many incoherent rays and thus a lot of small ray
queues scattered across the scene, which in turn increases the I/O
overhead and reduces the granularity of each ray queue.

To look deeper into the issue of incoherency of rays, we measure
the throughput as a function of path lengths in the SponzaMuseum

scene. One can easily expect that the level of incoherency goes
higher as we have longer path lengths. As Fig. 4 shows, our method
shows lower throughputs as we have longer paths. Nonetheless,
our method shows graceful performance degradation, especially
compared with the prior work. This graceful degradation of our
method is mainly attributed by better prefetching more SceneData
as more (Shadow)RayIntersect jobs are queued, increasing the
effect of latency hiding. Compared to ours, the prior work cannot
increase the fetching rate as the ray queues get scattered.



HPG ’17, July 28-30, 2017, Los Angeles, CA, USA Son and Yoon

2C
P
U
s

+
G
T
X
28
5

+
T
es
la
20
75

+
G
T
X
48
0

+
G
T
X
58
0

Compute devices

4

6

8

10

12

14

16

18

20

22

T
h

ro
u

g
h

p
u

t
(M

ra
y
s/

se
c) Ours

[Navrátil et al. 2014]

[Budge et al. 2009]

(a) Boeing777

2C
P
U
s

+
G
T
X
28
5

+
T
es
la
20
75

+
G
T
X
48
0

+
G
T
X
58
0

Compute devices

4

6

8

10

12

14

16

18

20

22

T
h

ro
u

g
h

p
u

t
(M

ra
y
s/

se
c) Ours

[Navrátil et al. 2014]

[Budge et al. 2009]

(b) SponzaMuseum

Figure 1: This figure shows the throughput graphs of each method as more computational resources are added to the system

consisting of a single multi-GPU workstation. The X-axis represents the composition of compute devices in the workstation,

where Y-axis represents throughput in the total number of rays shot per second.

Type CPU Main memory GPU Memory GPU Note

A i7-4770K 3.5GHz octa-core DDR3 8GB 6GB GTX Titan 1GbE LAN, 4 nodes
B i7-4790K 4GHz octa-core DDR3 8GB 6GB GTX Titan
C Xeon E5-2690 2.9GHz 16-core DDR3 8GB 6GB GTX Titan
D Xeon E5-2690 2.6GHz 16-core DDR3 8GB 6GB GTX Titan X
R i7-3770k 3.5GHz quad-core DDR3 8GB 4GB GTX980

Table 1: Type of nodes in our experimental setup

20000 40000 60000 80000 100000 120000 140000 160000

Size of input ray queue (bytes)

0

500

1000

1500

2000

E
x
e
cu

ti
o
n

ti
m

e
(n

s)

RayIntersect (CPU)

RayIntersect (GPU)

ShadowIntersect (CPU)

ShadowIntersect (GPU)

Figure 2: This figure illustrates themeasured execution time

for ray tracing jobs w.r.t. the size of ray queues. It shows the

linear behavior that fits well into our timing model. Timing

models for other inputs follow the similar trend.

Scalability analysis over a workstation. In this scenario, we have
one workstation to serve the rendering requests. The workstation
consists of two Intel Xeon 2.93GHz CPUs and 8GB RAM and four
different GPUs (GTX285, Tesla 2075, GTX480, GTX580). All GPUs
use 2GB of their internal memory as buffer. To show the increasing
horizontal scalability, we begin with using only two CPUs, and
adding GPUs one by one. The result is shown in Fig. 1.

Compared to 8-node cluster setup, the communication cost is
much lower since LAN channel is not used in this setup. In turn,

Figure 3: An illustration of dependencies for the path tracer.

The circular shapes with the bold font are jobs, while the

rectangular ones are associated data.

1 2 3 4 5 6 7 8

Number of bounces (1: primary ray)

0

5

10

15

20

25

30

T
h

ro
u

g
h

p
u

t
(M

ra
y
s/

se
c)

Ours

[Navrátil et al. 2014]

[Budge et al. 2009]

Figure 4: This figure shows the throughput breakdowns of

different methods as a function of the number of bounces

of rays in SponzaMuseum scene in heterogeneous 8-node

setup.



Timeline Scheduling for Out-of-Core Ray Batching: Supplementary Report HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

the data fetch optimization has relatively less effect. Nevertheless,
our scheduler still outperforms prior methods. Unlike cluster setup
where the fetch path optimization drives the improvement, we have
observed that data pre-fetching is the key component to the perfor-
mance in this setup. Compared to the prior methods, our system
hides fetch latency by 27% for Boeing777 and 23% for SponzaMu-

seum in average when all GPUs are utilized, which in turn results
in up to 8 % total throughput improvement over [Budge et al. 2009],
which is also designed to be optimized for the workstation setup.

1 Function Schedule(DCG, J)

Data: DCG: the device connectivity graph
J: the list of jobs

Result: A map of schedule pd for each d ∈ Dtarдet

where Dtarget := Dcompute ∪ EDCG
2 // Initialization

3 foreach d in Dtarget do

4 Initialize pd with an empty schedule

5 end foreach

6 // Iterative job allocation

7 while mind ∈Dcompute
EndTime (pd ) < k ∧ J , ∅ do

8 d := argmind ∈Dcompute
EndTime (pd )

9 j, sf etch := Next Job (DCG,d,p, J )

10 Merge dependent T-jobs sf etch to p

11 // Schedule process on pd
12 tmax = EndTime (sf etch )

13 Add the job j at

pd [tmax , tmax +TEXEC (d, j,W (j ))]

14 Remove j from J

15 end while

16 return all the schedules p

Algorithm 1: GMB Algorithm - Scheduling module

REFERENCES
Brian Budge, Tony Bernardin, Jeff A. Stuart, Shubhabrata Sengupta, Kenneth I. Joy,

and John D. Owens. 2009. Out-of-core data management for path tracing on hybrid
resources. Computer Graphics Forum (EG) 28, 2 (2009), 385–396.

Mark Harris. 2012. How to Overlap Data Transfers in CUDA C/C++,
https://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/.

Adam Osborne. 1980. An Introduction to Microcomputers: Volume 1âĂŤBasic Con-
cepts, Berkeley: Osborne. (1980).

M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan. 1997. Rendering complex scenes
with memory-coherent ray tracing. In ACM SIGGRAPH. 101–108.

1 Function NextJob(DCG, d , p, J)

Data: DCG: the device connectivity graph
d : the compute device to schedule a job
p: the current schedule
J : the jobs to select

Result: j: the next job to execute
datapath: the list of paths in DCG

2 jnext := ∅

3 t∅ := ∞

4 foreach j in J do

5 Wj := RequiredDataBlocks (j )

6 foreachw inWj do

7 pathw , tw := FindPath(DCG,Mem(d ),p,w )

8 end foreach

9 tj :=maxw ∈W tw

10 if tjnext > tj or (tjnext = tj and

TEXEC (d, jnext,Wjnext )

TSETU P (d, jnext)
<
TEXEC (d, j,Wj )

TSETU P (d, j )
)

then

11 jnext = j

12 end if

13 end foreach

14 return jnext, ConstructFetchSchedule (pathWj
)

Algorithm 2: GMB Algorithm - Job selection



HPG ’17, July 28-30, 2017, Los Angeles, CA, USA Son and Yoon

1 Function FindPath(DCG,md , p,w)
Data:

DCG: the device connectivity graph
md : the target memory device to transfer a data block
p: the current schedule
w : the data block to transfer

Result: path: the fetch path forw from sources tomd

time: the time to finish fetch

2 // Initialization

3 Initialize Q with empty min-priority queue

4 Add vertex S to DCG

5 foreach d in DCG do

6 if d = S then

7 td := 0

8 else

9 Add edge d → S to DCG

10 td := inf

11 end if

12 prevd := ∅

13 Q .push(d, td )

14 end foreach

15 // Shortest path search loop

16 while Q is not empty do

17 u = Q .popMin()

18 if u =md then

19 return [S → ... → prevmd
→md ], tmd

20 end if

21 foreach v in adjacent (u) do

22 if u = S then

23 newt :=





0, ifw is already loaded at v

t , if Load (w ) is found at t in pv

∞, otherwise .

24 else

25 newt :=max (tu ,EndTime (pu→v ))

+TTRANS (u → v,w )

26 end if

27 if newt < tv then

28 tv := newt

29 prevv := u

30 Q .setPriority (v, tv )

31 end if

32 end foreach

33 end while

Algorithm 3: GMB Algorithm - Fetch path construction


	References

