TIMELINE SCHEDULING
FOROUT-OF-CORE
RAY BATCHING

Myungbae Son Sung-EuiYoon

SGVR Lab
KAIST

KAIST School of

— COmputing

Our Scenario

« Complex scenes
» Out-of-core model: Too big data!

« Cannot be stored in main /{ GPU memory

« Complex device configurations
« Distributed memory cluster system

e Client-assisted remote rendering
« Renderfarm of heterogeneous devices

KAIST School of .

s COmMputing

Challenges

« Massively complex scene

« Over 96% of runtime is spent on I/O in naive BDPT (Boeing777)

X X WX

 Excessive page swap required
« I/O cost dominates the rendering time

» Global lllumination with incoherent rays
« Efficient ray scheduling is required

KAIST School of

s COMputing

p t

X

Q& Cache hit mmmmm Data transfer
(Disk I/O, GPU copy)

x Cache miss [Ray processing

Challenges

Complex and heterogenenous device configurations...

KAIST School of

— COmputing

Challenges

Further down to the processor and memory hierarchy level...

Nodel

« Different processors

PCIe

e Different memory channels

NodeO

—»| |GPUMem0

—»| |GPUMemn

<CPU

e Different nodes and network

Main |_

GPUO

GPUn

PCIe

—»| |GPUMem0

—»] |GPUMemn

Memory B

KAIST School of

— COmputing

y

Disk

SATA

| LAN |

Main
Memory

CPU

GPUO

GPUn

SATA

Disk

Goal & Contributions

Design a scheduler for global illumination
e Processes massive models

« Supports variety of computing environments
« Complex and heterogeneous device configurations

Our contributions

« A modeling technique: device configurations and jobs

e A scheduling algorithm: Greedy Makespan Balancing (GMB)
« An adaptation to path tracer

KAIST School of

- COmputing

RELATED WORK

School of

Ray Batching

« Ray segments are decomposed into workloads
Cost-benefit function [Pharretal. 1997]

Hybrid priority-based optimization [Budge etal. 2009]
Cache-oblivious reordering Moon etal. 2010]
Distributed-memory cluster techniques Navratil etal. 2024]

« Cache is considered and utilized efficiently

e Limitations of prior work
« Assumes no complex memory hierarchy

 Hard to scale on multiple nodes
 No support for heterogeneous devices

KAIST School of

— COmputing

:

S

;i

(RS W W W

LV O W L W

N W =\ W L W

LA AS) =)

WA

[A 0 W W

Scheduling & Specification

» General task specification & scheduling

e L P-based solverKimetal. 2012] Computing
° Dryad[|Sard et al. 2007] resource g

o HEFT, CPOP[Topcuoqu et al. 2002]

Processing i
Processing tim
Processing time
Processing tin

[
[
[
[

e Great scaling on multi-node/task complexity

e Limitations
« Inefficiencies on dynamic workload
e Either cache or bandwidth is not considered

KAIST School of

— COmputing

OUR APPROACH

School of

Our Approach

« Formulation technique for MC ray tracing jobs
Device Connectivity Graph (DCG) and Timing Model

e Timeline scheduling and Greedy Makespan Balancing algorithm
Simple, iterative algorithm that considers utilization and latency hiding

 Adaptation to actual renderer framework
Out-of-core path tracer

KAIST School of

— COmputing

11

Our Approach

« Formulation technique for MC ray tracing jobs
Device Connectivity Graph (DCG) and Timing Model

e Timeline scheduling and Greedy Makespan Balancing algorithm
Simple, iterative algorithm that considers utilization and latency hiding

 Adaptation to actual renderer framework
Out-of-core path tracer

KAIST School of

— COmputing

12

Formulation: Device Connectivity Graph

 Graph of memory devices
« Memory
Disk storage, RAM, GMEM

e Connections (Channels)

PCle (RAM <& GMEM)
SATA (Disk & RAM)
LAN (RAM < RAM)

e Stores bandwidth information

KAIST School of

— COmputing

PCIe

NodeO Nodel
pl |GPUMemO |- -GPUO p| | GPUMem0 GPUO
PCIe
—»| |GPUMemn |--<«GPUn —>»| |GPUMemn GPUn
<CPU CPU
A 4 h 4
Main > Main
Memory - LAN | Memory
A
— Disk Disk
SATA SATA
A O e

Memory device

Memory-memory
communication

Compute device

Compute-memory
attachment

13

Formulation: Timing Model

« Assume simple yet efficient linear model on time

r

| 0 (W =0
e Job execution Texec(d, j, W) =< Tsgrup(d, j)

+ , otherwise
| +Trare(d, j)- (Wi, [wal,...)

Wl
Tpw (d,j — dj)

e Data transfer Trrans(di — dj, w) = Tpar (di — dj) +

e Fitting each parameter (Tsgrup, Trate, Trat) Tew)
» Use least squares method on test run

KAIST School of

— COmputing 14

Our Approach

« Formulation technique for MC ray tracing jobs
Device Connectivity Graph (DCG) and Timing Model

e Timeline scheduling and Greedy Makespan Balancing algorithm
Simple, iterative algorithm that considers utilization and latency hiding

 Adaptation to actual renderer framework
Out-of-core path tracer

KAIST School of

— COmputing

15

Timeline Scheduling

» A representation of schedule with timing constraints

« For & processors

are allocated do Jo: [to,t1] : ' '
« For &> memory channels ™ > ¢ g = o '
are allocated : L : :
fmp —> my | L 'J3: [ts, t,l!
« Dependencies 4 S : !
. ji: [to,t2] ! 1 ' : [tg,t5]
between jobs and fetches Yo e S o L_Jf___ _“__-’:__)
to i T2 L3 L4 Timeline

Def.schedule: a set of timelines that jobs and fetches are allocated

KAIST School of .

— COmputing

Greedy Makespan Balancing Algorithm

dy -~ |m

A

dz - m2

Job Queue

32

o

KAIST School of

— COmputing

- -d;

d;

dy

Timeline

1. Choose least occupied compute device d

17

Greedy Makespan Balancing Algorithm

dy -~ |m

A

dz - m2

Job Queue

32

o

KAIST School of

— COmputing

2. Find job j; that can be run at d as soon as possible

d;

Ja
d I —

d3 _

my _}1 my _ —
m > m _ W11 :mz—Mmy
P2 e— T3 s —— —

i W1y im3—my
|

T —

Timeline

18

Greedy Makespan Balancing Algorithm

dl - mq dl
J1
A N
DCG '
dy -~ [my my |--(dj3 ; ds B |
<> W11 :Mm—m
g 11 -7172
m — > m. | I
le— "2 =m o—
Job Queue m, —> m, |
32] P wag imgomy
' ' i m —)m —.
3 «— 1 —
was
___________________________ >
Timeline
KAIST Sch 4. Repeat until devices are occupied enough

m— COMipuung 19

Our Approach

« Formulation technique for MC ray tracing jobs
Device Connectivity Graph (DCG) and Timing Model

e Timeline scheduling and Greedy Makespan Balancing algorithm
Simple, iterative algorithm that considers utilization and latency hiding

« Adaptation to actual renderer framework
Out-of-core path tracer

KAIST School of

— COmputing

20

Out-of-core Path Tracer Jobs

Cameralnfo

ImageRequest

A 4

AdditiveCompose

Image

Framebuffer

RayQueue

KAIST School of

— COmputing

ShadowIntersect

SceneData

RayIntersect

ShadowRayQueue

21

Job Prediction

o Allow more future jobs
to be scheduled
Improved quality of the schedule

« Rays are predicted to be...
e ... propagated to next cell

e ... bounced into secondary ray
e ... terminated with shadow ray

« Expect how much future jobs
get spawned

KAIST School of

— COmputing

RayQueue
A 2
W3,
Wil
RayQueue RavyQueue
YQ Wil o
Weh n
5Mta l b ne
RayQueue Shadow

RayQueue

RayQueue

A 4

RayQueue

22

RESULTS

School of

Benchmark scene

12.3GB, 245M tri, 34.8 sec/imq)

e]
Boeing777 (26.5GB, 496M tri, 5.2sec/img) SponzaMuseum (

(800 x 800 x 32spp X 60frames)

» Model preparation
 Even-sized median-split kdtree, 27 / 2° subdivision, respectively

KAIST School of

— COmputing 24

1GbE LAN

Horizontal Scalability — Boeing777

100
—_ —e Qurs
o 90 4 .
% @—® Navratill4
W 80 4 | V¥ Budge09
>
S 70
\.2/ 60 .
-
2 50 -
-~
%D 40
S 304
=
= 20
N U) N . O ‘
' ’ i g DEQ) bfb QQ\
| > N N
: p
B C | Type | CPU | Main memory | GPU Memory | GPU | Note |
NN A 7-4770K 3.5GHz octa-core DDR3 8GB 6GB GTX Titan | 1GDE LAN, 4 nodes
100MbE LAN B i7-4790K 4GHz octa-core DDE3 8GB ~GB GTX Titan
C Xeon E3-2690 2.9GHz 16-core DDR3 8GB 6GB GTX Titan
R D Xeon E5-2690 2.6GHz 16-core DDR3 8GB 6GB GTX Titan X
\ P R i7-3770k 3.5GHz quad-core DDR3 8GB 4GB GTX980
[-
Schoolof

_ Computing

25

1GbE LAN

Horizontal Scalabilitv — SponzaMuseum

Throughput (Mrays/sec)

\/
Schmolmf

.._._ Computing

100 ~

—e Qurs

@—® Navratill4d

V—¥ Budge09

C | Type | CPU | Main memory | GPU Memory | GPU | Note |
N A i7-4770K 3.5GHz octa-core DDE3 8GB 6GB GTX Titan 1GbE LAN. 4 nodes
100MbE LAN B 17-4790K 4GHz octa-core DDR3 8GB 6GB GTX Titan

C Xeon E5-2690 2.9GHz 16-core DDR3 8GB 6GB GTX Titan

R D Xeon E5-2690 2.6GHz 16-core DDR3 8GB 6GB GTX Titan X

R 17-3770k 3.5GHz quad-core DDR3 5GB 4GB GTX980
—r

26

Efficiency on Data Fetching

e Central scene DB scenario

GPU, GPU, GPU, GPU,

RAM, RAM, RAM, RAM,

E.I

e Initially no data at slave nodes at all

e The master node gives scene data blocks on-demand

KAIST School of

— COmputing

Efficiency on Data Fetching

)

2 120

z ¥

= 100 - e e SNpuS———
= ¥

S 80

= 60 -

a 40 — Ours

- e—e Navratill4
,%0 207 v Budge09

g 0 I I | | | | |
= 0 10 20 30 40 50 60 70

Time (s)

(Boeing7z77)
Our method converges to peak performance much faster than previous methods

KAIST School of s

— COmputing

Conclusion

» Presented specification techniques for out-of-core MC ray
tracing on arbitrary hardware setup
» DCG and timing model

« Presented a timeline based scheduling algorithm
« GMB algorithm

» Applied to the out-of-core path tracer
» Prediction technique for future rays

KAIST School of

— COmputing

29

Acknowledgement

« Members of KAIST SGVR Lab for discussions

» This work was supported by ICT R&D program of MSIP/IITP
[R0126-17-1108].

KAIST School of

— COmputing

30

THANKYOU!

KAIST School of

— COmputing

Q&A
http://sglab.kaist.ac.kr/GMB/

http://sglab.kaist.ac.kr/GMB/

Ray Batching Vioda

Data

« Pseudocode
1. Sort rays to each model subdivision

i

2. Select the subdiv. to be processed
« Example: subdiv. queued with the highest #rays \

3. Load a subdiv. if not loaded
4. Process related workloads to that subdiv.

« Ray segments are decomposed into workloads
« Computational decomposition [Cleary et al. 1986]

KAIST School of

— COmputing 32

Formulation Techniques

« To formally specify...

e (1) How much time to process a job
* (2) How much time to fetch the required data

KAIST School of

— COmputing

33

Formulation Techniques

« To formally specify...

* (1) How much time to process a job
« (2) How much time to fetch the required data

SCPU,
OGPU, ;

» Load balancing* evens out (1) across devices
(* How well the jobs are evenly distributed to compute devices?)

KAIST School of

— COmputing

34

Formulation Techniques

« To formally specify...

e (1) How much time to process a job
* (2) How much time to fetch the required data

SCPU -
Disk —» RAM B

e Latency hiding* is about interleaving (2) while doing (2)
(* Is the overhead of data fetch invisible?)

KAIST School of

— COmputing

35

Job Allocation Strategy
« We want to maximize utilization of compute device

« Our strategy: reduce idle time, in following order

KAIST School of

— COmputing

Job Allocation Strategy
« We want to maximize utilization of compute device

« Our strategy: reduce idle time, in following order
« True idle time: A device is not scheduled nor waiting for a data

CPU, |
CPU, ? g

KAIST School of

— COmputing

37

Job Allocation Strategy
« We want to maximize utilization of compute device

« Our strategy: reduce idle time, in following order
e True idle time: A device is not scheduled nor waiting for a data

» Fetching time: A device is waiting for a data

OCPU,| 2
Disk - RAM (IS --

KAIST School of

— COmputing

Job Allocation Strategy
« We want to maximize utilization of compute device

« Our strategy: reduce idle time, in following order
« True idle time: A device is not scheduled nor waiting for a data

« Fetching time: A device is waiting for a data
« Setup time: A device is warming up for processing a job

OCPU,

KAIST School of

s COMputing

39

Adapting to Dynamic Workload

« Prediction: Schedule future jobs with current jobs

Ray data for w (|w]) Ray data for w' (a|w|)

Model datablock for w

e o is @ hit probability within a block
Just used an empirically correct value (~0.6 on Boeing777, ~0.8 in SponzaMuseum)

« B is an average Russian Roulette pass probability (=).reyy RR(W))
Determined by averaged acceptance rate

KAIST School of

— COmputing 40

Formulation: Timing Model

2000 4| — RayIntersect (CPU)

— RaylIntersect (GPU)

—— ShadowlIntersect (CPU)
— —— ShadowlIntersect (GPU)
E% 1500 -
Q
S
-—S
£ 1000 -
-—;3‘
=
: L Al
% H'-""ﬂww"‘.ﬂ!'l‘lll.‘t-ﬂw } ,U",N-hhfl‘ J*" y‘_‘{.,‘-mf"*w‘k“*"“lwl#.w"ﬂl ‘ '

500 - hlbobekilsohogs it
i

20000 40000 60000 80000 100000 120000 140000 160000
Size of input ray queue (bytes)

KAIST School of

 COmputing

41

Centralized Scene DB Structure

« Decentralized: each node has a copy of the full scene at each
HDD from the beginning

GPU, GPU, GPU, GPU,

RAM, RAM, RAM, RAM,

g' 8’ o' @
» Does not make a diverse data transfer path
e This is somewhat intended due to simplicity

KAIST School of

— COmputing

Centralized Scene DB Structure

e Central Scene DB structure

GPU, GPU, GPU, GPU,

RAM, RAM, RAM, RAM,

E.I

« Master node gives scene datablock on-demand

« Expected Result: Larger area of applications

KAIST School of

— COmputing

43

