
Myungbae Son Sung-EuiYoon

SGVR Lab
KAIST

TIMELINE SCHEDULING
FOR OUT-OF-CORE

RAY BATCHING

Our Scenario

• Complex scenes
• Out-of-core model: Too big data!

• Cannot be stored in main / GPU memory

• Complex device configurations
• Distributed memory cluster system

• Client-assisted remote rendering

• Renderfarm of heterogeneous devices

Boeing 777, 366 M tri. (20 GB)

2

Challenges

• Massively complex scene
• Over 96% of runtime is spent on I/O in naïve BDPT (Boeing777)

• Excessive page swap required

• I/O cost dominates the rendering time

• Global Illumination with incoherent rays
• Efficient ray scheduling is required

Data transfer
(Disk I/O, GPU copy)
Ray processing

t

Cache hit

Cache miss

3

Challenges

Complex and heterogenenous device configurations…

4

Challenges

Further down to the processor and memory hierarchy level…

• Different processors

• Different memory channels

• Different nodes and network

5

Goal & Contributions

Design a scheduler for global illumination

• Processes massive models

• Supports variety of computing environments
• Complex and heterogeneous device configurations

Our contributions

• A modeling technique: device configurations and jobs

• A scheduling algorithm: Greedy Makespan Balancing (GMB)

• An adaptation to path tracer

6

RELATED WORK

G
P

U

G
P

U

G
P

U

G
P

U

CPU

D

i

s
kG

P

U

G
P

U

G
P

U

G
P

U

CPU

D

i
s

kG
P

U

G
P

U

G
P

U

G
P

U

CPU

D
i

s

k
G
P

U

G
P

U

G
P

U

G
P

U

CPU

D

i
s

kG

P

U

G

P

U

G

P

U

G

P

U

CPU

D

i
s

k

Ray Batching
G
P

U

G
P

U

G
P

U

G
P

U

CPU

D

i

s
kG

P

U

G
P

U

G
P

U

G
P

U

CPU

D

i
s

kG
P

U

G
P

U

G
P

U

G
P

U

CPU

D
i

s

k
G
P

U

G
P

U

G
P

U

G
P

U

CPU

D

i
s

kG

P

U

G

P

U

G

P

U

G

P

U

CPU

D

i
s

k

• Ray segments are decomposed into workloads
Cost-benefit function [Pharr et al. 1997]

Hybrid priority-based optimization [Budge et al. 2009]

Cache-oblivious reordering [Moon et al. 2010]

Distributed-memory cluster techniques [Navratil et al. 2014]

• Cache is considered and utilized efficiently

• Limitations of prior work
• Assumes no complex memory hierarchy
• Hard to scale on multiple nodes
• No support for heterogeneous devices

8

• General task specification & scheduling
• LP-based solver[Kim et al. 2012]

• Dryad[Isard et al. 2007]

• HEFT, CPOP[Topcuoglu et al. 2002]

• Great scaling on multi-node/task complexity

• Limitations
• Inefficiencies on dynamic workload

• Either cache or bandwidth is not considered

Scheduling & Specification

Processing time

Processing time

Processing time

Processing time

CPU 1
CPU 2
GPU 1
GPU 2

Time

Computing
resource

Makespan (L)

9

OUR APPROACH

Our Approach

• Formulation technique for MC ray tracing jobs
Device Connectivity Graph (DCG) and Timing Model

• Timeline scheduling and Greedy Makespan Balancing algorithm
Simple, iterative algorithm that considers utilization and latency hiding

• Adaptation to actual renderer framework
Out-of-core path tracer

11

Our Approach

• Formulation technique for MC ray tracing jobs
Device Connectivity Graph (DCG) and Timing Model

• Timeline scheduling and Greedy Makespan Balancing algorithm
Simple, iterative algorithm that considers utilization and latency hiding

• Adaptation to actual renderer framework
Out-of-core path tracer

12

Formulation: Device Connectivity Graph

• Graph of memory devices
• Memory

Disk storage, RAM, GMEM

• Connections (Channels)
PCIe (RAM ↔GMEM)
SATA (Disk ↔ RAM)
LAN (RAM ↔ RAM)

…

• Stores bandwidth information

13

Formulation: Timing Model

• Assume simple yet efficient linear model on time

• Job execution

• Data transfer

• Fitting each parameter (𝑇𝑆𝐸𝑇𝑈𝑃 , 𝑇𝑅𝐴𝑇𝐸 , 𝑇𝐿𝐴𝑇 , 𝑇𝐵𝑊)
• Use least squares method on test run

14

Our Approach

• Formulation technique for MC ray tracing jobs
Device Connectivity Graph (DCG) and Timing Model

• Timeline scheduling and Greedy Makespan Balancing algorithm
Simple, iterative algorithm that considers utilization and latency hiding

• Adaptation to actual renderer framework
Out-of-core path tracer

15

Timeline Scheduling

• A representation of schedule with timing constraints

• For ◇ processors
Executable jobs are allocated

• For ↔memory channels
Data transfers are allocated

• Dependencies
between jobs and fetches

𝐷𝑒𝑓. schedule: a set of timelines that jobs and fetches are allocated

16

Greedy Makespan Balancing Algorithm

1. Choose least occupied compute device 𝑑
17

Greedy Makespan Balancing Algorithm

2. Find job 𝑗𝑖 that can be run at 𝑑 as soon as possible
18

3. Add 𝑗𝑖 and data fetch to the schedule

Greedy Makespan Balancing Algorithm

4. Repeat until devices are occupied enough
19

Our Approach

• Formulation technique for MC ray tracing jobs
Device Connectivity Graph (DCG) and Timing Model

• Timeline scheduling and Greedy Makespan Balancing algorithm
Simple, iterative algorithm that considers utilization and latency hiding

• Adaptation to actual renderer framework
Out-of-core path tracer

20

Out-of-core Path Tracer Jobs

21

Job Prediction

• Allow more future jobs
to be scheduled
Improved quality of the schedule

• Rays are predicted to be…
• … propagated to next cell

• … bounced into secondary ray

• … terminated with shadow ray

• Expect how much future jobs
get spawned

22

RESULTS

Benchmark scene

• Model preparation
• Even-sized median-split kdtree, 27 / 26 subdivision, respectively

24

Boeing777 (26.5GB, 496M tri, 5.2sec/img) SponzaMuseum (12.3GB, 245M tri, 34.8 sec/img)

(800 × 800 × 32𝑠𝑝𝑝 × 60𝑓𝑟𝑎𝑚𝑒𝑠)

25

Horizontal Scalability – Boeing777

Horizontal Scalability – SponzaMuseum

26

Efficiency on Data Fetching

• Central scene DB scenario

• Initially no data at slave nodes at all

• The master node gives scene data blocks on-demand

HDD0

RAM0

GPU0

HDD1

RAM1

GPU1

HDD2

RAM2

GPU2

HDD3

RAM3

GPU3

27

Efficiency on Data Fetching

(Boeing777)
Our method converges to peak performance much faster than previous methods

28

Conclusion

• Presented specification techniques for out-of-core MC ray
tracing on arbitrary hardware setup
• DCG and timing model

• Presented a timeline based scheduling algorithm
• GMB algorithm

• Applied to the out-of-core path tracer
• Prediction technique for future rays

29

Acknowledgement

• Members of KAIST SGVR Lab for discussions

• This work was supported by ICT R&D program of MSIP/IITP
[R0126-17-1108].

30

THANK YOU!
Q & A

http://sglab.kaist.ac.kr/GMB/

http://sglab.kaist.ac.kr/GMB/

Ray Batching

• Pseudocode
1. Sort rays to each model subdivision

2. Select the subdiv. to be processed
• Example: subdiv. queued with the highest #rays

3. Load a subdiv. if not loaded

4. Process related workloads to that subdiv.

• Ray segments are decomposed into workloads
• Computational decomposition [Cleary et al. 1986]

Model
Data

32

Formulation Techniques

• To formally specify…
• (1) How much time to process a job

• (2) How much time to fetch the required data

33

Formulation Techniques

• To formally specify…
• (1) How much time to process a job

• (2) How much time to fetch the required data

• Load balancing* evens out (1) across devices
(* How well the jobs are evenly distributed to compute devices?)

◇𝐶𝑃𝑈0
◇𝐺𝑃𝑈0

34

Formulation Techniques

• To formally specify…
• (1) How much time to process a job

• (2) How much time to fetch the required data

• Latency hiding* is about interleaving (2) while doing (1)
(* Is the overhead of data fetch invisible?)

◇𝐶𝑃𝑈0
𝐷𝑖𝑠𝑘 → 𝑅𝐴𝑀

35

Job Allocation Strategy

• We want to maximize utilization of compute device

• Our strategy: reduce idle time, in following order

36

Job Allocation Strategy

• We want to maximize utilization of compute device

• Our strategy: reduce idle time, in following order
• True idle time: A device is not scheduled nor waiting for a data

◇𝐶𝑃𝑈0
?◇𝐶𝑃𝑈1

37

?

Job Allocation Strategy

• We want to maximize utilization of compute device

• Our strategy: reduce idle time, in following order
• True idle time: A device is not scheduled nor waiting for a data

• Fetching time: A device is waiting for a data

◇𝐶𝑃𝑈0
𝐷𝑖𝑠𝑘 → 𝑅𝐴𝑀

38

Job Allocation Strategy

• We want to maximize utilization of compute device

• Our strategy: reduce idle time, in following order
• True idle time: A device is not scheduled nor waiting for a data

• Fetching time: A device is waiting for a data

• Setup time: A device is warming up for processing a job

Initialization◇𝐶𝑃𝑈0 Ray processing…

39

Adapting to Dynamic Workload

• Prediction: Schedule future jobs with current jobs

• 𝛼 is a hit probability within a block
Just used an empirically correct value (~0.6 on Boeing777, ~0.8 in SponzaMuseum)

• 𝛽 is an average Russian Roulette pass probability (= σ𝑟∈𝑤𝑅𝑅(𝑤))
Determined by averaged acceptance rate

RayTrace 𝑤 RayTrace 𝑤′

Model datablock for 𝑤

Ray data for 𝑤 (|𝑤|) Ray data for 𝑤′ (𝛼𝛽|𝑤|)

𝛽

40

Formulation: Timing Model

41

Centralized Scene DB Structure

• Decentralized: each node has a copy of the full scene at each
HDD from the beginning

• Does not make a diverse data transfer path
• This is somewhat intended due to simplicity

HDD0

RAM0

GPU0

HDD1

RAM1

GPU1

HDD2

RAM2

GPU2

HDD3

RAM3

GPU3

42

Centralized Scene DB Structure

• Central Scene DB structure

• Master node gives scene datablock on-demand

• Expected Result: Larger area of applications

HDD0

RAM0

GPU0

HDD1

RAM1

GPU1

HDD2

RAM2

GPU2

HDD3

RAM3

GPU3

43

