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Our Scenario

« Complex scenes
» Out-of-core model: Too big data!

« Cannot be stored in main /{ GPU memory

« Complex device configurations
« Distributed memory cluster system

e Client-assisted remote rendering
« Renderfarm of heterogeneous devices
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Challenges

« Massively complex scene

« Over 96% of runtime is spent on I/O in naive BDPT (Boeing777)

X X WX

 Excessive page swap required
« I/O cost dominates the rendering time

» Global lllumination with incoherent rays
« Efficient ray scheduling is required
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Challenges

Complex and heterogenenous device configurations...
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Challenges

Further down to the processor and memory hierarchy level...

Nodel

« Different processors

PCIe

e Different memory channels
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Goal & Contributions

Design a scheduler for global illumination
e Processes massive models

« Supports variety of computing environments
« Complex and heterogeneous device configurations

Our contributions

« A modeling technique: device configurations and jobs

e A scheduling algorithm: Greedy Makespan Balancing (GMB)
« An adaptation to path tracer
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RELATED WORK
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Ray Batching

« Ray segments are decomposed into workloads
Cost-benefit function [Pharretal. 1997]

Hybrid priority-based optimization [Budge etal. 2009]
Cache-oblivious reordering Moon etal. 2010]
Distributed-memory cluster techniques Navratil etal. 2024]

« Cache is considered and utilized efficiently

e Limitations of prior work
« Assumes no complex memory hierarchy

 Hard to scale on multiple nodes
 No support for heterogeneous devices
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Scheduling & Specification

» General task specification & scheduling

e L P-based solverKimetal. 2012] Computing
° Dryad[|Sard et al. 2007] resource g

o HEFT, CPOP[Topcuoqu et al. 2002]

Processing i
Processing tim
Processing time
Processing tin

[
[
[
[

e Great scaling on multi-node/task complexity

e Limitations
« Inefficiencies on dynamic workload
e Either cache or bandwidth is not considered
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OUR APPROACH
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Our Approach

« Formulation technique for MC ray tracing jobs
Device Connectivity Graph (DCG) and Timing Model

e Timeline scheduling and Greedy Makespan Balancing algorithm
Simple, iterative algorithm that considers utilization and latency hiding

 Adaptation to actual renderer framework
Out-of-core path tracer
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Our Approach

« Formulation technique for MC ray tracing jobs
Device Connectivity Graph (DCG) and Timing Model

e Timeline scheduling and Greedy Makespan Balancing algorithm
Simple, iterative algorithm that considers utilization and latency hiding

 Adaptation to actual renderer framework
Out-of-core path tracer
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Formulation: Device Connectivity Graph

 Graph of memory devices
« Memory
Disk storage, RAM, GMEM

e Connections (Channels)

PCle (RAM <& GMEM)
SATA (Disk & RAM)
LAN (RAM < RAM)

e Stores bandwidth information
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Formulation: Timing Model

« Assume simple yet efficient linear model on time

r

| 0 (W =0
e Job execution Texec(d, j, W) =< Tsgrup(d, j)

+ , otherwise
| +Trare(d, j)- (Wi, [wal,...)

Wl
Tpw (d,j — dj)

e Data transfer Trrans(di — dj, w) = Tpar (di — dj) +

e Fitting each parameter (Tsgrup, Trate, Trat) Tew)
» Use least squares method on test run
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Our Approach

« Formulation technique for MC ray tracing jobs
Device Connectivity Graph (DCG) and Timing Model

e Timeline scheduling and Greedy Makespan Balancing algorithm
Simple, iterative algorithm that considers utilization and latency hiding

 Adaptation to actual renderer framework
Out-of-core path tracer
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Timeline Scheduling

» A representation of schedule with timing constraints

« For & processors

are allocated do Jo: [to,t1] : ' '
« For &> memory channels ™ > ¢ g = o '
are allocated  : L : :
fmp —> my | L 'J3: [ts, t,l!
« Dependencies 4 S : !
. ji: [to,t2] ! 1 ' : [tg,t5]
between jobs and fetches Yo e S o L_Jf___ _“__-’:__)
to i T2 L3 L4 Timeline

Def.schedule: a set of timelines that jobs and fetches are allocated
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Greedy Makespan Balancing Algorithm

dy -~ |m
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Greedy Makespan Balancing Algorithm
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Job Queue
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Greedy Makespan Balancing Algorithm
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Our Approach

« Formulation technique for MC ray tracing jobs
Device Connectivity Graph (DCG) and Timing Model

e Timeline scheduling and Greedy Makespan Balancing algorithm
Simple, iterative algorithm that considers utilization and latency hiding

« Adaptation to actual renderer framework
Out-of-core path tracer
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Out-of-core Path Tracer Jobs

Cameralnfo

ImageRequest

A 4

AdditiveCompose

Image

Framebuffer

RayQueue
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Job Prediction

o Allow more future jobs
to be scheduled
Improved quality of the schedule

« Rays are predicted to be...
e ... propagated to next cell

e ... bounced into secondary ray
e ... terminated with shadow ray

« Expect how much future jobs
get spawned
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RESULTS
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Benchmark scene

12.3GB, 245M tri, 34.8 sec/imq)

e ]
Boeing777 (26.5GB, 496M tri, 5.2sec/img)  SponzaMuseum (

(800 x 800 x 32spp X 60frames)

» Model preparation
 Even-sized median-split kdtree, 27 / 2° subdivision, respectively

KAIST School of

— COmputing 24




1GbE LAN

Horizontal Scalability — Boeing777
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1GbE LAN

Horizontal Scalabilitv — SponzaMuseum

Throughput (Mrays/sec)
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Efficiency on Data Fetching

e Central scene DB scenario

GPU, GPU, GPU, GPU,

RAM, RAM, RAM, RAM,

E.I

e Initially no data at slave nodes at all

e The master node gives scene data blocks on-demand
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Efficiency on Data Fetching
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Our method converges to peak performance much faster than previous methods
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Conclusion

» Presented specification techniques for out-of-core MC ray
tracing on arbitrary hardware setup
» DCG and timing model

« Presented a timeline based scheduling algorithm
« GMB algorithm

» Applied to the out-of-core path tracer
» Prediction technique for future rays
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http://sglab.kaist.ac.kr/GMB/

Ray Batching Vioda

Data

« Pseudocode
1. Sort rays to each model subdivision

i

2. Select the subdiv. to be processed
« Example: subdiv. queued with the highest #rays \

3. Load a subdiv. if not loaded
4. Process related workloads to that subdiv.

« Ray segments are decomposed into workloads
« Computational decomposition [Cleary et al. 1986]
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Formulation Techniques

« To formally specify...

e (1) How much time to process a job
* (2) How much time to fetch the required data
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Formulation Techniques

« To formally specify...

* (1) How much time to process a job
« (2) How much time to fetch the required data

SCPU,
OGPU, ;

» Load balancing* evens out (1) across devices
(* How well the jobs are evenly distributed to compute devices?)
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Formulation Techniques

« To formally specify...

e (1) How much time to process a job
* (2) How much time to fetch the required data

SCPU -
Disk —» RAM B

e Latency hiding* is about interleaving (2) while doing (2)
(* Is the overhead of data fetch invisible?)
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Job Allocation Strategy
« We want to maximize utilization of compute device

« Our strategy: reduce idle time, in following order
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Job Allocation Strategy
« We want to maximize utilization of compute device

« Our strategy: reduce idle time, in following order
« True idle time: A device is not scheduled nor waiting for a data

CPU, |
CPU, ? g
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Job Allocation Strategy
« We want to maximize utilization of compute device

« Our strategy: reduce idle time, in following order
e True idle time: A device is not scheduled nor waiting for a data

» Fetching time: A device is waiting for a data

OCPU,| 2
Disk - RAM (IS --
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Job Allocation Strategy
« We want to maximize utilization of compute device

« Our strategy: reduce idle time, in following order
« True idle time: A device is not scheduled nor waiting for a data

« Fetching time: A device is waiting for a data
« Setup time: A device is warming up for processing a job

OCPU,
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Adapting to Dynamic Workload

« Prediction: Schedule future jobs with current jobs

Ray data for w (|w]) Ray data for w' (a|w|)

Model datablock for w

e o is @ hit probability within a block
Just used an empirically correct value (~0.6 on Boeing777, ~0.8 in SponzaMuseum)

« B is an average Russian Roulette pass probability (= ).reyy RR(W))
Determined by averaged acceptance rate
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Formulation: Timing Model
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Centralized Scene DB Structure

« Decentralized: each node has a copy of the full scene at each
HDD from the beginning

GPU, GPU, GPU, GPU,

RAM, RAM, RAM, RAM,

g' 8’ o' @
» Does not make a diverse data transfer path
e This is somewhat intended due to simplicity
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Centralized Scene DB Structure

e Central Scene DB structure

GPU, GPU, GPU, GPU,

RAM, RAM, RAM, RAM,

E.I

« Master node gives scene datablock on-demand

« Expected Result: Larger area of applications
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