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Our Scenario

• Complex scenes
• Out-of-core model: Too big data!

• Cannot be stored in main / GPU memory

• Complex device configurations
• Distributed memory cluster system

• Client-assisted remote rendering

• Renderfarm of heterogeneous devices

Boeing 777, 366 M tri. (20 GB)
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Challenges

• Massively complex scene
• Over 96% of runtime is spent on I/O in naïve BDPT (Boeing777)

• Excessive page swap required

• I/O cost dominates the rendering time

• Global Illumination with incoherent rays
• Efficient ray scheduling is required

Data transfer
(Disk I/O, GPU copy)
Ray processing

t

Cache hit

Cache miss
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Challenges

Complex and heterogenenous device configurations…
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Challenges

Further down to the processor and memory hierarchy level…

• Different processors

• Different memory channels

• Different nodes and network
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Goal & Contributions

Design a scheduler for global illumination

• Processes massive models

• Supports variety of computing environments
• Complex and heterogeneous device configurations

Our contributions

• A modeling technique: device configurations and jobs

• A scheduling algorithm: Greedy Makespan Balancing (GMB)

• An adaptation to path tracer
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RELATED WORK
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• Ray segments are decomposed into workloads
Cost-benefit function [Pharr et al. 1997]

Hybrid priority-based optimization [Budge et al. 2009]

Cache-oblivious reordering [Moon et al. 2010]

Distributed-memory cluster techniques [Navratil et al. 2014]

• Cache is considered and utilized efficiently

• Limitations of prior work
• Assumes no complex memory hierarchy
• Hard to scale on multiple nodes
• No support for heterogeneous devices
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• General task specification & scheduling
• LP-based solver[Kim et al. 2012]

• Dryad[Isard et al. 2007]

• HEFT, CPOP[Topcuoglu et al. 2002]

• Great scaling on multi-node/task complexity

• Limitations
• Inefficiencies on dynamic workload

• Either cache or bandwidth is not considered

Scheduling & Specification

Processing time

Processing time

Processing time

Processing time

CPU 1
CPU 2
GPU 1
GPU 2

Time

Computing 
resource

Makespan (L)
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OUR APPROACH



Our Approach

• Formulation technique for MC ray tracing jobs
Device Connectivity Graph (DCG) and Timing Model

• Timeline scheduling and Greedy Makespan Balancing algorithm
Simple, iterative algorithm that considers utilization and latency hiding

• Adaptation to actual renderer framework
Out-of-core path tracer
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Formulation: Device Connectivity Graph

• Graph of memory devices
• Memory

Disk storage, RAM, GMEM

• Connections (Channels)
PCIe (RAM ↔GMEM)
SATA (Disk ↔ RAM)
LAN (RAM  ↔ RAM)

…

• Stores bandwidth information
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Formulation: Timing Model

• Assume simple yet efficient linear model on time

• Job execution

• Data transfer

• Fitting each parameter (𝑇𝑆𝐸𝑇𝑈𝑃 , 𝑇𝑅𝐴𝑇𝐸 , 𝑇𝐿𝐴𝑇 , 𝑇𝐵𝑊)
• Use least squares method on test run
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Timeline Scheduling

• A representation of schedule with timing constraints

• For ◇ processors
Executable jobs are allocated

• For ↔memory channels
Data transfers are allocated

• Dependencies
between jobs and fetches

𝐷𝑒𝑓. schedule: a set of timelines that jobs and fetches are allocated
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Greedy Makespan Balancing Algorithm

1. Choose least  occupied compute device 𝑑
17



Greedy Makespan Balancing Algorithm

2. Find job 𝑗𝑖 that can be run at 𝑑 as soon as possible
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3. Add 𝑗𝑖 and data fetch to the schedule

Greedy Makespan Balancing Algorithm

4. Repeat until devices are occupied enough
19



Our Approach

• Formulation technique for MC ray tracing jobs
Device Connectivity Graph (DCG) and Timing Model

• Timeline scheduling and Greedy Makespan Balancing algorithm
Simple, iterative algorithm that considers utilization and latency hiding

• Adaptation to actual renderer framework
Out-of-core path tracer
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Out-of-core Path Tracer Jobs
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Job Prediction

• Allow more future jobs
to be scheduled
Improved quality of the schedule

• Rays are predicted to be…
• … propagated to next cell

• … bounced into secondary ray

• … terminated with shadow ray

• Expect how much future jobs
get spawned
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RESULTS



Benchmark scene

• Model preparation
• Even-sized median-split kdtree, 27 / 26 subdivision, respectively

24

Boeing777 (26.5GB, 496M tri, 5.2sec/img)       SponzaMuseum (12.3GB, 245M tri, 34.8 sec/img)

(800 × 800 × 32𝑠𝑝𝑝 × 60𝑓𝑟𝑎𝑚𝑒𝑠)
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Horizontal Scalability – Boeing777



Horizontal Scalability – SponzaMuseum
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Efficiency on Data Fetching

• Central scene DB scenario

• Initially no data at slave nodes at all

• The master node gives scene data blocks on-demand

HDD0

RAM0

GPU0

HDD1

RAM1

GPU1

HDD2

RAM2

GPU2

HDD3

RAM3

GPU3
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Efficiency on Data Fetching

(Boeing777)
Our method converges to peak performance much faster than previous methods
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Conclusion

• Presented specification techniques for out-of-core MC ray 
tracing on arbitrary hardware setup
• DCG and timing model

• Presented a timeline based scheduling algorithm
• GMB algorithm

• Applied to the out-of-core path tracer
• Prediction technique for future rays
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THANK YOU!
Q & A

http://sglab.kaist.ac.kr/GMB/

http://sglab.kaist.ac.kr/GMB/


Ray Batching

• Pseudocode
1. Sort rays to each model subdivision

2. Select the subdiv. to be processed
• Example: subdiv. queued with the highest #rays

3. Load a subdiv. if not loaded

4. Process related workloads to that subdiv.

• Ray segments are decomposed into workloads
• Computational decomposition [Cleary et al. 1986]

Model 
Data
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Formulation Techniques

• To formally specify…
• (1) How much time to process a job

• (2) How much time to fetch the required data
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Formulation Techniques

• To formally specify…
• (1) How much time to process a job

• (2) How much time to fetch the required data

• Load balancing* evens out (1) across devices
(* How well the jobs are evenly distributed to compute devices?)

◇𝐶𝑃𝑈0
◇𝐺𝑃𝑈0
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Formulation Techniques

• To formally specify…
• (1) How much time to process a job

• (2) How much time to fetch the required data

• Latency hiding* is about interleaving (2) while doing (1)
(* Is the overhead of data fetch invisible?)

◇𝐶𝑃𝑈0
𝐷𝑖𝑠𝑘 → 𝑅𝐴𝑀
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Job Allocation Strategy

• We want to maximize utilization of compute device

• Our strategy: reduce idle time, in following order
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Job Allocation Strategy

• We want to maximize utilization of compute device

• Our strategy: reduce idle time, in following order
• True idle time: A device is not scheduled nor waiting for a data

◇𝐶𝑃𝑈0
?◇𝐶𝑃𝑈1
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?

Job Allocation Strategy

• We want to maximize utilization of compute device

• Our strategy: reduce idle time, in following order
• True idle time: A device is not scheduled nor waiting for a data

• Fetching time: A device is waiting for a data

◇𝐶𝑃𝑈0
𝐷𝑖𝑠𝑘 → 𝑅𝐴𝑀
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Job Allocation Strategy

• We want to maximize utilization of compute device

• Our strategy: reduce idle time, in following order
• True idle time: A device is not scheduled nor waiting for a data

• Fetching time: A device is waiting for a data

• Setup time: A device is warming up for processing a job

Initialization◇𝐶𝑃𝑈0 Ray processing…
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Adapting to Dynamic Workload

• Prediction: Schedule future jobs with current jobs

• 𝛼 is a hit probability within a block
Just used an empirically correct value (~0.6 on Boeing777, ~0.8 in SponzaMuseum)

• 𝛽 is an average Russian Roulette pass probability (= σ𝑟∈𝑤𝑅𝑅(𝑤))
Determined by averaged acceptance rate

RayTrace 𝑤 RayTrace 𝑤′

Model datablock for 𝑤

Ray data for 𝑤 (|𝑤|) Ray data for 𝑤′ (𝛼𝛽|𝑤|)

𝛽
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Formulation: Timing Model
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Centralized Scene DB Structure

• Decentralized: each node has a copy of the full scene at each 
HDD from the beginning

• Does not make a diverse data transfer path
• This is somewhat intended due to simplicity

HDD0

RAM0

GPU0

HDD1

RAM1

GPU1

HDD2

RAM2

GPU2

HDD3

RAM3

GPU3
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Centralized Scene DB Structure

• Central Scene DB structure

• Master node gives scene datablock on-demand

• Expected Result: Larger area of applications

HDD0

RAM0

GPU0

HDD1

RAM1

GPU1

HDD2

RAM2

GPU2

HDD3

RAM3

GPU3
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