
Ray Distribution
to Parallel Batching-based Updates

Youngsun Kwon and Sung-eui Yoon

KAIST, South Korea

ICRA 2017 Workshop on
Robotics and Vehicular Technologies for Self-Driving Cars

• It is essential to update map representation in real-time

• Robot as well as vehicle should react to dynamic environment

Point clouds Map representation
(grids or octrees)

Fast
Update

Motivation

Applications:
e.g. Motion Planning

Wurm et al., “OctoMap: A probabilistic, flexible, and compact 3D map representation for robotic systems”, ICRA 2010

• Batch based updates

• Ray Tracing is to find a set of cells that a ray traverses on map

• Batching is to count how many rays traverse a cell

• Updating is to update occupancy probabilities of batched cells as well as their
parent nodes of maps

Prior Work

Hornung et al., “OctoMap: an efficient probabilistic 3D mapping framework based on octrees”, Auton. Robot 2013

Ray Tracing Batching

Free cells

Cell A B C D

Count 2 1 3 1

Occupied cells

Cell A B

Count 1 2

For all rays

Updating

…

: Update to be occupied state

: Update to be free state

• Batch based updates in parallel manner

• Ray tracing can be processed in multi-threads, but batching requires
lock on batching list to prevent a concurrent counting from different threads

• “Locking” is a bottleneck of multi-threading

Prior Work

C A E

Ray Tracing in parallel

[Cell 𝑪 is overlapped]

Thread 1:
Batching

[Lock on batching lists]
Updating

Traversed cells

C D F
Thread 2:

Traversed cells

Hornung et al., “OctoMap: an efficient probabilistic 3D mapping framework based on octrees”, Auton. Robot 2013

For all rays

• A novel ray distribution method to parallel batching

• Our method distributes the rays into threads for exploiting the high performance
of multi-threading [Lock-free]

• Each thread has own Ray Tracing and Batching for rays distributed to it
= we approve of batching some overlapped cells among threads

Our approach

Ray

Distribution

Thread 1:
Ray Tracing Batching

Thread 2:
Ray Tracing Batching

Updating

Ray Tracing and Batching in parallel

• K-D tree based distribution by considering workloads

• Minimize the number of overlapped cells among threads
= Cluster the points neighboring in spherical coordinate using K-D tree

• Distribute rays as each threads has the same workload
= Apply our definition of workload to criterion for partitioning on k-d tree

Our approach

Cluster points in spherical coordinate

using K-D tree partitioning with workload balancing

Map a ray in sensor coordinate

onto spherical coordinate with unit radius

Main Result – Indoor Scene

• Improve overall performance 1.8 times

• Thanks to 5.2 times performance improvement on Batching process

Overall performance on OctoMap

with 0.6m resolution

The number of threads

Avg. update

speed [FPS]

Time

[ms]

Time breakdown on OctoMap

with 0.6m resolution and 8-threads

Main Result – Outdoor Scene

• Enable 1.9 times on performance improvement with 32-threads

