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Motivation

* |t is essential to update map representation in real-time

* Robot as well as vehicle should react to dynamic environment

Point clouds Map representation
( grids or octrees )

Applications:
e.g. Motion Planning

Wurm et al., “OctoMap: A probabilistic, flexible, and compact 3D map representation for robotic systems”, ICRA 2010



Prior Work

e Batch based updates

* Ray Tracing is to find a set of cells that a ray traverses on map
e Batching is to count how many rays traverse a cell

* Updating is to update occupancy probabilities of batched cells as well as their
parent nodes of maps
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Hornung et al., “OctoMap: an efficient probabilistic 3D mapping framework based on octrees”, Auton. Robot 2013



Prior Work

e Batch based updates in parallel manner

e Ray tracing can be processed in multi-threads, but batching requires
lock on batching list to prevent a concurrent counting from different threads

* “Locking” is a bottleneck of multi-threading

Ray Tracing in parallel
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Hornung et al., “OctoMap: an efficient probabilistic 3D mapping framework based on octrees”, Auton. Robot 2013



Our approach

* A novel ray distribution method to parallel batching

* Our method distributes the rays into threads for exploiting the high performance
of multi-threading [ Lock-free ]

* Each thread has own Ray Tracing and Batching for rays distributed to it
= we approve of batching some overlapped cells among threads
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Our approach

* K-D tree based distribution by considering workloads
* Minimize the number of overlapped cells among threads
= Cluster the points neighboring in spherical coordinate using K-D tree

* Distribute rays as each threads has the same workload
= Apply our definition of workload to criterion for partitioning on k-d tree
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Main Result — Indoor Scene

* Improve overall performance 1.8 times

* Thanks to 5.2 times performance improvement on Batching process
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Outdoor Dataset

OctoMap with 0.6m resolution
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