Ray Distribution
to Parallel Batching-based Updates

Youngsun Kwon and Sung-eui Yoon
KAIST, South Korea

ICRA 2017 Workshop on
Robotics and Vehicular Technologies for Self-Driving Cars

KAIST

May 29 - June 3, 2017 « Singapore




Motivation

* |t is essential to update map representation in real-time

* Robot as well as vehicle should react to dynamic environment

Point clouds Map representation
( grids or octrees )

Applications:
e.g. Motion Planning

Wurm et al., “OctoMap: A probabilistic, flexible, and compact 3D map representation for robotic systems”, ICRA 2010



Prior Work

e Batch based updates

* Ray Tracing is to find a set of cells that a ray traverses on map
e Batching is to count how many rays traverse a cell

* Updating is to update occupancy probabilities of batched cells as well as their
parent nodes of maps

— Ray Tracing > Batching > Updating
A / B _
/ Free cells Occupied cells A B
cell |[A|B|c|D| cel |[A]B 4/\ 7/\
/ Count | 2 | 1|3 |1]|Count| 1) 2 Allsllclip Al cllp
C D
| : Update to be free state

For all rays || : Update to be occupied state

Hornung et al., “OctoMap: an efficient probabilistic 3D mapping framework based on octrees”, Auton. Robot 2013



Prior Work

e Batch based updates in parallel manner

e Ray tracing can be processed in multi-threads, but batching requires
lock on batching list to prevent a concurrent counting from different threads

* “Locking” is a bottleneck of multi-threading

Ray Tracing in parallel
[ Cell C is overlapped ]

Thread 1 Traversed cells
> read 1L:
ClA|E N Batching ———— Updatin
Traversed cells [ Lock on batching lists] P ’
" Thread 2: - TT¢

For all rays

Hornung et al., “OctoMap: an efficient probabilistic 3D mapping framework based on octrees”, Auton. Robot 2013



Our approach

* A novel ray distribution method to parallel batching

* Our method distributes the rays into threads for exploiting the high performance
of multi-threading [ Lock-free ]

* Each thread has own Ray Tracing and Batching for rays distributed to it
= we approve of batching some overlapped cells among threads

Ray Ray Tracing and Batching in parallel
Distribution

~ r— RayTracing — Batching —

A 4

b)

by d) — Updating

%
A B

I

— Ray Tracing — Batching —

Thread 2:

A\ 4




Our approach

* K-D tree based distribution by considering workloads
* Minimize the number of overlapped cells among threads
= Cluster the points neighboring in spherical coordinate using K-D tree

* Distribute rays as each threads has the same workload
= Apply our definition of workload to criterion for partitioning on k-d tree

. _ AP . a) AQ ) b)
Sensor Coordinate m 2D * . L e "
YA /a),
L Polar Coordmate . «* . R
A /b) with Unit Radius : A= 0
) e N X a0 ey 9
= ! e . .
I | 1 | . . .
lé//\" )£ 0 /2 P L B
@) N ' . e threac.ll . d
I ' Q thread4 6

Map a ray in sensor coordinate

onto spherical coordinate with unit radius Cluster points in spherical coordinate

using K-D tree partitioning with workload balancing



Main Result — Indoor Scene

* Improve overall performance 1.8 times

* Thanks to 5.2 times performance improvement on Batching process

Overall performance on OctoMap Time breakdown on OctoMap
with 0.6m resolution with 0.6m resolution and 8-threads
20 33 O Batching
ORay-Tracing
75 30 @ Clustering
O Updating
60 25
Avg. update ¢ Time 20
speed [FPS] . - [ms]
30 15
| 10
15 --Ours
0 -#-Prior Work 5
2 4 8 16 32 0

The number of threads Prior Work Ours



Outdoor Dataset

OctoMap with 0.6m resolution

Prior Work (Batch, 32-threads) Ours (32-threads)




