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Abstract— Person following is an essential task for a robot
to serve a person. In an indoor environment, however, the
following task can be failed due to the occlusion of the target
by structures, e.g., walls or pillars. To address this problem, we
propose a method that helps the robot follow the target well and
rapidly re-detect the target after missing. The proposed method
is an optimization-based path planning which uses a Following
Field that we propose in this paper. The following field consists
of two sub-fields: the repulsion field getting the robot out of the
occluded area, and the target attraction field pushing the robot
toward the target. We introduce how to construct the fields and
how to integrate the field into a path optimization process. We
show that our method works properly for following the target
well in a maze consisting of various in-door features.

I. INTRODUCTION

The number of collaboration with robots grows in these
days [1]. Robots serve people in airports, shopping centers,
or even restaurants. While a person collaborates with a robot,
he/she expects the robot to perform automatically. Thus,
understanding a user’s intention well becomes one of the
foremost research topics in the robotics field.

In this context, path planning for a robot that follows a
user or a target person well is one of the essential tasks for
daily cooperation with robots. For example, when a robot
supports a person who does his/her job going around in an
office or a factory, it is impractical that the user controls
every movement of the robot to follow the user. Therefore,
we want the robot to follow us automatically.
Main contributions. To achieve the automatic following
task, we propose a method that makes the robot follow
the target well. We have three contributions to this work.
First, we simultaneously consider both how long the robot
maintains the following state without missing the target and
how fast the robot re-detects the target after missing the
target. Second, we merge the person following task into
a path planning framework. Finally, we propose a novel
concept, Following Field, that helps the robot follow the
target well. To achieve these, we introduce how to efficiently
construct a visibility map and build the following field
(Sec. IV).

To evaluate the benefit of our method, we implement
the path planner mentioned above and perform the ablation
experiment. As a result, the proposed method performs better
than the others (Sec. VI).
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II. RELATED WORK

Person following can be categorized by various at-
tributes [2]. One of the significant attributes is a medium
of operation. There are three operation mediums, including
ground scenarios [3], [4], underwater scenarios [5], and aerial
scenarios [6], [7]. Among these mediums, this paper focused
on the ground scenario, especially with a mobile robot in an
indoor scene. We thus mainly review the person following
methods with an indoor mobile robot.

One of the main challenges of person following at indoor
scenes is missing a target person due to various indoor
structures, e.g., doors and pillars. For instance, when a person
exits a room or turns around a corner, it is prone for a robot
to miss a target. To tackle this problem, there have been two
types of prior approaches that we will discuss in later.

A. Reduce Recovery Time

The first approach of handling missing a target is to predict
a future target position, for reducing recovery time. Once
missing, a robot does not know where the target person
is, thus it is desirable for the robot to predict where the
target person would be and to re-follow the target candidate
location.

These approaches are known as recovery planners [2].
Lee et al. [3] tackled this problem by applying Variational
Bayesian Linear Regression for trajectory prediction of a
missed target. By doing so, they can get a reasonable
recovery time. Moreover, they were the only team that passed
a person following scenario at RoboCup@Home 2017 [8].
Hoang et al. [9] used the Kalman filter to predict a target
person’s position. In their work, a robot quickly navigates to
the last position where the target is missed, and then uses
the Kalman filter if the target is not inside the field of view
of the robot. Similarly, Chen et al. [10] replicated a target’s
trajectory. This approach keeps a recent history of the target
positions, and if the target cannot be seen, the robot replicates
the trajectory of the missed target. By doing so, the robot has
a chance to re-detect the target.

A recovery planner or predicting position of missed target
may be helpful to recover the target rapidly. These ap-
proaches, however, do nothing for avoiding to miss before
missing actually occurs. Instead, these prior methods take
actions once the missing occurs. We address this problem in
this paper.

B. Maintain Following Time

Maintaining the following is also indispensable. In other
words, it is important to delay missing a target as far as



possible. To this end, many following strategies have been
proposed. Honig et al. [11] reported the following strategies
could be categorized as three types. The first type is direction
following, the most common strategy when a robot follows
a target [3], [12]–[14]. Under this strategy, the robot moves
toward the target position, simply adjusting velocity. Path
following strategy is the second type [15], making the robot
follow the exact path where the target has walked on. The
last strategy is relative following, which determines a proper
location where the robot should be located at for following
the target according to the current target’s position. This
strategy has various branches since there could be many
alternatives on how to determine the appropriate location.
Some consider geometric and dynamic properties, e.g., a
distance to the target or speed of the target [16], [17]. Others
consider social factors [18] etc.

Our work is similar to the third strategy, relative following,
because we concerned about how to follow a target well.
The main difference, however, is that we combine relative
following strategy into path planning. In other words, we
consider not only where the robot should be to follow
the target well, but also how to get there, i.e., planning
a path. Furthermore, we have found that considering both
low recovery time and long following time was not studied
yet. By bridging this gap in the field, we propose a novel
path planning strategy, which extends the following time and
shortens the recovery time, by using the Following Field.

III. BACKGROUND

In this section, we will briefly introduce the background
of our work. First of all, we clarify the general structure of
the person following framework and show our main focus
in the general structure. Secondly, we explain optimization-
based path planning and why we use it as a path planner for
our approach. Lastly, the ray casting method as a visibility
algorithm is illustrated, which is used at our main method
(Sec. IV).

A. Person Following

The main purpose of person following is to make a robot
follow a target person keeping a proper distance. To complete
the mission, the person following is usually done by two
steps, perception and action [3].

In the perception step, the robot identifies and tracks
the target. To do so, most of the previous studies applied
vision techniques. Though few works [12] apply non-neural
network based techniques, most of the recent works [3], [10]
use neural networks, especially deep neural network based
approaches, e.g., YOLO family [19].

After perception, the robot needs to control itself to follow
the tracked target. In this control step, there are two concerns:
where to go and how to get there. As we described at Sec. II-
B, many studies tackled these problems by proposing several
strategies. ‘Where to go’ pays more attention to suggest a
goal position. On the other hand, ‘how to get there’ has
more interest in controlling or path planning.

In our work, we focus on the action step, in particular,
combining ‘where to go’ and ‘how to get there’. Specifically,
we plan a path considering proper positions of the robot to
maximize an opportunity to accomplish the person following.

B. Visibility Check

To make a robot do not miss a target person while
following, we use visibility information. In this paper, we
use the term ‘visibility’ as a point of view of the robot. For
example, if the robot can see the target person directly, we
say the target is visible. On the other hand, if the robot cannot
see the target, the target is invisible. We use the visibility
information to enhance the robot to keep following the target.

Among various visibility techniques [20], we specifically
choose a ray-casting algorithm for computing the visibility,
thanks to its simplicity and efficiency. Using the ray-casting
algorithm, we know the visibility of the target person by
casting an imaginary ray from the position of the robot to
the position of the target person. In Sec. IV, we will use the
visibility information to build a following field that helps the
robot follow the target well.

C. Optimization based Path Planning

The proposed path planner in this paper is a kind of
optimization-based path planners. An optimization-based
planner transforms a path planning problem into an optimiza-
tion problem to plan a path by optimizing objective functions.
It divides the path into nodes, which contain their own
configurations, and convert them as optimization variables
for processing the optimization problem.

In the optimization process, gradient-based approaches are
the most common way to solve the problem. It iteratively
optimizes the objective function according to the gradient of
the problem. Thus, to find a path using an optimization-based
method, we need to know gradients of objective functions.
For example, obstacle avoidance of optimization-based path
planning is performed by pushing the path outward of the
obstacle boundary iteratively [21]. To do so, we should know
the gradient of an obstacle objective function, which is a set
of vectors that directs toward to the obstacle boundaries. With
this mechanism, we will introduce a new objective function
and its gradient for better following (Sec. V-B).

IV. FOLLOWING FIELD

Maintaining visibility of the target is necessary to follow
the target well. In other words, if we can keep the robot
within a region where the robot can see the target, it is
highly likely to follow the target well. Inspired by this
intuition, we propose a Following Field. At a high level, the
following field represents regions where the robot can follow
the target better, and it is described by visibility information
and distance from the target.

The following field consists of two components of re-
pulsion and target attraction fields. The repulsion field is
to repulse a robot from the invisible region, and the target
attraction field is to direct the robot to the target. We first
address how to build the visibility map that is the basis for
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Fig. 1. Two sample cases of how to choose Canalysis, which are marked with
blue line. Red cell is a Ccheck that we want to check visibility. The target
is at the yellow cell, and the green cells are currently constructed visible
region. Cneigh is marked by red line. Chebyshev distances from Cneigh and
Ccheck to Ctarget are denoted on the bottom right corner of each cell. Gray
cell indicates an invisible cell.

other fields, and then explain two main components of the
following field.

A. Generating Visibility Map

We construct visibility map, which is simply a grid map
that contains visibility information, i.e., visible or invisible.
For example, if the robot can see the target directly, we
mark the position where the robot stands to be visible. By
determining this visibility information on every grid cell of
the map, we can generate a visibility map. The visibility map
is then decomposed into the visible region where the robot
can see the target directly, and the invisible region where the
robot cannot see the target.

When checking the visibility at every cell on the map, a
ray-casting method is used. We shoot a ray from every cell on
the map toward the target and obtain a visibility information
of each cell. This indicates that if a robot is placed on a
visible cell, the robot can see the target directly from that cell.
Though it is easy to understand how to construct a visibility
map, it can consume a lot of time to check the visibility
information at every cell on the map. Therefore, we introduce
a fast visibility map construction method based on a culling
technique inspired by the concept of ‘culling region’ [22].

Constructing a visibility map is achieved by extending a
visible region from a cell where the target stands, Ctarget ,
and extends the visible region by determining the visibility
information of its neighbors. Let Ccheck be a cell that we want
to check the visibility and Cneigh be the neighbor cells of
Ccheck. Then, Cneigh is always visible by Ccheck, because they
are adjacent. Thus, if all cells among Cneigh and laid between
Ccheck and Ctarget are visible, then Ccheck is also visible. With
this intuition, instead of checking the visibility by ray casting,
we can determine the visibility of a cell by analysing its
neighbors. Then, we can determine the visibility of Ccheck
by analysing some cells among Cneigh, whose chebyshev
distance to Ctarget is less than the distance between Ccheck and

Algorithm 1 Calculating distance field from invisible region
Require: Boundary cells of invisible region, Cboundary,

resolution of the field, ρ

Q.push(∀c ∈Cboundary) . Q is queue.
Sclose← /0 . Sclose is set.
Stmp← /0 . Stmp is set.
φ(∀c ∈Cboundary) = 0

. φ(·) is distance function from the boundary
while Q is not empty do

Sclose.insert(∀q ∈ Q)
while Q is not empty do

q← Q.pop()
Ψ← FindNeighbors(q)
for ψ in Ψ do

if ψ 6∈ Sclose∧ψ 6∈ Obstacles then
Stmp.insert(ψ)

for ψ in Stmp do
if ψ ∈ InvisibleRegion then

φ(ψ) = φ(C)+ρ

else
φ(ψ) = φ(C)−ρ

Q.push(∀s ∈ Stmp)
Stmp.clear()

return φ(·)

Ctarget (See Fig. 1), and we named these cells as Canalysis.

Canalysis =

{C |CD(C,Ctarget)<CD(Ccheck,Ctarget),C ∈Cneibgh}

Where CD(·, ·) is chebyshev distance for the given cells.
After determine Canalysis, we can easily check the visibility

of Ccheck as follows.

Visibility of Ccheck =
visible, if ∀C ∈ Canalysis is visible
invisible, if ∀C ∈ Canalysis is invisible
Raycasting(), otherwise

Only except ∀C ∈Canalysis is either visible or invisible, we
cast a ray from Ccheck to Ctarget to determine visibility.

As a result, we construct the visibility map consisted of
visible region and invisible region. This map is used for
recognizing where the invisible region is to escape from
there.

B. Repulsion Field

After building the visibility map, we can figure out where
the visible region is and where it is not. To use this
information while planning a path to follow a target, we need
to know how close each cell is from the invisible region.
Intuitively, the robot should be away from those invisible
regions and get closer to the visible regions. This intuition
is captured in the repulsion field, R, in a form of a signed
distance field (SDF).
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Fig. 3. (a) is the repulsion field, (b) is the target attraction field, and (c) is
the following field. Blue region represent low cost and red region represent
high cost. The white circle is the position of the target.

Specifically, we construct the SDF based on the boundaries
of the invisible region. Though the concept is similar, the
approach of constructing the SDF of the invisible region is
different from the general approach of constructing the SDF
of obstacles. That is because, when we construct the SDF
of the invisible region, we need to consider not only the
boundaries of the invisible region, but also to handle the
obstacles. For example, in the Fig. 3-(a), distance from the
boundary of invisible region, which is between red and blue
region, is calculated detouring the obstacle, which is colored
as black. This means we need to calculate not ‘displacement’
to the boundary of invisible region, yet ‘length of the shortest
path’ to the boundary of invisible region to detour the
obstacles. Thus, to calculate it, we propose a method of
identifying the boundaries of invisible region and calculating
the distance.

We identify the boundaries of invisible region by finding
a boundary of visible region. Note that the visibility map
can have only one visible region, which is a topologically
connected region; the visible region is star-shaped according
to the target position. On the other hand, the visibility map
can have multiple invisible regions. For finding the boundary
of the visible region, we adopt wavefront algorithm [23]. The
wavefront algorithm is an optimal navigation algorithm that
propagates ‘wavefront’ to find the shortest path from the start
to every cell on the map. By propagating the wavefront from
Ctarget , we can find the boundary of the visible region, while
avoiding to investigate every cell on the map.

After identifying the boundaries of invisible region, we
calculate the shortest path distance from the boundaries. Sim-
ilar to the wavefront algorithm, the calculation of distance is
performed in a breath-first manner. We store all the boundary
cells to the queue, find neighbors of the stored cells, and
calculate the distances. By repeating this, we can get the
distance field of the invisible region. Its detailed process is
elaborated at Algorithm 1. Since what we finally want to

build is the ‘signed’ distance field for the repulsion field,
we assign a positive distance to the invisible region and a
negative distance to the visible region.

C. Target Attraction Field

Although the repulsion field helps the path planner repulse
the invisible region, it is not enough to make a robot follow
a target well. This is mainly because the repulsion field
contains only information about how to escape the invisible
region. What we need to additionally know for following a
target person well is how to get closer to the target.

To realize such a goal, we use a target attraction field,
T, in addition to the repulsion field. The target attraction
field is another field that represents how close to the target.
We can simply construct the target attraction field, again
using the wavefront algorithm. Similar to using the wavefront
algorithm for calculating the distance from the boundaries of
the invisible region in Sec. IV-B, we use the same algorithm
to measure a distance from the target to any cell on the
map. It can be done by iteratively executing the wavefront
algorithm until all the distances of the every cell on the
map are measured. This results in a distance field around
the target, which is the target attraction field. By calculating
its gradient, we can forces the robot to get closer to the
target; this will be discussed in Sec.V-B.

D. Following Field

Using the fields we proposed above, we finally construct
a following field, F, which is used in the path optimization
process to make the robot follow the target well. The
following field is a weighted sum of the repulsion field and
the target attraction field. Note that the repulsion field is
used for guiding the robot only towards repulsive directions
from the invisible region; see the yellow box of Fig. 3-(a).
Also, the target attraction field does not consider visibility
information, which sometimes makes the robot get closer
to the invisible region, see yellow box of Fig. 3-(b). The
following field addresses these problems by summing them
up. Consequently, it helps the robot get closer to the target,
while detouring the invisible region; see Fig. 3-(c).

In the next section, we consider the following field into
the path optimization process to plan a path that follows the
target well.

V. PATH OPTIMIZATION WITH FOLLOWING FIELD

In this section, we describe how the basic optimization-
based path planning works and how we integrate the follow-
ing field into the optimization process. Notations used in this
section are described in Table I.

A. Basic Components of Optimization based Path Planning

While optimizing the path, we interpolate the nodes to
satisfy the connectivity of the path. In addition to the
connectivity, obstacle avoidance, and kinematic feasibility of
the path are also crucial. We will explain how we deal with
those components.
Obstacle Objective. We use Bidirectional Obstacle Estima-
tion(BOE) of Shin et al.’s work [24] for avoiding obstacles.



TABLE I
NOTATIONS

Notation Description
i node index on the path
N number of nodes on the path

xi, yi coordinate value of the robot at ith node
vi speed of the robot at ith node

vx,i, vy,i x-axis and y-axis value of normalized velocity at ith node
t f travel time of the path

dt time differences between adjacent nodes(=
t f

N−1
)

It detects the obstacles by casting perpendicular rays from
each node of the path. Thus, this method is not dependent
on the size of an obstacle map, but it is dependent on the
number of nodes. Thanks to the small planning area of the
person following task, about one or two meters, the number
of nodes, N, does not need to be large.

fo(x,y) =
N

∑
i=1

BOE(xi,yi)

Smooth Path Objective. For comfort maneuvering, the
smooth path is preferred in many cases [25]–[27]. In general,
optimization-based planners smooth the path by minimizing
the sum of derivatives of configurations, i.e., ∑

∞
d=1 q(d),

where q is a configuration in the path [25]. It is a burden,
however, to consider all derivatives. Instead, we minimize
differences in speed and orientation vector of the robot
between adjacent nodes to smooth the path:

fs1(v) =
N−1

∑
i=1

(vi+1− vi)
2,

fs2(vx,vy) =
N−1

∑
i=1

(vx,i+1− vx,i)
2 +(vy,i+1− vy,i)

2.

Where vi is a speed of node i. vx,i and vy,i are components
of direction vector of velocity at node i. v, vx, and vy are
vectors which contain vi, vx,i, and vy,i ∀i = 1 . . .N−1.
Kinematic Constraints. To make a robot go through the
planned path, the path should respect the kinetic constraints
of the robot. Unlike other ‘objectives’ of the optimization
problem, kinematic ‘constraints’ have to be satisfied. There-
fore, we assign equality constraints between each node and
its adjacent node in the path:

xi+1− (xi + vi vx,i dt) = 0, i = 1, . . . ,N−1
yi+1− (yi + vi vy,i dt) = 0, i = 1, . . . ,N−1

B. Following Field Objective

We now propose the following field objective. The follow-
ing field that we construct in Sec. IV represents positions
where a robot can follow the target well. The following field
is a the summation of two sub-fields: the repulsion field and
the target attraction field. The repulsion field shows how far
each cell is from the invisible region, and the target attraction
field shows how close from the target.

Visible region Invisible region

(a) (b)

Fig. 4. Penalize functions for R and T. Each function penalizes the
field where the value of the field is useless, e.g., too far from the obstacle
boundaries or too close to the target, according to εR and εT respectively.

Both fields are related to distance, which increases or
decreases linearly according to their own references. For
efficient converging, we define penalize functions PR or T (·)
for each field inspired by [25].

For the repulsion field, R, we do not need to consider
the repulsion value which is far away from the invisible
boundaries and inside of the visible region, specifically
higher distance than εR. We penalize the values for the cells
that are far from the invisible boundaries; see Fig. 4-(a) The
penalize function for the repulsion field, PR(·), is defined as
follows:

PR(R) =


0, if R<−εR

CR
(R+εR)

2

2εR
, if − εR ≤R< 0

CR(R+ εR
2 ), otherwise.

Where CR is a tangential coefficient.
Likewise, for the target attraction field, cells that are too

close to the target are ignorable. The penalize function for
the target attraction field, PT (·), is defined as follows:

PT (T) =

{
0, if T< εT

CT (T− εT )
2, otherwise.

Where CT is a tangential coefficient.
With the penalize functions, the following field, F, be-

comes not just a simple summation of R and T, but the
summation of the penalized R and T. Then, it becomes
following field objective for the optimization problem.

f f (x,y) = F= PR(R)+PT (T)

Both R and T are only affected by configurations of loca-
tions, x and y. The gradients along the x-axis and y-axis
of each penalized field can be obtained by calculating the
gradient of each penalized field.

∇ f f (x,y) =
[

∇x f f

∇y f f

]
=

[
∇xPR(R)+∇xPT (T)
∇yPR(R)+∇yPT (T)

]
.

C. Optimization Problem for Person Following

So far, we discussed various objectives and constraints.
We put them together as the overall formulation of the



Fig. 5. The maze scene is constructed on Gazebo robot simulator.

optimization process to make a robot follow the target well:

minimize
t f ,x,y,v,vx,vy

λtt f +λs1 fs1 +λs2 fs2 +λo fo +λ f f f

subject to x j+1− (x j + v jvx, jdt) = 0, j = 1, . . . ,N−1,
y j+1− (y j + v jvy, jdt) = 0, j = 1, . . . ,N−1,

v2
x, j + v2

y, j = 1, j = 1, . . . ,N,

g(x,y,v,vx,vy)≤ 0,

where λ s are weight parameters for each objective,
and we set λt=1e−4, λs1=1, λs2=1, λo=100, and λ f =1.5.
g(x,y,v,vx,vy) is additional constraints including start and
goal restriction, or bounds of the variables. Moreover, in
addition to the objectives that we explain in Sec. V-A and
Sec. V-B, we also consider t f , which is the total travel time
of the path, as an objective for identifying a shorter path.

Finally, the optimization-based path planner pushes the
path to make a robot follow a target well by optimizing the
aforementioned optimization objective.

VI. EXPERIMENTS

The experiments are executed on Intel i7-8700K CPU with
64GB RAM. To verify the effectiveness of the proposed
method, we execute the experiment on a robot simulator
system, Gazebo [28]. It is because, for a fair comparison,
the trajectory of a target person has to be the same while
the experiments are performed. In this experiment, we use
IPOPT [29], a non-linear optimization solver; we can use any
non-linear optimization solver that can solve the optimization
problem with constraints, to solve the optimization problem
we discussed in Sec. V.
Experimental setting: To plan a path using the optimization
approach, we use several parameters. Most of the parameters
are fixed for the fair comparison. Only a few parameters
are modified according to the test for the ablation study.
We set N=20, ρ=0.05(m), εR=1.5(m), CR=0.1, εT =3(m), and
CT =0.01.

We evaluate the performance of our method on a maze-like
scene, Fig. 5. We use the maze because it consists of various
aspects that are parts of indoor environments, e.g., office or
school. We construct the maze to have different sections with
various characteristics. The first section is colored as green.
This section mimics a wall that the target turns around and a

TABLE II
THE RESULTS OF THE EXPERIMENT.

Type Θ Nmiss ω Σtrecov ttot Linvis

ξ

Ours 0.29 5 0.06 13.8 234.85 9.54
Ours

w/o T
0.93 9 0.10 24.45 235.65 14.33

Ours
w/o R

2.67 12 0.22 52.4 235.5 19.61

w/o Ours 3.75 12 0.31 58.9 188.75 29.93

ηG

Ours 0 0 0 0 38.8 0
Ours

w/o T
0.03 1 0.03 1.0 39.15 0.87

Ours
w/o R

1.32 3 0.44 17.45 39.6 1.8

w/o Ours 1.76 4 0.44 18.1 41.2 8.95

ηM

Ours 0.14 2 0.07 5.75 80.8 3.91
Ours

w/o T
0.42 3 0.14 11.25 80.9 7.1

Ours
w/o R

0.64 4 0.16 12.95 80.5 7.08

w/o Ours 1.43 5 0.29 22.9 80.25 11.54

ηY

Ours 0.16 2 0.08 5.0 62.45 3.68
Ours

w/o T
0.47 4 0.12 7.35 62.15 3.89

Ours
w/o R

1.13 4 0.28 17.85 63.45 8.13

w/o Ours 1.29 3 0.43 17.9 41.5 9.44

ηC

Ours 0.11 1 0.11 3.05 27.05 1.96
Ours

w/o T
0.18 1 0.18 4.85 26.85 2.47

Ours
w/o R

0.16 1 0.16 4.15 26.65 2.59

w/o Ours · · · · · ·

ξ represents the entire path. ηG, ηM , ηY , and ηC are the path of inside
of green, magenta, yellow, and cyan sections, respectively. Linvis is
a path length of the invisible path. Units of Σtrecov, ttot , and Linvis
are seconds, seconds, and meters respectively. Strikeout means failure
case.

narrow aisle. The second section shown in the magenta has a
long hallway with two corners at the head and the tail of the
way. The third, yellow section has a S-shaped corner. It is
difficult for the robot to follow the target at the S-shaped way
because the target can hide multiple times, passing through
the way. The last section with the cyan has a standard corner
where the target turns 90 degrees. We set the maximum speed
of the robot as 1m/s.

Since the path of the target has to be reproducible for a fair
comparison, we use a reproducible but simple path planner,
the A∗ path planner. Any path planner, however, can be used
if the output path is reproducible. Moreover, during the entire
experiment, the robot plans the path only when the target is
visible. Otherwise, it follows the previously planned path.

A. Difficulty of Following Task

To evaluate whether the robot follows the target well or
not, we measure two quantities: recovery time and following
time. The recovery time is a duration of recovering the
missed target. On the other hand, the following time is how
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Fig. 6. The results of the planned path for each objective. (a) is the result of the objective using following field, Ours. (b), (c), and (d) are the results of
the objective using only the repulsion field, Ours w/o T, the objective using only the target attraction field Ours w/o R, and the objective using only the
basic components, w/o Ours. The blue lines represent visible path, and the red lines represent invisible path. The purple diamond is the starting point and
the orange diamond is the goal point of the target.

long the robot maintains to follow the target without missing
the target.

The red lines, invisible path segments, on the path, de-
picted in Fig. 6, show path segments where the robot cannot
see the target, and the blue lines, visible path segments, are
where it can see the target. In this context, the recovery
time, trecov, can be measured by calculating the duration of
going through the invisible path. The following time can be
calculated by subtracting trecov from the total travel time, ttot ,
of the path.

Since the recovery time and the following time are de-
pendent on each other, the ratio, ω , of Σ trecov to the total
time ttot represents the difficulty, Θ, of the following task.
For example, if a robot follows the target by 10 seconds,
the recovery time of 2 seconds makes the robot harder to
follow the target than the recovery time of 1 second. It is,
however, not enough for determining Θ, because even with
the same Σ trecov, frequently missing the target is undesirable
than rarely missing the target. We reflect how often the
robot misses the target, Nmiss, in measuring Θ. Therefore,
we finally measure the difficulty of the following task, Θ, as
follows.

Θ =Nmiss×ω

B. Performance Evaluation

Comparing our work with previous person following sys-
tems, e.g., [4], [8], is almost impossible since implementing
the same system is unfeasible. Instead, to prove the utility of
our work, we conduct ablation study with our method. We
test four distinct objectives to verify the performance of path
optimization using the following field. The first objective,
Ours, is what we proposed in this paper that considers
the following field to optimize. The second objective, Ours
w/o T, considers only the repulsion field, i.e., without the
target attraction field. Likewise, the third objective, Ours
w/o R, considers only the target attraction field. The other
objective, w/o Ours, considers only the basic components of
optimization-based path planning explained in Sec. V-A. The
test is conducted in the maze scene, and its result is reported
in Table II.

We report various results across all the trajectory, a type
of ξ , or only in a particular section; ηG is only for the path
of the robot inside of the green section. Likewise, ηM , ηY ,

and ηC are only for the path in the magenta, yellow, and
cyan sections, respectively.

The result shows that considering the following field,
which includes the repulsion field and the target attraction
field, performs better than the others.

First of all, it rarely misses the target in comparison to
the others. Even the robot does not miss the target in the
green section, ηG, while others miss the target several times.
Moreover, it has the smallest value of ω , which is ratio of
Σ trecov to ttot . This means the robot, that plans a path with
Ours, spends less time than the others on the invisible path
compared to the entire travel time. Therefore, planning a
path with Ours achieves the best performance, the lowest Θ,
compare to others from 3.1769 times to 9.08 times, except
for the failure cases.

Additionally, we also can analyze the performance in
other ways. For the average recovery time, sorely dividing
Σtrecov by the number of missing, Nmiss, does not reflect the
performance properly. Because, a short occlusion drastically
reduces the average of the recovery time. To address it, we
calculate the average speed of escaping the invisible path
since the faster the robot escapes the invisible path, the
opportunity of seeing the target is increased. In ξ , the robot,
which plans the path with Ours, escapes the invisible path
with 0.69 m/s on average, which is faster than the others. The
average escaping speeds with Ours w/o T, Ours w/o R and
w/o Ours are 0.59m/s, 0.37m/s and 0.51m/s, respectively.

VII. CONCLUSION

In this paper, we address the main problem of the person
following task, which is the robot misses the target person
before reaching the goal, by considering Following Field
when planning a path. The following field consists of the sub-
fields, the repulsion field, and the target attraction field. We
introduce an efficient way of constructing a visibility map for
building the repulsion field. Besides, by applying wavefront
algorithm, we explain how to construct the repulsion field
and the target attraction field. Lastly we merge the following
field concept into optimization-based path planning.

We analyze the performance of our method by ablation
experiment in the maze-like scene. The result shows that the
performance of the following task with the proposed method
is better than the others. Additionally, it also shows that the



person following with the proposed method has the fastest
average speed of escaping the invisible path.

In the future work, we can predict the future position of the
target person and use the future following field information
for better following.
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