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Abstract— We present a motion planning framework that
generates the motion of a quadrupedal robot in a short time
using a deep neural network. Our planner gets the initial robot
state, target goal pose, and terrain heightmap as input and
generates a trajectory of a quadrupedal robot. The planner
contains deep neural networks that extract features from
input. These features guide the planner to generate a precise
trajectory. We achieved the planning time within 230ms for 2
seconds long trajectory over various terrain types.

I. INTRODUCTION

The quadrupedal robot’s motion planning is a challeng-
ing problem due to the indirect control of the base body
trajectory, which is determined by the contact of the feet.
There are many constraints for foot contacts, so that tra-
ditional methods decouple the planning of the base body
trajectory and footstep. However, these approaches loosen the
relationship between base body trajectory and footstep. Since
the base body trajectory and footstep should be optimized
simultaneously, some of the prior studies try to use the
trajectory optimization (TO) method to this problem (e.g. [1],
[2]). These prior methods find a general solution for various
terrain, but they have a high computational complexity that
makes the planning time long. Recent researchers apply deep
neural networks to generate quadrupedal robot’s motions
faster [3]–[7]. Still, they suffered from the input ambiguity
problem that the network generates average motions such as
skating.

We propose a motion planning framework that generates a
motion of a quadrupedal robot using a deep neural network.
Our model generates the base body trajectory and footstep
together within 230ms. Specifically, our approach handles
the input ambiguity problem by the novel network structure,
which generates a distinguishable feature from input data.

II. METHODOLOGY

A. Problem Definition

Let’s consider a quadrupedal robot on a terrain. Our target
is finding a trajectory of four-legged locomotion to the goal
given terrain and initial robot state. The target terrain is
acquired as a heightmap and the goal indicates the target pose
of the base body. The overall robot state is represented by
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Fig. 1. Target robot (a) and trained terrain data types: flat terrain (b), step
terrain (c), and gap terrain (d).

base body position, rotation, linear velocity, angular velocity,
and foot position, foot reaction force, and contact information
per foot. The initial robot state represents the robot at the
start point, t = 0.

B. Network Structure

Our model is trained as a supervised manner using
demonstration trajectories, generated by optimization-based
planner, towr [2]. Every trajectory is 2.0 seconds long and
sampled on three types of terrains: flat, step, and gap (Fig.1).
Each terrain type has 6,000 pairs of motion and terrain;
therefore there are 18,000 dataset.

Our motion planning framework consists of three net-
works: terrain encoder, state feature network, and trajectory
generation network. The terrain encoder is pre-trained as an
autoencoder in the end-to-end manner. The encoder learns
the extraction of the terrain information from heightmap. The
extracted terrain information, initial robot state and goal pose
are fed to the state feature network. This network is designed
to generate distinguishable feature from input data to solve
the ambiguity. Also, input data are rearranged based on the
data type to get a highly related feature between them. The
CNN layers then extract the state feature Rstate that implies
the relationship among input data. The trajectory generation
network, composed of MLP layers, finds a proper trajectory
to the goal pose using the state feature.

III. EXPERIMENTS

In this section, we conduct experiments that show the
performance of the network, effects of the state feature, and
the generality of our planner. Our target robot has a single
underactuated base body with four legs, where each leg has
3 joints (Fig. 1).

A. Network Performance

We show various error values and planning time. The
error values re calculated against the reference trajectory,
generated by towr (Table I). We measure the RMSE for
all variables and MSE for rotations, and distance error of
the base body and feet position for 1,000 samples that
have never been used for training. The base body and foot



TABLE I
PERFORMANCE METRICS FOR OUR COMPUTED TRAJECTORY VERSUS

REFERENCE.
RMSE MSEφ MSEθ MSEψ distbase dist f oot
0.247 0.00154 0.00114 0.0254 0.0229 0.0308

TABLE II
PLANNING TIME OF REFERENCE PLANNER AND OURS

Flat terrain Step terrain Gap terrain
towr 859 2479 8029

Our model
(improvement)

220
(3.90×)

222
(11.2×)

213
(37.7×)

[ms]

position distance errors are about 0.916% and 1.23% error
about the terrain size, which indicates that our prediction
is close to the reference trajectory. Table II shows the
difference of the planning time between towr and our model.
towr shows varying planning time for different terrain types
while our model generates a trajectory in the almost same
time (<230ms) regardless of the terrain type. Therefore our
motion planning framework can generate a similar trajectory
to that generated by an optimization-based method with a
much faster time, e.g. 3.90 times for flat, 11.2 times for step,
37.7 times faster for gap terrain type, respectively.

B. Ablation Study

In this section, we show the effect of the state feature on
solving the input ambiguity problem.

Table III shows the error w/ and w/o using state feature
network. These results show that our model can generate
1.57∼15 times precise trajectory by using the state feature
network. Especially, the rotation error which changes in a
small range so that sensitive than other shows the highest
improvement. Table IV shows the skating metric of the
trajectory of the reference (towr), a model with state feature,
and a model without state feature. The used skating metric
is introduced from [3] that clamped at 1 if the feet are
always on the ground. Based on the results, the state feature
can reduce the skating motion which shows a more similar
skating metric to the reference trajectory. Overall, these
results show that the state feature Rstate ameliorates the
input data ambiguity problem and helps to generate a precise
trajectory.

C. Test on Unseen Terrain

We trained our model only with flat, step, and gap terrain.
To show the generality of our planner, we test it to an unseen
terrain type, which has never been used for training.

Fig. 2 shows a quadrupedal robot walking on the unseen
terrain. The most significant difference of unseen terrain
over the trained ones is continuity. Trained terrains contain
discontinuous parts, e.g. step terrain with step block, gap
terrain with an empty gap. On the other hand, unseen terrain
is generated by using multiple trigonometric functions. Fig. 2
shows that our model can handle terrains with different
characteristics to the trained ones.

TABLE III
ABLATION STUDY ON STATE FEATURE (Rstate).

RMSE MSEφ MSEθ MSEψ distbase dist f oot
w/
Rstate

0.247 0.00154 0.00114 0.0254 0.0229 0.0308

w/o
Rstate

0.389 0.0189 0.0171 0.131 0.0746 0.0746

TABLE IV
SKATING METRIC.

towr w/o Rstate w/ Rstate
0.040 0.074 0.050

(a) (b) (c)

Fig. 2. The sequence of the robot walking on the unseen terrain. The robot
moves in order of (a), (b), (c).

IV. CONCLUSION

We have proposed a motion planning framework for a
quadrupedal robot using a deep neural network. It finds
a trajectory of the base body and footstep simultaneously
and fast. Our model can generate a trajectory for flat, step,
gap, and even unseen terrain while avoiding the ambiguity
problem via our state feature network.

In the future, physical constraints can be modeled as a soft
constraint and modeled as a loss function, which helps our
model better respects physical characteristics.
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