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Abstract— We present a novel, reflection-aware method for
3D sound localization in indoor environments. Unlike prior
approaches, which are mainly based on continuous sound
signals from a stationary source, our formulation is designed to
localize the position instantaneously from signals within a single
frame. We consider direct sound and indirect sound signals
that reach the microphones after reflecting off surfaces such
as ceilings or walls. We then generate and trace direct and
reflected acoustic paths using inverse acoustic ray tracing and
utilize these paths with Monte Carlo localization to estimate a
3D sound source position. We have implemented our method
on a robot with a cube-shaped microphone array and tested
it against different settings with continuous and intermittent
sound signals with a stationary or a mobile source. Across
different settings, our approach can localize the sound with an
average distance error of 0.8 m tested in a room of 7 m by 7 m
area with 3 m height, including a mobile and non-line-of-sight
sound source. We also reveal that the modeling of indirect rays
increases the localization accuracy by 40% compared to only
using direct acoustic rays.

I. INTRODUCTION

Robots are increasingly used in our daily environments,
and the demands on robots to interact with humans and
the environment using acoustic cues are getting stronger.
The recent popularity of intelligent devices such as Amazon
Echo and Google Home is giving rise to new challenges
in acoustic scene analysis. One of the key issues in these
applications is localizing the exact position of a sound source
in the real world. Once a robot identifies the location of the
sound source, it can approach the location and perform many
useful tasks. The resulting problem, sound source localiza-
tion (SSL), has been well-formulated and well-studied for
decades [1].

Most prior work in SSL has been related to the design of
microphone arrays and the use of digital signal processing
techniques. Nonetheless, it remains a challenging problem
to exactly locate the sound source with limited information
available from the sensors equipped on a robot. In the most
general setting, the localization problem tends to be ill-
posed. Most of the research in the last two decades has
been dedicated to capturing the local characteristics of input
signals, such as incoming directions of a sound. Specifically,
Time Difference of Arrival (TDOA) based SSL techniques
have been investigated for the last two decades, and mainly
utilize the difference of arrival time between two microphone
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Fig. 1. Our robot, equipped with a cube-shaped microphone array, localizes
a sound source position in the 3D space. Our formulation takes both direct
and indirect sounds into account. Direct acoustic rays (shown in green) are
propagated using backward ray tracing based on received signals using a
TDOA-based method. Reflected (or indirect) rays (shown in red) are then
generated once they hit the boundaries of the reconstructed scene. The blue
disk, which is very close to the ground truth, represents a 95% confidence
ellipse for the estimated sound source, computed by our method. The use
of reflected rays improves the localization accuracy by 40% over only using
direct rays.

pairs [2], [3]. In most cases, they are successfully used to
detect the direction of the incoming sound signal, but not the
position of the sound source that generated those signals.

Recent studies in SSL methods have advanced into ad-
dressing the localization issues under certain configura-
tions [4], [5]. Unfortunately, their methods require accu-
mulating the incoming sensor data measured from different
locations and orientations. As a result, these techniques
typically assume that a stationary sound source generates
continuous sound signals and that there are no obstacles
between the source and the receiver.

Main contributions. We present a novel, reflection-aware
SSL approach to localize a 3D position of a sound source in
indoor environments. A key aspect of our work is to model
the propagation of sound in the environment. We consider
both direct signals between the source and the receiver and
indirect signals, which are generated by reflections from
the environment such as the wall and ceilings. Specifically,
we reconstruct the environment in a voxel-based octree
and perform acoustic ray tracing, where direct acoustic
rays are generated from signals collected using the TDOA-
based method (Sec. IV-A). Our acoustic ray tracing models
higher orders of reflection, simulating interactions with the
boundaries of the environment. We then localize the source
by generating hypothetical estimates on these acoustic paths
using Monte Carlo localization (Sec. IV-B).

Our approach for modeling the reflections is near real-



Fig. 2. This figure shows an overview of our reflection-aware sound source localization approach. Two highlighted modules are our main contributions.

time and can also handle moving sources as well as non-
line-of-sight sources. Furthermore, our approach can handle
intermittent sound signals in addition to continuous ones. We
evaluate the performance on three different benchmarks in a
classroom environment and test our method with a cube-
shaped microphone array mounted on a mobile robot. Given
the test environment of 7 m by 7 m area with 3 m height, our
method achieves a low average error, e.g., 0.8 m, even with
a moving sound source and an obstacle occluding the line-
of-sight between the listener and the source. This accuracy is
achieved by considering higher order reflections in addition
to the direct rays.

II. RELATED WORK
In this section, we discuss prior work on sound source

localization methods and sound propagation techniques.
Sound source localization. There is considerable work

on localizing the sound source using a microphone array [1].
The vast majority of existing sound source localization (SSL)
methods focus on accurately detecting only the incoming
directions of the sound. Many methods are based on TDOA
between two microphone pairs. Generalized cross-correlation
with phase transform [2] is a well-known method for per-
forming TDOA estimation. Nakamura et al. [6] overcome
the noise weakness in dynamic environments by selecting
specific sound signals to cancel or focus. Valin et al. [3] use
a beam-forming technique to perform robust sound source
localization. Other methods use multiple signal classification
techniques to isolate the number of sound sources [7], [8],
[9].

TDOA techniques are capable of classifying the incoming
directions of the prominent sound signals. Recent efforts
have been directed at overcoming this limitation and locating
the sound source exactly. Ishi et al. [10] present a method
for estimating 3D sound source locations by integrating the
sound directions measured from multiple microphone arrays,
which are installed in fixed positions of a room. Narang et
al. [11] suggest a 2D reflection-robust SSL method using
visual simultaneous localization and mapping (SLAM). They
gather the sound vectors per frame on a visual odometry
made by visual SLAM and try to find an intersection point
between them. In recent work, Sasaki et al. [4] devise a 3D
sound source discovery system from a moving microphone
array. As they move around with a hand-held unit, they

compute the planes that contain the direction of the sound
and choose the convergence region among the planes using
the particle filter.

In general, computing the exact location of the sound
source is inherently an ill-posed problem [1], and thus most
of these prior work operates under some common assump-
tions about the sound patterns or signals. Notably, the sound
sources are assumed to be persistent and stationary, which
allows the accumulation of temporal data over time using
mobile microphones. Our method, however, is designed to
be more general; it requires much less information captured
from a single frame and can handle a moving sound source
without a line-of-sight from the listener.

Sound propagation. Various methods have been proposed
to simulate the propagation of sounds. A recent survey
is given in [12] and many issues in their application to
real-world scenes are addressed in [13]. At a broad level,
sound propagation techniques are categorized as Numerical
Acoustics (NA) and Geometric Acoustics (GA) techniques.
NA methods try to simulate an exact acoustic wave equation
and compute an accurate solution. However, the complexity
of these algorithms can increase as a fourth power of the
maximum frequency of the simulation. In practice, they are
limited to low-frequency sources and offline computations.
On the other hand, the GA methods are based on ray
tracing and its variants. They assume that sound waves travel
in straight lines and bounce off the boundaries [14]. This
approximation is valid for high-frequency sounds, but these
methods are unable to accurately model low-frequency ef-
fects like diffraction. There is extensive work on developing
interactive sound simulation algorithms based on ray tracing
that can also handle dynamic environments [15], [16]. Our
inverse acoustic ray tracing method is developed based on
these algorithms.

III. OVERVIEW

In this section, we explain the context for our problem
and give an overview of our approach. Sound source location
(SSL) has been studied and most prior methods for acoustic
scene analysis are mainly used to identify the incoming
sound directions. Since the most general version of SSL
is an ill-posed problem, we narrow down our scope by
making some assumptions about the source and the indoor
environment.



TABLE I
THIS TABLE LISTS COMMONLY APPEARING NOTATIONS.

Symbol Description
ȯm The position of the microphone array.
(v̂n, fn, ikn) An incoming direction, frequency and initial energy

of the n-th sound signal, respectively.
N The number of sound signals at current time frame.
Rn, rk

n, d̂n A ray path traced from n-th sound signal, and its k-th
order reflected ray with its directional unit vector.

Ik
n(l
′) An energy of the sound ray rk

n at l = l′.
α( fn),αs( fn) Attenuation coeff. of the air, and absorption coeff. of

the reflection.
ṗhit ,Plocal A voxel that is hit by a ray, and its local, occupied

voxels.
n̂ A normal vector of a surface locally fit at ṗhit .
χt ,xi

t A set of W particles, and its i-th particle at iteration t.

In this work, we focus on localizing a sound source
for real-time applications and mainly consider direct and
reflected sound signals in 3D scenes that are captured using
a microphone array. We assume that original sound signals
from a sound source are high-frequency sound waves (e.g.,
clapping sound) so that our ray tracing based model is ac-
curate. In a similar spirit, we focus on indoor environments,
where the walls and ceilings consist of diffuse and specular
acoustic materials. In our current approach, we mainly model
the specular reflections that carry relatively high energy.

Given such an environment, we present a novel reflection-
aware SSL algorithm for accurately localizing a 3D position
of a sound source. At a high level, our method uses two main
components. Given incoming sound signals, we perform
inverse acoustic ray tracing for tracking direct and reflected
sound paths. Next, we identify a 3D location of the sound
source by computing a convergence point of those traced
paths in the 3D space (Fig. 1).

Our overall approach is shown in Fig. 2. The input sound
signals are collected via multiple (e.g., eight) microphones
in a microphone array and evaluated using a TDOA (Time
Difference Of Arrival) based method. The TDOA algorithm
evaluates the input sound directions, along with their in-
tensities and representative frequencies. Since these sound
directions are not yet classified as corresponding to direct
or reflected directions of sound paths, we use acoustic ray
tracing to evaluate their characteristics.

To obtain the necessary information required to perform
acoustic ray tracing, we also utilize a SLAM module and
an octree-based occupancy map to compute and represent
a reconstructed 3D environment and compute the current
position of the robot.

IV. REFLECTION-AWARE SSL
In this section, we first explain our acoustic ray tracing,

which generates and traces acoustic paths, while handling
reflections. We then explain how to localize a sound source
given those generated acoustic paths. Notations used in the
rest of the paper are summarized in Table I.

A. Acoustic Ray Tracing
We now explain the process of constructing the ray path

over the reconstructed scene. As shown in the overview of

our algorithm (Fig. 2), we first utilize a TDOA based SSL
approach for computing incoming sound directions. These
sound signals heard from the detected directions may come
directly from the sound source or be reflected from obstacles.
While we cannot discern their types exactly at this point,
we utilize these incoming directions by generating acoustic
rays along these directions, finding useful information about
where the sound source is located.

The main observation for our reflection-aware SSL is that,
when we generate acoustic rays in reverse directions of the
incoming sound, those rays can be propagated and reflected
by some objects in the 3D space. Furthermore, when those
rays are coming from the same sound source, they converge
in a particular location in the 3D space, which is highly likely
to be the original sound source location.

To inversely determine how sound signals are received,
we propose using acoustic ray tracing; technically, it is
inverse acoustic ray tracing, but we choose just to call it
acoustic ray tracing for simplicity. Note that the positions of
a sound source and its listener can be interchanged thanks
to the acoustic reciprocity theorem [1]. Fig. 3 shows the
overview of our acoustic ray tracing, which is discussed in
the following paragraphs.

Initialization. On each invocation of our method, we
first run a TDOA module, which discretizes the captured
sound signal into N incoming sounds. An n-th incoming
sound is represented by a tuple (v̂n, fn, i0n), where a unit
vector v̂n describes the incoming direction, fn indicates the
representative frequency that has the highest energy of the
incoming signal, and i0n represents its measured energy value
of the sound pressure collected by the microphone array. We
then generate an acoustic ray, r0

n, by the following parametric
equation with a ray length, l ≥ 0:

r0
n(l) = d̂0

n · l + ȯm, (1)

where ȯm represents the origin of the microphone array,
and d̂0

n is a directional unit vector in the inverted direction
of the incoming sound, i.e., d̂0

n = −v̂n. The superscript k
of an acoustic ray, rk

n(l), indicates the number or order of
reflection along an acoustic path from the microphone array.
For example, r0

n(l) indicates that there is no reflection and
thus denotes a direct ray from the microphone array. All the
other rays with a varying number of reflections, i.e. k ≥ 1,
are called indirect acoustic rays with k-th order reflections.

Propagation in the empty space. Once an acoustic ray is
generated, it is propagated through space and can be reflected
once it hits an obstacle. During this acoustic ray tracing
process, we have to amplify the energy of the acoustic ray
to simulate the propagation and reflection operations.

In particular, an energy function, Ik
n(l
′), of a ray rk

n at a
particular ray length, l′, i.e. l = l′ (l′ ≥ 0), is defined as
follows:

Ik
n(l
′) = ikn · exp(α( fn)l′), (2)

where ikn is the initial acoustic energy of the ray at l′ = 0,
and α( fn) is the attenuation coefficient, which depends on
the frequency of the sound fn, and other environment-related



(a) Initializing an acoustic ray (b) Detecting a hit (c) Computing a normal (d) Generating a reflection ray

Fig. 3. This figure illustrates our acoustic ray tracing. (a) An acoustic ray r0
n(l) is initialized inversely to an incoming sound direction. (b) Another acoustic

ray rk
n(l), which is reflected k times from its initial ray r0

n(l), is propagated and intersected with an obstacle encoded in the occupancy map. (c) On the
fly, we compute a normal from a 2D plane, which locally fits the surface within its local neighbor cells, Plocal , by using singular value decomposition. (d)
From the hit point, we generate its reflected acoustic ray rk+1

n (l) in the direction of d̂k+1
n , assuming specular material at the hit point.

factors such as temperature and humidity of the air. Our
formulation is based on an inverse operation of the normal
decay of the sound signal [17].

Specular reflection. When a ray rk
n hits the surface of an

object in the scene, we need to simulate how the ray behaves
at the hit point. Ideally, reflection, absorption, or diffraction
occurs, depending on the material type of the hitting surface.
Since simulating all these types of interactions requires a
prohibitive computation time, we only support on absorption
and reflection in this work assuming high-frequency sound
signals, e.g., higher than 2 kHz. In terms of reflection, there
commonly exist specular and diffuse acoustic materials. We
also assume the specular material type and generate our
reflected acoustic rays based on that material.

Our choice to not support diffuse reflections is based
on two factors: 1) supporting diffuse reflections requires
an expensive inverse simulation approach such as Monte
Carlo simulation, which is unsuitable for real-time robotic
applications, and 2) while there are many diffuse materials
in rooms, each individual sound signal reflected from the
diffuse material does not carry a high portion of the sound
energy generated from the sound source. Therefore, when
we choose high-energy directional data from the TDOA
based method, the most sound signals reflected by the diffuse
material are ignored automatically, and those with high
energy are mostly from specular materials.

Note that our work does not require all the materials to
be specular. When some of the materials exhibit high energy
reflectance near the specular direction, e.g., tex materials in
the ceiling and finished wooden floors, our method generates
acoustic rays toward those directions, and our detection
method will identify the location of the sound source that
generates those rays. As a result, we focus on handling
specular materials well and treat each hit material as specular,
and generate a reflected ray from the hit point.

The operation for specular reflection is defined as follows.
Whenever a previous acoustic ray, rk

n, hits the surface of the
obstacle at the particular ray length, lhit , we create a new,
reflected acoustic ray, rk+1

n , with the following direction and

energy equations:

rk+1
n (l) = d̂k+1

n · l + rk
n(lhit),

ik+1
n = Ik

n(lhit)/(1−αs),
(3)

where d̂k+1
n is the direction of the specular direction of

the ray rk+1
n , and is analytically computed by d̂k+1

n = d̂k
n −

2(d̂k
n · n̂)n̂, where n̂ is the normal vector at the surface hit

point rk+1
n (0). Also, ik+1

n is its initial energy. The absorption
coefficient, αs, describes the energy lost on the surface during
the reflection [18].

The reflection ray that we create can be reflected further
by getting another hit on other obstacles. This recursive
reflection process is terminated when the energy of a ray,
ikn, exceeds a user-defined threshold for maximum energy,
denoted as ithr, which is set by a reasonable energy bound,
i.e., 900 J that we can hear in most indoor scenes. While
generating the acoustic rays of a path, we maintain them in a
ray sequence, Rn = [r0

n,r
1
n, ...] generated for the n-th incoming

sound. We use this ray sequence to estimate the location of
the sound source.

Smoothing octree map. As in other practical robotics
applications, we use the octree map representation for the
reconstructed 3D space, and perform our acoustic ray tracing
with it. Unfortunately, the underlying map structure may
contain a high level of noise even though we use high-
quality sensors. Such noises can make rough surfaces and
thus varying normals of the surfaces, resulting in low quality
in terms of tracking acoustic paths and identifying the sound
source (Fig. 4a).

To address this issue, we propose using a simple, yet
effective low-pass filter using singular value decomposition
(SVD) that works in an on-the-fly manner. Given a cell ṗhit
intersected by an acoustic ray, we identify a set of local
neighbor voxels, Plocal , which include occupied cells in a
cubic volume centered at the cell ṗhit (Fig. 3c). We then
compute ṁ, the average position of those occupied voxels
of Plocal , and a matrix A, each column of which contains
a vector from ṗ to the center of each occupied voxel. Our
goal is then to compute a vector n̂s among possible normal
vectors n̂ that minimizes the Euclidean norm of vector angles
between the normal vector and vectors in the matrix A, which



(a) (b)

Fig. 4. (a) and (b) show the original voxels of the wall that have a high level
of noise and the voxels refined by our SVD based approach, respectively.

is formulated as the following:

n̂s = argmin
n̂
‖AT n̂‖2 = argmin

n̂
‖V STUT n̂‖2

= argmin
n̂
‖STUT n̂‖2 =UT (3, :),

(4)

where V STUT is computed by SVD [19]. It is well known
that ‖STUT n̂‖2 has the maximum value when n̂ equals
UT (3, :), the eigenvector with the smallest eigenvalue.

Fig. 4 shows that our simple on-the-fly smoothing process
shows significantly improved quality over the one without the
smoothing operation. Overall, our SVD based computation
runs quite fast and takes only 0.07% of the overall computa-
tion. Note that reconstructing a high-quality representation
itself is one of the active research areas and ours can
be improved by alternatives, e.g., extracting a high-quality
surface.

B. Identifying a Converging 3D Point

So far we generated direct and reflected acoustic rays
starting from incoming sound signals. Given those acoustic
ray paths, we are ready to localize a sound source in the 3D
space. For the sake of clarity, we assume that all sound sig-
nals originate from a single sound source; handling multiple
targets using a particle filter has been well studied [20], and
can be used for our approach.

In an ideal case, it is sufficient to find a point at which
acoustic rays intersect. However, since we deal with real
environments in practice, there are diverse types of noise
from sensors (e.g., microphones and Kinect), and we need a
technique that is robust to those types of noise. As a result,
we cast our problem as locating a region where many of
those ray paths converge. Once the region is small enough,
we treat the region as containing the sound source.

For achieving our goal, we propose using Monte Carlo
localization (MCL) [21], also known as the particle filter,
for localizing and representing such a region with particles.
Our localization method consists of three parts: sampling,
weight computation, and resampling.

Sampling. Sampling starts with N acoustic ray paths,
{R1, . . . ,RN}, generated by our acoustic ray tracing. At each
sampling iteration step t, we maintain a set of W particles,
χt = {x1

t , · · · ,xW
t }, which serve as hypothetical locations of a

sound source and are spread out randomly at the initial step
in the 3D space. We associate a weight with each particle,
and the weight is set to indicate its importance, specifically

Fig. 5. This figure shows an example of computing weights for particles
against a ray path, Rn = [r1

n ,r
2
n ]. The chosen representative weight for each

particle is shown in the red color.

encoding how closely the particle is located to a nearby
acoustic ray; we aim to re-generate more particles closer
to those rays to achieve a higher accuracy in localizing the
sound source.

For each iteration t other than the initial iteration, a new
set of particles, χt+1, is incrementally created from the prior
particles. Specifically, a new particle, xi

t+1, is generated by
offsetting an old one, xi

t , in a random unit direction, û, as an
offset, d, as in the following:

xi
t+1 = xi

t +d · û, (5)

d = ‖xi
t+1− xi

t‖∼ N(0,σs), (6)

where N(·) denotes a normal distribution, the mean of
which is zero and the std. deviation of which is determined
by the size of the environment; 1 m is set to σs for 7 m by
7 m room space.

Weight computation. In this step, we compute the like-
lihood of the i-th particle given the acoustic rays. Since we
want to generate particles close to acoustic rays, we assign a
higher weight to a particle when the particle is more closely
located to the rays. Specifically, given the observation of ray
paths, ot = [R1,R2, · · · ,RN ], we define the likelihood P(ot |xi

t)
as follows:

P(ot |xi
t) =

1
nc

N

∑
n=1

{
max

k
w(xi

t ,r
k
n)

}
, (7)

where a weight function, w, is defined between a particle
xi

t and a ray rk
n, the k-th order reflection ray of the n-th

ray path Rn, and 1/nc is a normalization factor over the
likelihood of all particles. Simply speaking, for each particle,
we pick a representative weight as the maximum weight
among weights computed from rays in each ray path and
accumulate the representative weights with all the ray paths.
In the example shown in Fig. 5, there are two rays, r1

n and
r2

n, with an acoustic path Rn. If a particle x1
t is closer to r2

n
than r1

n on their acoustic path Rn, w(x1
t , r2

n) is chosen as the
representative weight contribution for the ray path Rn.

The weight function w(xi
t ,r

k
n) is defined as follows:

w(xi
t ,r

k
n) = fN(‖xi

t −π
k
i ‖ | 0,σw)×F(xi

t ,r
k
n), (8)

where π(xi
t ,r

k
n), in short, πk

i , returns the perpendicular foot
of the particle xi

t to the ray rk
n (Fig. 5), and fN(·) denotes



(a) Our robot. (b) Stationary sound source. (c) Moving sound with an obstacle blocking the line-of-sight.

Fig. 6. (a) shows our tested robot with the cube-shaped microphone array. (b) and (c) show our testing environments for static and dynamically moving
sound sources, respectively.For the moving sound, it generates sounds, only when it is on the violet part of its trajectory.

the pdf of the normal distribution. σw is set according to the
determinant of the covariance matrix of particles; as a result,
we assign a higher weight to a particle close to a ray, as other
particles are more distributed. F is a filter function returning
zero to exclude irrelevant cases when the perpendicular foot
is outside of the ray segment rk

n, e.g., π1
2 in Fig. 5; otherwise,

the filter function returns one.
Resampling. The likelihood weight associated with each

sampled particle P(ot |xi
t) is used to compute an updated

set of particles for the next step t + 1. Intuitively, in this
process, particles with low weights are removed, and addi-
tional particles are generated near the existing particles with
high likelihood weights. For this process, we adopt a basic
resampling method [21].

Once resampling is done, we check whether particles are
converged enough to define an estimated sound source. To
determine the convergence of the positions of particles, we
compute the generalized variance (GV), which is a one-
dimensional measure for multi-dimensional scatter data and
is defined as the determinant of the covariance matrix of
particles [22]. If GV is less than the convergence threshold,
σc = 0.01, we terminate our process and treat the mean
position of the particles as the estimated position of the sound
source. GV is also used as a confidence measure on our
estimation; we also use its covariance matrix to draw 95%
confidence ellipsis disk for visualizing the estimated sound
region (Fig. 1).

V. RESULTS AND DISCUSSIONS

In this section, we explain our tested robot with a micro-
phone array and environments, followed by demonstrating
the benefits of our method.

Hardware setup. Fig. 6a shows our tested robot used
for localizing the sound source. This robot is based on a
Turtlebot2 equipped with three types of sensors: Kinect,
Laser scanner, and microphone array. Kinect and Laser
scanner generate RGB-D and point cloud streams passed
down to the SLAM module, RTAB-Map method [23], as
shown in Fig. 2. The resulting environment is represented in
Octomap [24], an octree-based occupancy representation.

The robot receives the sound stream from the microphone
array, which is an embedded auditory system introduced
in [25], with eight microphones and generates directions

of sound signals based on a TDOA-based method utilizing
ManyEars open software [26]. We use a clapping sound as
the sound source that has frequencies higher than 2kHz. All
of our methods are processed in the laptop computer built in
the robot, which includes an Intel i7 processor 7500U with
8GB memory.

Testing scenarios. To demonstrate the benefits of our
reflection-aware method, we test our approach in three differ-
ent testing scenarios in a classroom environment (Fig. 6): 1)
a stationary sound source with continuous sound signals, 2) a
stationary sound source with intermittent sound signals, and
3) a moving sound source with intermittent signals. Most
prior approaches focused on finding a sound source with
accumulated sound data, while their robots are moving [11],
[4], [5]. Along with this prior benchmark setting, we include
the first scenario, in which we can accumulate the sound
data with the continuous signal. Note that many types of
sounds in the real world are frequently generated in an
intermittent manner rather than in a continuous manner; e.g.,
a human can call robots by voice or clapping, which can
be classified as intermittent signals. As a result, we include
the second and third benchmarks, where sound signals are
intermittent. These two scenarios are challenging cases that
were not tested in most prior approaches. Furthermore, many
prior approaches do not consider the moving sound source
of the third benchmark, which hinders the accumulation of
sound signals [11], [4], [5]. Because our method efficiently
considers reflection, it can handle such challenging cases.

A. Environments with a moving robot and an obstacle

We first show results with a stationary sound source gener-
ating continuous or intermittent sound signals (Fig. 6(b)). At
each running of our method, we generate 60 acoustic rays on
average, and we show only top-3 acoustic ray paths regarding
its carried energy for the clear visualization in Fig. 1. We
can see a strongly reflected ray from the ceiling, with other
directed rays from the source. Thanks to these strong direct
and reflected rays passing through the region, our particle
filter can detect the location of the sound source well. Note
that there are also acoustic ray paths that do not pass the
identified region, but their intensities are small, i.e., about
50% compared to the average of those top-3 ray paths.

Fig. 7 shows the average distance error between the ground



(a) Continuous sound

(b) Intermittent sound

Fig. 7. This graph shows the results of the average error distance and the
determinant of the covariance matrix with the stationary sound source. The
avg. error distance is measured between the ground truth and the estimated
position in the 3D space. For the intermittent case, (b), the red background
is used when we do not have any signals. Acoustic pressure of the measured
sound signals is also shown.

truth and the estimated sound location, with determinants
of the particle covariance matrix. For the continuous case,
the mean and standard deviation of the distance errors are
0.72 m and 0.26 m, respectively. The standard deviation is
quite small, indicating that our method stably determines the
sound location from generated acoustic rays. The average
error 0.72 m is slightly large compared to its std. value. This
error is mainly attributed to bias, which is caused by various
factors such as reconstruction errors of SLAM, the TDOA-
based method, and errors of our method, which does not
consider characteristics of low frequencies of sound signals.
Nonetheless, the average error of 0.72 m is reasonably useful
for our robotics application. Also, the determinants of the
covariance matrix for the particle filter are very small (less
than 0.1), indicating that the particles in the particle filter are
converged well.

For the intermittent case, we toggle the sound generation
in every 5 seconds. The mean and std. deviation of the
distance errors are 0.66 m and 0.29 m, respectively. This
result is similar to the continuous case, and it shows that our
algorithm localizes the intermittent sound source well, when
the sound source is stationary. The determinants, in this case,
are also small.

(a) Detected regions as the sound source moves.

(b) Measured distance error.

Fig. 8. (a) shows detected regions as the sound source moves in the
environment of Fig. 6c; we change the color of the detected disk from the
dark blue to light one as the time passes. Note that the source does not
generate any sound, while it is in the lower middle part of the trajectory.
(b) shows the distance error as a function of the time on the trajectory; we
use the red background when we do have any sound.

B. Environments with a dynamic sound source and obstacles

Fig. 6c shows the trajectory of the moving sound source.
To make it a more challenging benchmark, we also put an
obstacle on the left side of the robot, and the sound occurs
only when the sound source is in the violet part of the
trajectory.

Fig. 8 shows the detected regions of the sound source as it
moves. The lower graph of Fig. 8 shows the distance error as
a function of time. The distance errors from 1 s to 50 s are
measured when the source is located on the left side of the
robot, while the errors from 230 s to 280 s are from the right
side. The average error, 0.7 m, on the left side is higher than
that, 0.3 m, of the right side. The lower error on the left side
is caused since the obstacle on the left side causes diffraction
and reverberation, which decrease the detection accuracy of
our method. Nonetheless, our method can generate reflected
rays towards the sound source, while direct paths from the
source are blocked due to the obstacle. As a result, its error
even in the very challenging case with the obstacle and
moving sound is within a reasonable bound. Furthermore,
the std. deviations of the left (0.29m) and right (0.20m) sides
are reasonably small, indicating that our method can stably
identify the location of the sound source.

Accuracy with the reflection order. To see the benefits
of considering reflected rays in addition to direct rays, we
measure the accuracy as a function of the accumulated orders
of reflection rays. Fig. 9 shows the average distance error
and std. deviation for the third benchmark with the moving



Fig. 9. This graph shows the average distance error and its std. deviation
as a function of the accumulated orders of reflection in the third benchmark
with the obstacle; i.e., 1st reflection includes 1st reflection with the direct
path. The result for left and right sides of the trajectory is separated.

source. Especially, we measure such quantities separately for
the left and right sides, to see their different characteristics.
The result of the right side is always better than that of
the left side because the obstacle is closely located on the
left side. When we consider the 1st order reflection addi-
tionally from the direct rays, various results are significantly
improved, clearly demonstrating the benefit of considering
reflected acoustic rays. As we consider higher orders, we
can also observe small, but meaningful improvements, in
particular for the left side. Based on this result, we set the
maximum order of reflections to be four in all of our tested
benchmarks.

VI. CONCLUSIONS & FUTURE WORK

We have presented a novel, reflection-aware sound source
localization algorithm based on acoustic ray tracing and
Monte Carlo localization. Thanks to the efficiency and con-
sidering direct and reflected acoustic paths, our algorithm can
work with a single input frame without the accumulation of
sound signals and can handle a moving sound source with
an obstacle occluding the line-of-sight between the listener
and sound source. We have evaluated these characteristics
in a room with different source characteristics and configu-
rations. Furthermore, the use of reflected rays increases the
localization accuracy substantially.

While our results are promising, our approach has some
limitations. It is mainly designed for high-frequency sources
and does not model low-frequency effects like diffraction.
Furthermore, our ray tracing model only takes into account
specular reflections. As part of future work, we plan to ac-
commodate wave-based approaches to improve the accuracy.
Another key issue is to have an accurate 3D reconstruction
of the scene and to classify acoustic materials that affect the
reflections. Finally, we would like to extend them to multi-
source localization.
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