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RCIK: Real-Time Collision-Free Inverse Kinematics
using a Collision-Cost Prediction Network

Mincheul Kang1, Yoonki Cho1, and Sung-Eui Yoon2

Abstract—In this paper, we present real-time collision-free
inverse kinematics (RCIK) that accurately performs consecu-
tively provided six-degrees-of-freedom commands in environ-
ments containing static and dynamic obstacles. Our method is
based on an optimization-based IK approach to generate IK
candidates with high feasibility for the command. While checking
various constraints (e.g., collision and joint velocity limits), we
select the best configuration among generated IK candidates
through our objective function, considering the continuity of
joints and collision avoidance with obstacles. To avoid dynamic
obstacles efficiently, we propose a novel, collision-cost prediction
network (CCPN) that estimates collision costs using an occupancy
grid updated from sensor data in real-time. We evaluate our
method in three dynamic problems using a real robot, the
Fetch manipulator, and four static problems using three different
configurations of robots. We show that the proposed method
successfully performs the consecutively given commands in real-
time, mainly thanks to the collision-cost prediction network,
while avoiding dynamic and static obstacles. The results of tested
problems are available in the accompanying video.

Index Terms—Manipulation Planning, Kinematics

I. INTRODUCTION

REMOTE control of a robotic manipulator has been used
to perform tasks on behalf of humans at special-purpose

sites such as nuclear power plants [1] and hospitals during
telesurgery [2]. Recent research on the remote control of robots
has been expanding to a diverse set of environments, including
the home environment [3]. Due to this broadening diversity,
robots are now expected to handle more difficult challenges
when avoiding various and dynamic obstacles, while also
accurately following human commands.

A robotic manipulator is capable of human-like movement
given its many joints, but it has various constraints, e.g., avoid-
ing collisions with obstacles and kinematic singularities, and
maintaining the continuity of joint configurations. Among the
various constraints, collision avoidance from obstacles incurs
significant computational overhead and is one of the most
important issues in many prior approaches [4], [5] to achieve
real-time performance when executing human commands.
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(a) We send consecutive 6-DoF commands to a robot, and a moving
cart obstructs the robot.

CCPN

Occupancy
grid

(b) The robot avoids the cart by computing Fcol using our collision-
cost prediction network (CCPN), while following consequtively given
commmands.

Fig. 1. These figures show the progress of our method in a dynamic
environment. (a) Our method performs consecutively given 6-DoF commands
while avoiding a dynamic obstacle, a cart in this case. (b) To avoid the cart,
we compute a collision cost, Fcol , using our collision-cost prediction network
(CCPN). The CCPN uses an occupancy grid updated through sensor data
to reflect changing environments immediately. Finally, our method finds a
desired joint configuration that allows the robot to follow the given command
accurately while avoiding obstacles. Our algorithm conducts all of these
operations within 30ms for each command, mainly due to CCPN.

Recently, TORM [6] reduces the computational overhead
required for external static obstacles by applying the collision
avoidance method using the signed distance field (SDF) used
in CHOMP [7]. However, the SDF is hard to deal with
dynamic obstacles in real-time due to its long construction
time.
Main Contributions. In this work, we present real-time
collision-free inverse kinematics (RCIK) using a novel,
collision-cost prediction network (CCPN) to reduce the mas-
sive computational overhead associated with collision avoid-
ance. Our method performs consecutively given six-Degrees-
of-Freedom (DoF) commands in environments, including dy-
namic obstacles (Fig. 1). We generate IK candidates with
high feasibility based on an optimization-based IK approach
(Sec. IV-A). We then check whether generated IK candi-
dates are satisfied with constraints, collision, joint velocity
limits, and kinematic singularities. Among the IK candidates
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satisfying the constraints, we select the best configuration
through our objective function, consisting of collision avoid-
ance and the smoothness of joints to support consecutively
given commands (Sec. IV-B). For handling dynamic obstacles,
our network estimates a collision cost by grasping environment
information from an occupancy grid updated from sensor data
in real-time (Sec. IV-C).

To evaluate our method, we test three dynamic prob-
lems using a real robot, the Fetch manipulator, and four
static problems for three different configurations of robots
(Sec. V-A). We observe that our method finds collision-free
joint configurations in real-time in both static and dynamic
environments, thanks to our deep neural network estimating
collision costs quickly and accurately. We also analyze our
method by comparing over the SDF (Sec. V-B).

II. RELATED WORK

In this section, we discuss prior studies in the areas of
inverse kinematics and collision avoidance for manipulation
planning.

A. Inverse Kinematics

Traditional inverse kinematics (IK) has been widely studied
to determine a joint configuration for a target end-effector pose
quickly and successfully [8]. For example, IKFast [9] and the
work of Sinha et al. [10] analytically solve equations of a
complex kinematics chain to reduce the computation time.
Additionally, Trac-IK [11] improves the success rate of the
Jacobian-based IK method by restarting from a random joint
configuration and applying sequential quadratic programming
instead of the Jacobian. Nevertheless, these methods encounter
difficulty when following a given sequence of end-effector
poses, called path-wise IK, because there is no consideration
of the continuity on generated joint configurations and con-
straints (e.g., collisions, joint velocity limits, and kinematic
singularities).

Considering the aforementioned constraints, RelaxedIK [4]
solves the path-wise IK by means of weighted-sum non-linear
optimization. Based on RelaxedIK, Stampede [12] synthesizes
an optimal trajectory from a discrete graph built in consider-
ation of several constraints. These methods use a neural net-
work for self-collision avoidance to reduce the computational
overhead, but do not consider external obstacles.

To handle external obstacles, Holladay et al. [13], [14] sug-
gest two methods based on optimization-based and sampling-
based motion planning. These works apply the discrete Fréchet
distance to approximate the similarity with a given end-
effector path in the Cartesian space. Moreover, TORM [6]
improves speed and accuracy by integrating the Jacobian-
based IK method and an optimization-based motion planning
approach.

Recently, CollisionIK [5] deals with static and dynamic
obstacles in real-time by computing the distance between robot
links and obstacles using the convex hull approach. On the
other hand, it does not take into account difficulties of a real
environment, such as sensor noise.

We also propose a real-time approach to solve path-wise IK
problems in an environment surrounding static and dynamic
obstacles, but we overcome the difficulties of a real environ-
ment using an occupancy grid and a deep neural network.
An occupancy grid is updated in real-time while eliminating
sensor noise based on a probabilistic update rule [15], and
our deep neural network quickly predicts collision costs by
grasping the environment information from the occupancy
grid.

B. Collision Avoidance for Manipulation Planning

A SDF has been used in many manipulation planning
methods, especially in relation to optimization-based ap-
proaches [6], [7], because the SDF helps to avoid collision
efficiently by computing a quantitative collision cost using the
distance information from obstacles. On the other hand, it is
difficult to use the SDF in dynamic environments due to its
construction time. Although selective dynamic updating [16],
[17] and parallel processing [18], [19] methods can reduce the
construction time, constructing the SDF still incurs high com-
putational overhead, especially when used to handle dynamic
environments in real-time.

For a dynamic environment, several works have used simpli-
fied methods, such as approximating obstacles to spheres [20],
using the closest distance from the obstacles [21]. Recently,
Kew et al. [22] suggest a neural estimator for predicting the
shortest distance. This estimator serves as a collision detector,
improving the performance of a motion planner. On the other
hand, this estimator can be used only within the learned objects
because it is learned by changing only the positions of the
objects.

Unlike the work of Kew et al. [22], our deep neural net-
work reflects changing environments immediately without any
restrictions on objects by grasping environment information
from an occupancy grid updated through sensor data in real-
time [15]. Moreover, our network is not used as a collision
detector and is used to select a desired joint configuration
away from obstacles among generated joint configurations for
a target end-effector pose in our sampling-based approach.

III. OVERVIEW

In this section, we introduce the problem we aim to solve,
followed by giving motivations of our work.

A. Problem Definition

Our goal is to develop a collision-free IK solver in real-
time for accurately performing consecutively given 6-DoF
commands in environments with static and dynamic obstacles.
The command is provided as a target end-effector pose,
xtar ⊂ R6, and we deal with a redundant manipulator that
can have many joint configurations for one end-effector pose
xtar; a redundant manipulator generally has a DoF value that
exceeds 6. Among many solutions, we find a desired joint
configuration, qdes ⊂ RD, where D is the DoF of the robot,
considering consecutively given 6-DoF commands and various
constraints.
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Fig. 2. This shows an overview of our approach. (a) Our method synthesizes a desired joint configuration qdes that matches the target end-effector pose
xtar as a 6-DoF command and has the motion feasibility considering the current configuration qcur . (b) First, we generate IK candidates Qcand with high
feasibility based on an optimization-based IK approach. (c) With checking constraints, such as collision and joint velocity limits, for Qcand , we select the best
one using our objective function for collision avoidance with obstacles and smoothness with previous joint configurations. (d) For 6-DoF commands given
consecutively, denoted with the yellow arrow, our method sequentially synthesizes joint configurations that accurately realize the commands while avoiding
collision and achieving smoothness, as indicated by the red arrow.

We now describe our assumption for a given command
and the criteria of finding qdes. First, we assume that a
command given to a robot from a user is considering the
robot specifications, a given time, and an environment. To
perform the command accurately, our method finds qdes that
accurately matches xtar. When receiving an invalid command,
e.g., collision due to moving obstacles and out of possible
moving range, we stop the robot’s movement for safety and
wait for a valid command.

Next, our problem undertakes collision avoidance in static
and dynamic environments and supports the continuity of
synthesized joint configurations for consecutively given com-
mands. To avoid a collision, we find qdes far away from
obstacles among many joint configurations for xtar, since we
aim to follow the command exactly.

Lastly, qdes must satisfy various constraints, and we call it
having motion feasibility in this paper. The requirement of the
motion feasibility include the following: the manipulator 1)
must not collide with obstacles, 2) it does not violate the joint
velocity limit in order to be able to move from the current
configuration, qcur, within the given time, t, and 3) it does not
enter kinematic singularities, which occur when the Jacobian
matrix loses the full rank.

In summary, we target to solve real-time inverse kinematics
for consecutively given 6-DoF commands, while satisfying the
requirement of motion feasibility in both static and dynamic
environments.

B. Motivation

A real-time approach has to compute the desired solution
during a given short time t, i.e., 30ms in our problem.
Therefore, reducing the computational overhead is a critical
issue for our problem. As explained in Sec. II-A, many works
have proposed methods to reduce the computational overhead
of obstacle avoidance, which takes up a lot of computation.
Among them, TORM [6] uses the signed distance field (SDF)
to reduce the computational overhead for collision avoidance.
TORM improves the trajectory optimization performance by
quickly synthesizing an initial trajectory using IK samples
generated by the traditional IK method.

Inspired by TORM, our method generates IK candidates,
Qcand = {q1

cand ,q
2
cand , ...}, for xtar based on an optimization-

based IK, one of the traditional-IK methods, and then selects
the best qdes that has the motion feasibility and minimizes our
objective function (Fig. 2). To follow consecutive commands,
our objective function considers collision avoidance of obsta-
cles and the continuity of joint configurations.

Due to selecting one of generated IK candidates, increasing
the possibility of having the motion feasibility of IK candidates
is an important factor for improving the success rate of our
approach. To obtain such IK candidates, especially satisfying
the joint velocity limits, we utilize an optimization-based IK
approach that has the property of obtaining a solution depend-
ing on the initial configuration [23], [24]. By maneuvering
the initial configuration close to qcur, we can generate IK
candidates that have the potential to satisfy the joint velocity
limits given the short time t.

The SDF can reduce the computational overhead of collision
avoidance by calculating the distance information between
obstacles in advance. The SDF also makes it possible to
compute a quantitative cost, Fcol , for collisions with obstacles.
Despite these advantages, it is difficult to apply the SDF to
dynamic environments due to its long construction time. To
overcome this problem, we predict Fcol using a deep neural
network without constructing the SDF. Our network uses an
occupancy grid updated from sensor data as the input to reflect
changing environments in real-time. Fcol is used to select an
IK candidate far away from obstacles among generated IK
candidates.

IV. REAL-TIME COLLISION-FREE INVERSE KINEMATICS

Fig. 2 shows the system flow. In this section, we explain
how the proposed method generates IK candidates based on
an optimization-based IK and how it assesses the motion
feasibility. We then introduce the method that selects the best
candidate from among all IK candidates using our objective
functions, considering collision avoidance with obstacles and
the continuity of joint configurations. We also propose a
collision-cost prediction network (CCPN) for avoiding dy-
namic obstacles.

A. IK candidates

While a redundant manipulator has various joint configura-
tions for a target end-effector pose xtar, joint configurations
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with the motion feasibility are limited. In particular, con-
sidering the given short time and velocity limits of joints,
the possible moving range of joints from the current joint
configuration qcur is very narrow. Finding many IK candidates
within possible moving range in a short given amount of time
can increase the performance of our approach. To generate
IK candidates Qcand within the most likely joint bounds, we
use an optimization-based IK approach and set its initial
configuration, qopt−IK

init , to randomly generated configurations
using a Gaussian distribution (Fig. 2(b)); we use the Jacobian-
based IK solver.

An optimization-based IK method starts with the initial
configuration qopt−IK

init and finds a joint configuration q for xtar
by iteratively minimizing the error with xtar in a Cartesian
space. By repeatedly minimizing the error, it finds q that
is close to the initial configuration qopt−IK

init [23]–[25]. Also,
different initial configurations can generate diverse solutions
for a redundant manipulator [24], [25].

Inspired these properties, we create an initial configuration
of optimization-based IK qopt−IK

init by modifying qcur using the
multivariate Gaussian distribution, N:

qopt−IK
init ∼ N(qcur,diag(σ2

1 ,σ
2
2 , ...,σ

2
D)), (1)

where diag(·) is a diagonal, covariance matrix of size D and
σi is the standard deviation for considering the properties of
the i-th joint. diag(·) controls how closely IK candidates are
generated from the current configuration qcur. Specifically, σi
of diag(·) is determined by µ× vi, where vi is the maximum
velocity of the i-th joint and µ is a constant that serves to adjust
the closeness of IK candidates from qcur. When µ is too small,
it is difficult to obtain diverse Qcand , whereas it is difficult
to obtain Qcand satisfying the joint velocity limits when µ is
too large; thus, we experimentally found µ = 0.1 to strike the
balance between diversity and generating many feasible Qcand .
In addition, we consider v because the maximum velocity of
each joint v = {v1,v2, ...,vD} can differ.

There is no guarantee that Qcand generated by the aforemen-
tioned process have the motion feasibility. We thus check the
constraints for collision, joint velocity limits, and kinematic
singularities. Note that we delay collision checking until after
we calculate our cost function to reduce the computational
overhead of collision detection; we use FCL [26], a commonly
used collision checker. The joint velocity limit checks whether
the manipulator can move from qcur to the generated Qcand
during the given time t. In the case of kinematic singularities,
we use the lower bound of the manipulability [27] obtained
from random configurations, as is used by RelaxedIK [4]. In
short, we check Qcand where the manipulability value is greater
than the lower bound.

When checking the constraints for Qcand , there can be no
feasible solution due to invalid command or insufficient Qcand
caused by the short time constraints and the randomness of
our generation method. In those cases, we stop the robot’s
movement by following prior methods of handling dynamic
obstacles [28], [29]. Since no algorithm guarantees success
in the problem of dealing with unknown dynamic obstacles
in real-time, the prior methods have decided to stop the
robot’s movement for robot safety [28], [29]. Furthermore,

B

(a) Simplification of robot links. (b) Signed distance field for ex-
ternal obstacles.

Fig. 3. These figures show (a) the simplified robot links, spheres B, used
for manipulation and (b) signed distance field for external obstacles, the table
and gray box. The color of cells represents the distance from the closest
obstacles; as the distance from a cell to the obstacle becomes smaller, its
color gets closer to the red, and vice-versa to blue.

our problem deals with an unknown future command from a
user. To increase the likelihood of success against unknown
commands and obstacles in the future, we select a joint
configuration away from obstacles among Qcand through our
objective function.

B. Objective Function

For one target end-effector pose xtar, we can use all of Qcand
with the motion feasibility. However, to execute consecutive
commands, it is necessary to consider the continuity between
joint configurations and collision avoidance with obstacles.
Because a collision can occur from an unknown future com-
mand and obstacles, we focus on selecting a joint configuration
that is far away from obstacles among generated Qcand . In
this work, we select the configuration with the smallest value
among Qcand with the motion feasibility using the objective
function, U , which numerically expresses the aforementioned
properties.

We model the objective function U to have two cost terms
for collision avoidance with obstacles, Fcol , and smoothness
between joint configurations, Fsmooth:

U = Fsmooth +wcolFcol , (2)

where wcol is the weight for Fcol in our objective function; we
empirically set wcol to 2.0.

Fcol represents a quantitative collision cost determined by
calculating the approximate distance between robot links and
obstacles. We first introduce a method of computing Fcol
using the SDF and then explain our deep neural network for
efficiently avoiding dynamic obstacles (Sec. IV-C).

The SDF can significantly reduce the computational over-
head during the planning stage by calculating the distance
information for static obstacles in advance. Thus, many
works [6], [7] use the SDF to improve the performance of
their optimization-based planners. For the effective use of the
SDF, we simplify the robot links used for manipulation into
spheres, B = {b1,b2, ...,bn} (Fig. 3). Through this method, we
can calculate an approximate distance, d̃i, from the nearest
obstacles to the i-th sphere bi, simply as SDF(pbi)−rbi , where
pbi ⊂ R3 and rbi are correspondingly the center position and
radius of bi, and SDF(pbi) returns the SDF value at pbi .
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Fig. 4. This figure shows the collision-cost prediction network (CCPN),
which consists of two feature extractors and one regression module.

Unlike most existing optimization-based methods that cal-
culate a cost considering continuity between joint configura-
tions [6], [7], we compute Fcol only for a joint configuration
q because the desired joint configuration qdes is very close
to the current configuration qcur to satisfy the joint velocity
limits given the short time t. Therefore, Fcol using the SDF is
represented as:

Fcol =
|B|

∑
b

max
(

ε− (SDF(P(q,b))− rb) ,0
)
, (3)

where P(q,b) is the partial forward kinematics that computes
the position of a sphere b ∈ B at a joint configuration q, and
ε is the clearance value to make zero when the distance from
the obstacle is far enough; (SDF(·)< ε), and we set ε to 1.0m.
In short, Fcol increases as the distance between obstacles and
robot links decreases.

Fsmooth in Eq. 2 serves to synthesize smooth joint configura-
tions for consecutive commands. We consider the joint velocity
and acceleration from the past three configurations. Fsmooth is
formulated via:

Fsmooth = ‖qi−qi−1‖2 +‖q̇i− q̇i−1‖2 . (4)

C. Collision-Cost Prediction Network

Although the SDF helps to accelerate the calculation of
a collision cost Fcol , it is difficult to use in dynamic envi-
ronments due to its long construction time, e.g., 61ms for
a 0.025m resolution. Furthermore, as the resolution of the
SDF increases, longer construction times become necessary.
Unfortunately, our approach needs a high-resolution of the
SDF to accurately differentiate Fcol of the IK candidates Qcand ,
which are located very close to each other to satisfy the joint
velocity limits given the short time t.

For a real-time approach in dynamic environments, we
present a collision-cost prediction network (CCPN) that esti-
mates Fcol of Qcand directly without constructing a SDF. We set
the ground-truth data to collision costs computed from Eq. 3
using the SDF with a high-resolution of 0.005m. Although
the high-resolution SDF requires a long construction time and
large amount of memory, it can provide very accurate distance
information from obstacles. In addition, our CCPN serves to
select a joint configuration far away from obstacles among
Qcand , and thus it learns to predict not only the value of Fcol
but also the ranking order for Fcol of Qcand .

(a) Randomly distributed obstacles. (b) Occupancy grid.

Fig. 5. These figures show one of the generated environments to obtain
training data. From (a) randomly distributed obstacles, we construct (b) an
occupancy grid with updates from sensor data.

Network architecture The CCPN aims to estimate collision
costs close to computation by Eq. 3. As explained in Sec. IV-B,
Eq. 3 is computed from the distance information of the
obstacles in the SDF and the positions of the target robot
links, as simplified links B according to a joint configuration
q. We design the architecture of the CCPN by reflecting such
information of Eq. 3.

As shown in Fig. 4, the CCPN extracts deep features
from a joint configuration and an occupancy grid, and the
regression module predicts Fcol by concatenating the extracted
two features. Although the CCPN has a simple architecture
consisting of two feature extractors and one regression module,
it is suitable for our real-time approach; it takes 2.3 ms to
compute collision costs of 50 IK candidates.

At a high level, the regression module is designed to behave
using an approach similar to that in Eq. 3 by predicting
collision costs from the concatenated feature out of two
features; the joint configuration feature, fq, and the obstacle
feature, fobs. fq has position information pertaining to the
robot links, and fobs contains obstacle information from an
occupancy grid in the role of the SDF.

An occupancy grid includes information about obstacles and
is updated from sensor data, while removing sensor noise
based on the probabilistic update rule [15]. For real-time
update, we set the resolution of the occupancy grid to 0.05m
and the size of the occupancy grid is 40×40×40. Our network
extracts fobs from the occupancy grid of 0.05m, and fobs serves
as the high-resolution SDF. Similarly, some super-resolution
and shape representation methods using a deep neural network
have produced high-resolution results even with low-resolution
inputs [30], [31].

In the detailed structure of the CCPN, the feature extractor
of the joint configuration has six one-dimensional (D) con-
volution layers and two linear layers. The feature extractor
of the environment has a structure identical to that of the
feature extractor of the joint configuration, except it has 3-
D convolution layers instead of 1-D convolution layers. In
addition, the regression module is a multi-layer perceptron
with six hidden layers. We leverage batch normalization and
a ReLU activation function between all layers in the CCPN.

Loss functions Prediction results from the CCPN are used to
select one of Qcand in conjunction with Fsmooth. Therefore, it
is important for the predicted values and, more importantly,
the predicted ranking among Qcand , to close to those of the
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ground-truth data. We use the mean squared error (MSE) loss,
LMSE , to match the ground-truth data, and the ranking loss,
Lrank, to select one of Qcand far away from obstacles:

loss = LMSE +wrankLrank, (5)

where wrank is the weight for Lrank in our loss function.
Some deep learning approaches [32], [33] have shown

that considering the ranking order of the data is effective
when selecting the desired data. Inspired by these approaches,
we also aim to preserve the ranking order of two different
estimations for our method to select the best joint configuration
among the IK candidates Qcand .

Lrank is measured by comparing a data pair, and we make
pairs by dividing a subset of the training data used in one train-
ing iteration, as mini-batch data, in half. For this type of data
pair, Lrank computes the difference between two prediction
values, ŷ1 and ŷ2, as to whether their ranking order is incorrect.
Otherwise, Lrank is 0. Specifically, Lrank is formulated as:

Lrank = max(Γ(y1,y2)× (ŷ1− ŷ2),0),

s.t. Γ(y1,y2) =

{
1, y1 < y2,

−1, otherwise,

(6)

where y1 and y2 are the ground-truth values for ŷ1 and ŷ2,
respectively.
Training dataset To train the CCPN, we construct datasets
that consist of 500 random joint configurations in 2000 differ-
ent environments for one million data instances in total. Some
prior learning-based motion planning methods [34], [35] con-
structed datasets from randomly generated obstacles to cover
a diverse set of environments. By adopting this protocol, we
construct the environments by randomly positioning obstacles
with arbitrary sizes (Fig. 5). From each environment, we ex-
tract occupancy grids and Fcol of the joint configurations as the
ground-truth data through using Eq. 3 with the high resolution
of SDF; the SDF is built from the extracted occupancy grid,
same as the network input information.

The CCPN is trained using the Adam optimizer with an
initial learning rate of 5×10−5 and set the mini-batch size to
128. The training process takes 100 epochs, and the learning
rate is decayed to 5×10−6 at 50 epoch.

V. EXPERIMENTS AND ANALYSIS

In this section, we introduce our experiment setting and dis-
cuss the experimental results. Various experiments are tested
on a machine that has a 3.60GHz Intel i7-9700K CPU, 32GB
of RAM, and a RTX 2080 Ti graphics card.

A. Experiments in dynamic environments

In dynamic environments, we tested our method using a real
robot, the Fetch manipulator; for sensing dynamic obstacles,
we used the 3-D RGB-D camera mounted on the robot head.
To test the usability of the proposed method, CCPN, we also
compare its results against using a SDF. A SDF cannot be
used directly in a dynamic environment, especially when the
construction time is longer than the given time, 30ms. We
therefore test the SDF with a resolution of 0.05m, which has

Dynamic
obstacle

6-DoF
commands

(a) Circle tracing

Dynamic
obstacle

6-DoF
commands

Static obstacle

(b) Square tracing

Fig. 6. These figures show our experiment in the dynamic environments
using a real robot, the Fetch manipulator. The robot receives 6-DoF commands
consecutively to trace (a) circle and (b) square, while avoiding an incoming
book in the direction of the green arrow. Additionally, (b) includes a static
obstacle, a table. Note that we give 6-DoF commands consecutively to follow
the yellow line.

TABLE I
CONSTRUCTION TIMES OF THE SDF WITH VARYING RESOLUTIONS AND

COMPUTATION TIME OF COLLISION COSTS FOR 50 IK CANDIDATES USING
THE SDF AND THE CCPN.

Fetch 7-DoF SDF CCPN

Resolution (m) 0.005 0.025 0.05 -

Construction time (ms) 8400 61 7 0

Computation time (ms) 17.5 6.0 4.5 2.3

a low construction time, 7ms (Table I). In addition, we test
two types of CCPNs learned with and without Lrank.

We prepare three dynamic problems with different obstacles
and 6-DoF commands. The first problem is to carry out the
command in the form of a straight line transmitted using
the joystick, while avoiding an incoming cart (Fig. 1). Next,
the second and third problems consecutively give 6-DoF
commands to trace a circle and a square, while avoiding an
approaching book (Fig. 6). The third problem also involves a
table as a static obstacle. The 6-DoF commands for three prob-
lems are provided consecutively, and our method progressively
computes a joint configuration for each single command; our
method does not know the future commands. In addition, since
these dynamic problems are designed to evaluate the proposed
method, the dynamic obstacle deliberately approaches the
robot.

To determine the obstacles, we update the occupancy grid
from sensor data in real-time [15]. As implementation details,
we filter out sensor data corresponding to the manipulator, the
spheres B shown in Fig. 3(a), as those data are not part of
the environment. For the real-time update of the occupancy
grid, including the filtering process, we used the occupancy
grid with a resolution of 0.05m; its update time is 30ms on
average. The updated occupancy grid is used to check the
collision with obstacles and as input to our CCPN for grasping
the environment information; in the case of static obstacles,
we can use prior obstacle information when precise collision
checking is required, e.g., narrow passage. It should be noted
self-collision detection is performed with the robot geometry
information.

In addition, conducting experiments in real dynamic envi-
ronments always involves different speeds of dynamic obsta-
cles and timings of the human commands, which is inappropri-
ate for fairly testing different methods. For a fair evaluation
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TABLE II
RESULTS WITH 20 EXPERIMENTS WITH DIFFERENT METHODS IN DYNAMIC

ENVIRONMENTS.

Fetch 7-DoF
Straight (Fig. 1) Circle (Fig. 6(a)) Square (Fig. 6(b))
PE OE NF PE OE NF PE OE NF

SDF (0.05m res.) 5.5e-5 1.0e-4 12 - - 20 4.3e-5 7.1e-5 15

CCPN (wrank = 0) 5.6e-5 9.5e-5 7 5.0e-5 7.8e-5 9 1.8e-4 1.1e-4 6

CCPN (wrank = 10) 6.3e-5 1.1e-4 3 5.3e-5 8.4e-5 1 6.6e-5 1.0e-4 2

PE: Position error (m). OE: Orientation error (rad). NF: Number of failures.

of different methods, we use a recorded data consisting of
sensor data and consecutive commands obtained from a real
experiment. Concretely, we prepare 20 different recorded data
for each problem through real experiments; the 20 recorded
data have slightly different speeds of dynamic obstacles and
timings of the commands.

From the recorded data, we evaluate whether the computed
joint configurations accurately match the given end-effector
poses, while achieving the motion feasibility in dynamic prob-
lems. We measure the position and orientation error by adding
one more between a current and a given end-effector pose
for precise computation, since our target robot, a redundant
manipulator, has multiple joint configurations for a target
end-effector pose. We also regard failure when we do not
find a joint configuration with the motion feasibility for each
problem; in this case, we stop the movement of the robot.

Table II shows the results in dynamic environments with
different methods using a 0.05m resolution of SDF and two
types of CCPNs trained by only LMSE and by LMSE and
Lrank together. Using a 0.05m resolution of the SDF, which
satisfies the real-time performance requirement, shows the
highest number of failures among the tested methods, as its
resolution cannot accurately distinguish Fcol of nearly located
Qcand . Moreover, the CCPN learned w/ Lrank shows fewer
failures than the CCPN w/o Lrank due to being learned to
distinguish Fcol of Qcand .

When measuring the position and orientation errors for the
success cases, all methods show reasonably low errors. This
is because all methods generate Qcand through our generation
method, and generated Qcand have fairly low errors for xtar to
follow a given command.

In conclusion, our proposed method performs consecutively
given commands in real-time while avoiding dynamic and
static obstacles effectively. A quantitative analysis of the
proposed method will be discussed in the next sub-section.

B. Analysis

To analyze our proposed method, we construct validation
sets using three different configurations of robots, Kuka iiwa
with 7-DoF, and the Fetch manipulator with 7 and 8 DoF.
We also evaluate the performance of the CCPN with varying
values of wrank and the SDF with different resolutions.

To evaluate our proposed method in various environments,
we prepare 200 environments with randomly distributed ob-
stacles as shown in Fig. 5(a). Each environment has ten
random end-effector poses, and we obtain 50 IK candidates
for one end-effector pose. The reason we use 50 IK candidates
as a standard is that our approach generates about 125 IK

TABLE III
RESULTS OF USING THE SDF WITH VARYING RESOLUTIONS AND THE
CCPN TRAINED BY VARYING wrank IN THE VALIDATION DATASET. THE

NUMBER OF UNIQUE DATA INDICATES THE NUMBER OF DIFFERENT
COLLISION COSTS AMONG 50 IK CANDIDATES.

SDF w/ varying resolutions CCPN w/ varying wrank

0.025m 0.05m 0 10 20

Kuka Ranking error 7.9 12.6 5.9 5.8 5.8
7-DoF # of unique data 13 6 50
Fetch Ranking error 7.5 11.1 7.0 6.6 6.9
7-DoF # of unique data 20 16 50
Fetch Ranking error 8.0 9.1 8.0 7.6 7.7
8-DoF # of unique data 44 43 50

candidates on average for a given 30ms, and about 50 of them
satisfy the constraints except for collision. We ensure that the
50 candidates have different collision costs so as to evaluate
whether the predicted collision costs have the correct ranking;
we compute the collision costs at a resolution of 0.005m
of SDF to achieve high accuracy. Furthermore, the 50 IK
candidates are located within a very narrow joint boundaries
considering the joint velocity limit and given short time.

From the validation sets, we compute Fcol for the different
tested methods. We evaluate how well estimated Fcol of 50 IK
candidates have similar ranking orders among them compared
to the corresponding ground-truth values. To measure the
similarity, we measure the ranking orders of the predicted
outcomes and do the same procedure for the ground-truth
values, after which we compute the L1 distance between them.
In this work, we refer to this metric as the “ranking error”.
Intuitively, the low ranking error implies that it is highly
possible to select an IK candidate far away from obstacles
among various IK candidates.

Table III shows the ranking error of different SDFs and
CCPNs with varying configurations of the robots. Overall, the
0.05m resolution of the SDF has the highest ranking error. We
also measure how unique the values for the SDF and CCPN
are. The tested SDF has many more duplicate values over
the tested CCPN. Although the accuracy of the SDF can be
improved as we increase the resolution, its construction time
increases exponentially (Table I), becoming inappropriate for
our real-time purpose.

On the other hand, the CCPN does not require construction
time at runtime and has fewer ranking errors than the SDF
with resolutions of 0.05m and even 0.025m. Furthermore, the
CCPN computes collision costs of 50 IK candidates nearly
twice as fast compared to the use of tested SDF with the
0.05m resolution (Table I). Owing to such performances, our
method achieved an average of 90% success rate for three
dynamic problems. These results indicate that the CCPN
has computational advantages for our real-time approach in
dynamic environments and selects a joint configuration away
from obstacles among Qcand .

In addition, the CCPN which underwent learning through
LMSE and Lrank shows smaller ranking errors (Table III) and
higher success rates in dynamic environments than the CCPN
trained by only LMSE (Table II). In particular, the greatest
difference was found in the circle problem, as shown in the
middle column of Table II. This improvement stems from the
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fact that Lrank reduces the ranking error of the CCPN, allowing
a better IK candidate to be selected.

Lastly, we test our method for three different configurations
of robots in four static problems, which were used in earlier
work [6]. Our method successfully solves the given problems,
and the results can be available in the accompanying video.

VI. CONCLUSION

We presented real-time collision-free inverse kinematics
(RCIK) for performing consecutive 6-DoF commands accu-
rately in environments including static and dynamic obstacles.
For real-time solving, we proposed a simple method that gen-
erates IK candidates with a high probability of achieving the
motion feasibility. We also suggested a collision-cost predic-
tion network for handling dynamic obstacles. We demonstrated
the benefits that our method, which can accurately perform
the consecutively given commands while avoiding obstacles
in real-time. Furthermore, we verified the feasibility of the
proposed approach using a real robot, the Fetch manipulator.

Our method allows real-time solving in static and dynamic
environments by quickly predicting collision costs using a
deep neural network, while most of the time, i.e., approx-
imately 75% of the overall time for our method, is used
to generate IK candidates. Our method successfully solved
three dynamic and four static problems using three different
configuration robots with 7 or 8 DoF, but the number of
IK candidates may not be sufficient for higher DoF robots,
e.g., hyper-redundant robots. In future work, we would like
to improve our generation method of IK candidates using a
generative model to overcome the scalability issue of robot
DoF and increase the quality and quantity of IK candidates.
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