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Abstract— We present a novel retraction-based planner, se-
lective retraction-based RRT, for efficiently handling a wide
variety of environments that have different characteristics.
We first present a bridge line-test that can identify regions
around narrow passages, and then perform an optimization-
based retraction operation selectively only at those regions.
We also propose a non-colliding line-test, a dual operator to
the bridge line-test, as a culling method to avoid generating
samples near wide-open free spaces and thus to generate more
samples around narrow passages. These two tests are performed
with a small computational overhead and are integrated with
a retraction-based RRT. In order to demonstrate benefits
of our method, we have tested our method with different
benchmarks that have varying amounts of narrow passages.
Our method achieves up to 21 times and 3.5 times perfor-
mance improvements over a basic RRT and an optimization-
based retraction RRT, respectively. Furthermore, our method
consistently improves the performances of other tested methods
across all the tested benchmarks that have or do not have
narrow passages.

I. INTRODUCTION

Many sampling-based motion planning algorithms have
been designed and successfully used to compute collision-
free paths for a variety of environments. Two of the most
successful algorithms include Probabilistic Roadmap Method
(PRM) [1] and Rapidly-exploring Random Tree (RRT) [2].
At a high level, as we randomly generate more samples, these
techniques provide collision-free paths by capturing a larger
portion of the connectivity of the free space.

One of the most challenging cases for sampling-based
techniques is to efficiently handle narrow passages in the free
space. In many motion planning applications, such as part
disassembly simulation, tolerance verification, and protein
folding [3], [4], a robot often needs to pass through narrow
passages and the performance of sampling-based planning
algorithms can degrade significantly. Many approaches have
been proposed in different directions such as utilizing the
workspace geometric information [5], filtering (or adaptive
sampling) techniques towards more important regions [6],
[7], [8], retracting samples, etc.

Recently, retraction-based techniques [9], [10], [11], [12],
[13] have been actively studied, since they can pose samples
near the boundary of the C-Obstacle, efficiently leading
to explore important regions including narrow passages.
However, these techniques have the computation overhead
of retracting sampling near the boundary of the C-Obstacle
and thus can run slower even to a basic RRT method, if the
free space does not have such difficult regions [9].
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Fig. 1. Living Room Benchmark: This figure shows three image shots of
getting the sofa out through a door, which creates narrow passages in 6 dof
configuration space. Our method achieves ten and two times improvements
over a basic RRT and an optimization-based retraction method respectively.

Main results: In this paper we propose a novel retraction-
based planner, Selective Retraction-based RRT, for a wide
variety of environments that have or do not have narrow
passages. Our method identifies the nearest neighbor node
given a randomly generated sample, then computes a first in-
contact configuration at the boundary of the C-Obstacle along
the straight line from the node to the random sample. In-
stead of performing optimization-based retraction operations
exhaustively, we selectively perform retraction operations,
only if samples are deemed to be around narrow passages.
To decide whether a node is on such a narrow passage, we
propose a bridge line-test, an inexpensive filtering opera-
tion, which checks whether narrow passages exist along a
line segment. In order to achieve a high accuracy even in
high dimensional configuration spaces, we perform principal
component analysis (PCA) and generate the line with a
higher probability to cross narrow passages. Also, in order
to generate more random samples near narrow passages, we
present a non-colliding line-test that detects wide-open free
spaces and cull samples near such spaces (Sec. IV).

We have implemented our SR-RRT method integrated
with these two line-tests. In order to demonstrate benefits
of our method, we have tested SR-RRT with various types
of benchmarks that have different characteristics (Sec. V).
Our method achieves on average 6.7 times and 2 times
improvement over a basic RRT [2] and an optimization-
based retraction method [9], respectively, because of the low
computational overheads of our method and its accuracy
of identifying narrow passages and wide-open free spaces.
Moreover, while the basic RRT and the optimization-based
retraction method show lower performance than the other
tested methods in some benchmarks, our method consistently
improves the performances across all the tested benchmarks
that have or do not have narrow passages. As a result, we
can conclude that our method is more robust and general
than other tested methods.

II. RELATED WORK

In this section we discuss prior work on sampling-based
motion planning, especially designed to efficiently handle



narrow passages.

A. Sampling-based Motion Planning

The sampling-based algorithms have been successfully
used to solve various motion planning problems in practice.
Among them Probabilistic Roadmap Method (PRM) [1] and
Rapidly-exploring Random Tree (RRT) [2] are the most
widely used approaches [14]. These techniques have been
extensively studied and an excellent survey is available [15].

Our method is built upon the RRT methods, since they
have been extended to solve a wide variety of practical prob-
lems in robotics [16], [17], [18], [19]. RRT methods have
been improved in many different directions by considering
workspace information [5], [20], biasing sampling strategies
[21], [22], decomposing environments and focusing sampling
on critical paths [23], etc.

B. Narrow Passages

One of the most difficult challenges for sampling-based
methods is to efficiently handle narrow passages in the
free space of a robot. Many strategies have been proposed
to improve the performance of both PRM and RRT for
narrow passages [15]. At a high level, they include the
use of the workspace geometric information to guide the
sampling [5], [24], filtering(or adaptive sampling) techniques
towards important regions including narrow passages [6], [7],
[8], dynamic sampling distributions [25], utilizing free space
information [26], and retraction-based approaches.

Filtering techniques: Filtering techniques [6], [7], [8] aim
to generate lots of samples at the robot’s free space and filter
out some of them that are not located near difficult regions
such as narrow passages, leading to adaptive sampling. Boor
et al. [6] proposed the Gaussian sampling strategy that
distributes samples near the boundary of the free space. The
bridge test proposed by Hsu et al. [8] uses three sampled
configurations to boost the sampling density inside narrow
passages. Shkolnik and Tedrake [27] proposed the Ball Tree
algorithm that approximates the reachable free space in a
similar way to our non-colliding line-test.

Retraction-based approach: The main idea of the
retraction-based approach is to retract in-collision samples
towards more useful regions such as the boundary of C-
Obstacle or the medial axis of the free space. Some of
retraction-based algorithms utilize the contact information
for retraction [10], [12], [9] or dilate the free space [11], [13].
These techniques can efficiently handle narrow passages, but
can run very slowly, if the free space does not have such
difficult regions because of their computational overheads.

At a high level, our approach integrates these two differ-
ent approaches, filtering and retraction-based techniques, in
order to robustly handle various environments that do or do
not have narrow passages. Hsu et al. [28] also considered to
use different sampling methods and adaptively used them for
a higher performance. On the other hand, this paper explores
another direction of integrating different techniques; our
method uses a cheap filtering method as a culling technique
to decide whether it is desirable to perform an expensive
retraction method or not.

Fig. 2. S-tunnel Benchmark: The leftmost figure shows the S-tunnel
benchmark. The right two figures show the average performance of two
variations of the S-tunnel benchmark. 0.85 and 1.3 indicate the scaling
factor of the cubic robot. 0.85 does not create any narrow passages, while
1.3 creates them.

III. BACKGROUNDS

In this section we give a brief review on the basic RRT
and its variant based on an optimization-based retraction,
which is designed for efficiently handling narrow passages.
Then we discuss their issues that arise when we apply them
to various environments, some portions of which contain
narrow passages, but other portions of which do not have
such difficult regions.

A. Reviews of RRT and Retraction

A basic RRT algorithm starts with a single or multiple
random trees [2]. The basic RRT method generates a sample,
qr, in the configuration space and finds its nearest neighbor
node, qn, among nodes of random trees. Then we attempt
to connect qn with qr. If qr is in collision or there are any
obstacles in between qr and qn, we compute a first in-contact
configuration, qc, that touches the boundary of C-Obstacle,
along a straight line from qr and qn [14, pp. 189–192]. Then
qc is added to the tree and is connected with qn (Fig. 4-(a)).

It has been known that the basic RRT explores the free
space with a bias related to the Voronoi diagram [2]. Espe-
cially, a probability that a node of a random tree is chosen
as the nearest neighbor node is proportional to the volume
of the Voronoi region associated with the node.

This basic RRT or its variants, however, can take a
prohibitively long planning time, when the free space of a
robot contains narrow passages. This is because the regions
associated with narrow passages are significantly smaller
than other regions. As a result, the probability of exploring
and getting out the narrow passage region is quite low.

In order to address the problem of the basic RRT, an
optimization-based retraction technique [9] was proposed
recently. Its main idea is to iteratively retract a sample near
the boundary of the free space, i.e. contact space, based
on a local contact analysis, while minimizing a particular
objective function (e.g., a distance metric); for example, qc′

is a newly retracted in-contact configuration from qc in the
right image of Fig. 4-(a). Even though this optimization
technique behaves in a greedy manner, this technique has
been demonstrated to work well in environments that have
narrow passages. For example, this optimization-based re-
traction technique shows two times higher performance than
the basic RRT in the wiper 1.0 benchmark (Fig. 3), which
has narrow passages.



Fig. 3. Wiper 1.0 Benchmark: The left two figures show two animation
sequences of getting a wiper out of the windscreen model. Since there are
not much rooms between two models, this benchmark has narrow passages.
The rightmost graph shows the average planning time of different methods
performed in 100 times.

B. Issues with Optimization-based Retraction

The optimization-based retraction technique works quite
well with scenes that have narrow passages. This result is
achieved by performing extra operations to the basic RRT,
such as local contact analysis, additional sampling, etc. These
operations have relatively higher computational overheads,
compared to other operations of the basic RRT method [9].
Also, while this technique explores and gets out of narrow
passages efficiently by generating samples on the contact
space, it covers all the contact spaces equally well. In other
words, this technique tends to generate many samples near
the contact space, even though the contact space is not on
narrow passages.

As a result, if an environment does not have narrow
passages or have many obstacles that create the contact space
without generating narrow passages, the optimization-based
retraction technique can show even lower performance than
the basic RRT, because of both the computational overhead
and excessive sampling on the contact space. For example,
it shows 84% lower performance than the basic RRT in the
S-tunnel benchmark 0.85 (Fig. 2) that does not have narrow
passages.

IV. SELECTIVE RETRACTION-BASED RRT

Our technique is based on the optimization-based retrac-
tion RRT method [9]. To efficiently handle various types of
environments that have or do not have narrow passages, it
is critical to identify regions that are likely to be narrow
passages and to selectively perform the expensive retraction
operation only on those regions.

In order to efficiently identify such narrow passages within
our RRT-based planner, we present a bridge line-test, which
is inspired by the bridge test [8], originally proposed for
probabilistic roadmap techniques. Our bridge line-test uses
a line passing through an in-contact configuration to test
whether it is likely to have narrow passage around the
configuration. We also propose a non-colliding line-test,
a dual operator to the bridge line-test, to generate more
samples near narrow passages.

A. Selective Retraction-based Extension

We first explain our extension method of SR-RRT, whose
pseudo code is at Algorithm 1. Once a random sample qr and
its nearest neighbor node qn are computed as mentioned in

Algorithm 1 SRExtend(qn, qr)
if HaveCollisionFreePath (qnqr) then

return RRTExtend(qn, qr)
end if
qc ← the first in-contact configuration from qn to qr
if BridgeLineTest (qc) then

OptimizedRetraction (qc)
end if
return qc

Sec. III-A, then we perform our extension method, SREx-
tend (qn,qr), shown in Algorithm 1. The first step of our
extension method is exactly the same to the extension method
of the basic RRT explained in Sec. III-A. Note that at this
step, we may create an in-contact configuration qc.

As the second step of our extension method, we perform
our bridge line-test to decide whether we need to perform
the retraction operation. If the bridge line-test indicates that
there is a narrow passage around the in-contact configura-
tion qc, we perform the retraction operation and generate
another in-contact configuration qc′ in a way that we can
reduce the distance between qr and the newly generated in-
contact configuration qc′ [9]. This operation is represented as
OptimizedRetraction (·) in the pseudo code of our extension
method (Algorithm 1).

B. Bridge Line-Test

The bridge line-test determines whether a narrow passage
exists around an in-contact configuration qc. Its pseudo code
is shown in Algorithm 2. To perform the bridge line-test,
we first generate a line whose one end is located at qc.
The line can have an arbitrary line direction. Instead of
generating the line direction in a uniform manner, we take
into account available local information around qc to make
the line direction to cross narrow passages with higher
probability.

Note that it has been identified that a collision-free path
exists from qc to qn (see the left image of Fig. 4-(a)). As a
result, we can assume that there are no narrow passages along
that particular direction, ~ld , which is qn−qc. On the contrary,
a line segment between qc and qr is in C-Obstacle. As a
result, we can also assume that there are no narrow passage
along a line direction, ~l′d = (qr − qc), from qc. This local
information leads us to generate an arbitrary line direction
with a higher probability in these intervals defined between
these two line directions, to make the randomly generated
line to cross potentially-existing narrow passages.

In particular, we use a line generating function, pl(·), a
mixture of two reflected Gaussians, each of which has near
zero probability at these two line directions ~ld and ~l′d , while
they peak at a plane whose normal is either ~ld or ~l′d ; Fig. 4-(b)
shows the 2D example of this distribution function.

Once we generate a line direction starting from qc, then we
compute the other end point, qe of the line by computing a
random distance, d, according to a Gaussian function, pd(·).
We set the mean of the Gaussian function to be the average



(a) Procedure of the bridge line-test

(b) PDF for the line direction

Fig. 4. The upper two figures show the procedure of generating and
performing a bridge line-test, while the bottom figure shows the probability
distribution function (PDF) for the line direction parameterized with θ .

Algorithm 2 BridgeLineTest(qc)
Construct a random line qcqe based on pl(·), pd(·), and
PCA on the local free space of qc
if (! HaveCollisionFreePath (qcqe) ) then

return true // identified as a narrow passage.
end if
return false

distance between successive in-contact configurations com-
puted by the retraction operation (e.g., DR in Fig. 4-(a)).
The main reason of choosing the mean in such a way is that
since we can go deeper on average in the amount of DR
in a narrow passage with a retraction operation, we aim to
identify narrow passages with that amount of width. We set
the standard deviation of the Gaussian function to be small,
but to have a meaningful probability (e.g., DR/2) to identify
very small narrow passages; we make sure that pd(0) has a
non-zero probability to detect narrow passages with infinitely
small width, when we generate infinite number of samples.

After computing a line whose two end points are qc and
qe, i.e. qcqe, we check whether there are any collisions in
the line. For detecting collisions on the line, we can use
either continuous or discrete collision detection methods.
For discrete collision detection methods, we check a fixed
number of intermediate configurations on the line. If there
are any collisions at configurations other than the in-contact
configuration qc, we treat the region around these two
configurations of qc and qe as they are in a narrow passage,
and thus perform the retraction operation.

1) Re-testing: Our bridge line-test can fail with a low
probability to identify a region to be in a narrow passage,
even though the region is in a narrow passage. This failure
is mainly because our bridge line-test considers only one di-
mensional line in multiple dimensional configuration spaces
to check whether a node is in a narrow passage. Instead
of performing the bridge line-test only one time for each
node, we perform the bridge line-test, whenever an in-contact

Algorithm 3 Re-test(qn)
if qn is in-contact configuration and did not pass earlier
bridge line-tests then

if BridgeLineTest (qn) then
OptimizedRetraction (qn)

end if
end if

configuration that was not identified as narrow passages with
earlier bridge line-tests is chosen as a nearest neighbor node
of a random sample. This re-testing is defined as Re-test(qn)
shown in Algorithm 3.

Note that it is quite reasonable to re-test the node with
the bridge line-test, since the node selected as a nearest
node to others many times implies that the tree expansion
may be stuck there by potentially-existing narrow passages
around the node. Moreover, by allowing multiple re-testing,
the bridge line-test can correctly identify the existence of
narrow passages in a probabilistic manner with many random
samples.

C. High-Dimensional Configuration Spaces

Our bridge line-test is very efficient, since the line-test
considers whether there are collisions between the line
of robot configurations and the environment. However, its
accuracy degrades as the dimension of the configuration
spaces goes higher because of its one dimensional nature of
checking collisions. In order to ameliorate this problem, we
consider how local free spaces grow, and generate random
lines of bridge line-tests more frequently in dimensions that
may contain narrow passages.

Inspired by a recent dimension reduction technique de-
veloped for random motion planning approaches [26], we
perform the principal component analysis (PCA) to see how
local free space is distributed, and treat a region to be in a
narrow passage when the local free space is not uniformly
distributed in the configuration space. For example, if the free
space is located in a narrow passage, we can assume that
the free space is not uniformly distributed, but is severely
constrained and thus has an elongated shape (see the left
image of Fig. 5).

The PCA is a well-known statistical procedure that com-
putes a covariance matrix out of a set of points and pro-
vides eigenvectors and their corresponding eigenvalues of
the matrix [29]. The PCA is often used for dimensionality
reduction, and the computed eigenvectors are treated as
principal components of input points.

We apply the PCA in a similar manner as used in the PCA-
RRT [26]. When we need to generate a random line from qc,
we first collect k nearest neighbors from qc by a breadth-first
search, and then perform the PCA on those nearest neighbors.
We assume that the principal component with the maximum
eigenvalue, i.e. variance, aligns with the longest axis of the
elongated-shaped narrow passage. Our goal of choosing the
random line direction is to increase a probability that the
generated direction crosses the longest axis of the narrow
passage.



Fig. 5. The left figure shows shapes of local free spaces (green and red
ones) computed from two nodes. The red one located in a narrow passage
has elongated shape, while the green one located in wide-open free space is
uniformly distributed in the space. The right figure shows the transformed
line direction ~d′r from an initially generated direction ~dr . Note that orange
vectors are eigenvectors scaled by the corresponding eigenvalues computed
from the local region of qn.

To meet our goal, we transform ~dr, computed in the line
generating PDF pl(·) in Sec. IV-B, into a new line direction
~d′r based on the following equation:

~d′r =
n

∑
i=1

(
1
λi
~dr ·Ui)Ui,

where Ui is i-th eigenvector and λi is its corresponding
eigenvalue. This equation transforms ~dr to follow principal
components more that have lower variances, leading to
crossing a potentially-existing narrow passage, since 1/λi,
a transforming weight, becomes bigger as we have lower
variances.

The accuracy of the PCA-based technique for transforming
the line direction depends on how well our assumption is
valid given a local configuration. Moreover, this technique
makes a bias for generating line directions for our bridge
line-test. In order to mitigate the negative effects of our PCA-
based technique, we adopt the transformed line direction
~d′r with a probability pl(~d′r), the line generating PDF. If
~d′r is rejected, we generate a line direction according to
pl(·) as mentioned in Sec. IV-B. As a result, the PCA-
based bias has (1− pl(~d′r))pl(~d′r) higher probability over our
prior line generating function pl(·), given the PCA-based
computed line direction ~d′r. Note that we use our bridge line-
test combined with the PCA technique to efficiently identify
narrow passages before performing our retraction method,
while the PCA-RRT [26] used the PCA to control random
sampling.

D. Non-Colliding Line-Test

We can generate more samples near narrow passages by
using both the bridge line-test and the optimization-based
retraction operator. However, these retraction operations can
be performed, once a random sample is located closely to
such regions. In order to increase the probability to generate
samples near such regions in an efficient manner, we propose
a sampling bias technique using the non-colliding line-test,
which is a dual operator to our bridge line-test.

Our main idea is that once we identify wide-open free
spaces in the configuration space, it is more desirable to
discard samples generated within such free spaces and to
generate more samples outside those areas and potentially
towards narrow passages.

It is, unfortunately, challenging to exactly define
wide-open free spaces in high-dimensional configuration

Algorithm 4 NonCollidingLineTest(qn)
Compute a hypersphere with the center of qn and radius
of dNN
Generate a random point qe within the hypersphere
if HaveCollisionFreePath (qeqn) then

return true
end if
return false

Fig. 6. This figure shows free hyperspheres that approximate wide-open
free spaces.

spaces [30]. Instead of constructing them deterministically,
we define them in a probabilistic manner. At a high level,
we generate a line segment from a node (similar probabilistic
manner used in the bridge line-test) and check whether the
line is a collision-free path. If so, we treat the region around
the node as a wide-open free space.

Let us first define a free hypersphere in the configuration
space to be a hypersphere, whose contained configurations do
not have any collisions against the environment. Especially,
we define the center of each hypersphere to be located at a
node of the random tree, except for in-contact configurations;
in-contact configurations have contacts by the definition and
thus we do not consider them as wide-open free spaces. Also,
we set the radius of each hypersphere to be the distance
computed between the center node of the hypersphere and
its nearest neighbor node (Fig. 6). Note that when we add a
new node to the random tree, we compute the distance, dNN ,
between the new node and its nearest neighbor node, and use
the distance for the radius of each hypersphere associated
with the new node and its nearest neighbor node.

In order to determine whether a hypersphere of a node is
free hypersphere or not, we use the non-colliding line test.
The non-colliding line-test generates a random line starting
from the center node, qn, of the hypersphere. If there are
no collisions in the random line, we treat the hypersphere
to be free hypersphere. Note that the non-colliding line-
test acts as an efficient probability function in terms of
identifying whether a region can be classified as a wide-
open free space; even though performing the non-colliding
line-test one time may incorrectly identify a hypersphere as
a free hypersphere, performing it whenever a node is chosen
as a nearest neighbor node can identify a region correctly in
a probabilistic sense.

To generate a line used for a non-colliding test, we
uniformly generate a random direction for the line segment
starting from the center node qn of a hypersphere. Then
we compute another end point, qe, of the line along the
chosen line direction. qe is computed by a random distance
generated by a Gaussian distribution function, whose mean



Algorithm 5 SR-RRT Planner
Require: tree T

T .AddVertex (qinit )
repeat

qr ← RandomState(); qn ← NearestNeighbor(qr, T )
if qn is not an in-contact configuration AND
distance(qn, qr) < qn.dNN then

if NonCollidingLineTest(qn) then
CONTINUE

end if
end if
Re-test(qn)
qnew ← SRExtend(qn, qr)
if qn.dNN > distance(qn, qnew) then

qn.dNN ← distance(qn, qnew)
end if
qnew.dNN ← distance(qn, qnew)
T .AddVertex (qnew)
T .AddEdge (qn, qnew)

until a collision-free path between qinit and qgoal is found

and standard deviations are set to be the half of the radius
of the hypersphere associated with qn.

Once we have a set of approximate, free hyperspheres,
we discard a random sample if the random sample is within
the free hypersphere of its nearest neighbor node. A pseudo
code of our non-colliding line-test is shown at Algorithm 4.

E. Overall Algorithm

A pseudo code of the overall algorithm of our SR-RRT
planner is shown at Algorithm 5. We generate a random
sample qr and find its nearest neighbor node qn. Then we
discard it if the sample qr is inside the wide-open free spaces
probabilistically defined by performing the non-colliding
list-test. Otherwise, we perform our extension algorithm
after performing the re-testing process. As the last step of
our method, we update the nearest neighbor distance, dNN ,
and the tree, T . We iteratively perform these steps until
we find a collision-free path between the initial and goal
configurations.

V. RESULTS AND DISCUSSIONS

We have implemented SR-RRT for three dimensional rigid
body robots on an Intel i7 desktop machine that has 3.33GHz
CPU. Our method is built upon a basic RRT integrated
with an efficient optimized-based retraction method [9]. We
use PQP library [31] for collision detection. For the local
planning, we use a linearly interpolated motion between two
configurations and check whether we have collisions on a
fixed number of intermediate configurations on the linearly
interpolated motion.

Benchmarks: We test our method against ten different
benchmarks that have different characteristics. We classify
our benchmarks as three types: environments with a high
portion of narrow passages (NP), environments that do
not have such narrow passages (Non-NP), and in-between

(a) Bug-trap (b) Flange

(c) Pipe

Fig. 7. This figure shows three different benchmarks that have narrow
passages. Also, three image shots that show the planning result are shown
for moving the pipe out of an industrial environment.

environments (Mixed). Benchmarks with the type of Non-
NP include S-tunnel 0.85 (Fig. 2) and S-tunnel 1.0. The S-
tunnel model has a S-shape of tunnel and we change its
characteristics by scaling a cubic-shaped robot; S-tunnel x
uses a scaling factor of x for the robot. Benchmarks with the
type of NP include S-tunnel 1.15 and 1.3, flange (Fig. 7-(b)),
bug-trap (Fig. 7-(a)), wiper 1.0 (Fig. 3), pipe (Fig. 7-(c)), and
living room (Fig. 1). Finally, wiper 0.9 belongs the class of
Mixed; we scale down the size of the wiper. The dimensions
of the configuration spaces in all of these benchmarks are
six. The benchmark information is summarized in Table I.

A. Results and Comparisons

We run our method, SR-RRT, with each of our bench-
marks in 100 times and report the average running time
in Table I. In order to demonstrate the relative benefits
of our method, we have also implemented the basic RRT,
called RRT, and the optimization-based retraction RRT,
called RRRT [9], which are described in Sec. III-A. We use
the same values for parameters (e.g., the collision checking
frequency used in a local planner) that are shared between
different versions of RRT methods.

For all the benchmarks, our method computes collision-
free paths in less than three minutes. In the pipe and living
room benchmarks, our method spends over one minute
on average to compute a collision-free path, since these
models consist of more than 40 K triangles and have narrow
passages.

For NP-typed benchmarks, our method shows higher (e.g.,
72% higher on average) performance over RRRT and much
higher (e.g., 7.7 times higher on average) over RRT. Since
RRT does not bias its sampling towards narrow passages, it
runs quite slowly in NP-typed benchmarks. RRRT shows
higher performance than RRT. However, because of its
higher computational overheads caused by performing re-
tractions on all the contact spaces, RRRT runs slower than
our method.

For Non-NP-typed benchmarks, RRRT shows lower (e.g.,
about 50%) over RRT, because RRRT excessively gener-
ates many in-contact configurations, most of which do not
capture a new connectivity of free spaces, but pose the



SR-RRT
Model #. Tri Type RRT RRRT BL-test +NC-test +PCA Rep. Img.

S-tunnel 0.85 64 I 53.68 98.83 35.45 28.83 28.14 Fig. 2
S-tunnel 1.0 64 I 96.21 141.22 78.56 70.01 65.57 See below

S-tunnel 1.15 64 III 406 129.5 53.66 53.26 52.08 See below
S-tunnel 1.3 64 III 646 134.72 81.08 80.89 78.9 See below

Bug-trap 2.7k III 145 39.72 30.47 26.4 22.17 Fig. 7-(a)
Flange 6.3k III 589.24 33.12 32.32 30.06 27.99 Fig. 7-(b)

Wiper 0.9 26.7k II 107.57 107.75 50.87 53.51 48.05 See below
Wiper 1.0 26.7k III 283.56 141.5 90.64 86.15 82.91 Fig. 3

pipe 48.4k III 639.99 225.79 176.42 170.6 166.08 Fig. 7-(c)
Livingroom 137k III 776.54 140.94 94.15 84.17 77.2 Fig. 1

TABLE I
MODEL COMPLEXITY AND PERFORMANCE RESULTS; SEE SEC. V FOR

THE DETAILED INFORMATION. TYPE I, II AND III REPRESENT MODEL

TYPES OF NON-NP, MIXED AND NP, RESPECTIVELY.

computational overheads. On the other hand, our method
still shows 68% improvements on average over RRT. Even
though its improvement over RRT is weaker than improve-
ments made with NP-typed benchmarks, our method shows
improvements over RRT even in these benchmarks that
do not have narrow passages. Furthermore, our method
shows about three times improvements over RRRT, since
our method selectively performs retraction operations. These
results indicate that the overheads of our line-tests are small
and demonstrate the robustness of our methods.

For the Mixed benchmark (e.g., wiper 0.9 benchmark),
RRT and RRRT show the similar running time, while our
method still shows 2.24 times improvement over them.
Therefore, we can conclude that our method works more
robustly than RRT and RRRT for a wide variety of environ-
ments that have or do not have narrow passages.

We measure how much improvement we make with each
component of our contributions. By enabling bridge line-
tests we observe 74.6% improvement over RRRT. We achieve
10.4% further improvement by additionally enabling the non-
colliding tests. Also, by adopting the PCA-transformed line
directions, we observe additional 14.6% improvement. The
SR-RRT column in Table I shows incremental effects from
each component on each tested benchmark.

B. Discussions

Table II shows a breakdown of the running time of our
method in different components including the retraction,
two line-tests, and other parts (e.g., computing in-contact
configurations, connecting nodes, etc. related to the basic
RRT); time spent for performing PCA is included in the
bridge line-test. Depending on benchmarks, components take
different portions of the overall running time. In most of
the benchmarks, two line-tests take about 7% to 17% in the
overall running time. For the bug-trap benchmark, these two
tests take 37% of the overall running time, since many in-
contact samples are chosen as nearest neighbors for the tree
expansion. Still retractions and basic RRT operations take
much larger portions than our two tests.

The culling ratios of samples due to the non-colliding
line-tests are quite high (e.g., 78% to 97%) across all the
benchmarks. On the contrary, the culling ratios of retraction
operations due to bridge line-tests relatively vary a lot. The

Model Flange S-tunnel S-tunnel Bugtrap Wiper Pipe Room
(scale) 1.0 1.3 1.0
Retraction 76% 24% 52% 51% 57% 50% 31%
BLTest 6% 13% 14% 28% 12% 6% 14%
NCTest 1% 3% 3% 9% 2% 1% 6%
RRT 17% 60% 31% 12% 29% 43% 49%
Cull % of
BLTest 35% 98% 83% 51% 72% 74% 83%
Cull % of
NCTest 87% 86% 84% 78% 97% 90% 89%

TABLE II
BREAKDOWN OF THE RUNNING TIME OF SR-RRT. CULL % REFERS TO

THE CULLING RATIOS OF TWO TYPES OF LINE-TESTS.

flange benchmark shows the lowest culling ratio (e.g., 35%)
because there are lots of narrow passages while getting the
flange out of the curved pipe. In the S-tunnel 1.0 benchmark,
we achieve up to 98% culling ratio, since the benchmark does
not have any narrow passages.

Our two line-tests check for collisions in a fixed number
of intermediate configurations on a line. For the frequency
of checking collisions in our line-tests, we simply use
the same resolution of discrete collisions employed in the
local planner. Therefore, their costs per each line-test vary
depending on the frequency that the local planner uses.
Among our benchmarks, each bridge and non-colliding line-
test takes 3.4 ms and 1 ms respectively on average. Since we
perform bridge line-tests near narrow passages, the employed
collision algorithm needs to traverse a bounding volume
hierarchy deeper in order to localize collisions [31]. As a
result, the bridge line-test requires about three times higher
running time than the non-colliding line-test.

We have tested S-tunnel models with varying scaling
factors for the cubic-shaped robot (Table I). As we increase
the scaling factor, the benchmark poses a more challenging
narrow passage problem. In this setting, our method achieves
noticeably higher performance improvements over RRT, as
we have more challenging narrow passage problems (e.g.,
1.9, 7.8, and 8.19 times improvements over S-tunnel 0.85,
1.15, and 1.3 respectively). On the other hand, our method
shows slowly diminishing improvements over RRRT as we
increase the scaling factor. This is mainly because there
are more narrow passages and thus culling ratio of our
line-tests decrease. For example, the flange benchmark has
narrow passages in most of its free space. As a result, our
method shows almost similar, but still higher performance to
that of RRRT. These results also demonstrate both the low
computational overheads and robustness of our method.

Limitations: Our method works quite well with all the
tested benchmarks. Even though the proposed line-tests
with PCA computations can be performed without much
overheads, their accuracy in terms of identifying narrow
passages and wide-open areas may not be high in other
scenes. This is mainly because we check a fixed number
of configurations on a line in the configuration space. Also,
even though there are no narrow passages, our bridge line-
tests may treat sharp corners as narrow passages. Our method
does not guarantee to always improve the performance
over the basic RRT and the optimization-based retraction
RRT, because of these properties. Also, even though we



identify narrow passages, they may not contribute to the
final solution. Nonetheless, among all the tested benchmarks,
our method shows improvements over other tested RRT
methods, because of its low computational overheads and
probabilistically high accuracy.

VI. CONCLUSIONS AND FUTURE WORKS

We have presented a novel retraction-based planner, SR-
RRT, which selectively performs the retraction operations
only near narrow passages. To perform such adaptive re-
traction method, we proposed a bridge line-test that can ef-
ficiently identify whether a region contains narrow passages
or not. Especially, we performe PCA with local free spaces
and generate lines that can cross potentially-existing narrow
passages with a high probability. Also, in order to generate
samples near such narrow passages, we presented a non-
colliding line-test that can identify whether a region is a
wide-open free space or not. These line-tests have minor
computational overheads and can work for high dimensional
configuration spaces. Moreover, our method has been demon-
strated to show 6.7 times and 2 times improvements on
average compared to a basic RRT and an optimization based
RRT methods, respectively. More importantly, our method
shows the highest performance among all the tested methods
with all the tested benchmarks, while the performance of
other methods depend on the type of environments. This
result demonstrates higher robustness and generality of our
method.

There are many avenues for future research directions. We
would like to design more accurate, yet efficient filtering
methods. Also, we would like to identify collision-free paths
in a multiresolution approach [23], [24] in order to more
efficiently find such paths. It will be very challenging to
design a multiresolution technique for environments that
contain narrow passages shown in this paper. Finally, the
optimization-based retraction method has been extended to
articulated robots. We would also like to test our method to
such cases.
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