Spherical Hashing

Jae-Pil Heo¹, Youngwoon Lee¹, Junfeng He², Shih-Fu Chang², and Sung-Eui Yoon¹ ¹KAIST ²Columbia Univ.

IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2012

Introduction

- Approximate *k*-nearest neighbor search in high dimensional space
 - widely used in various applications
 - high computation cost, memory requirement
 - tree-based methods do not give any benefit (*curse of dimensionality*)
 - spatial hashing techniques get more attention

Image Retrieval

Finding visually similar images

Image Descriptors

High dimensional point

(BoW, GIST, Color Histogram, etc.)

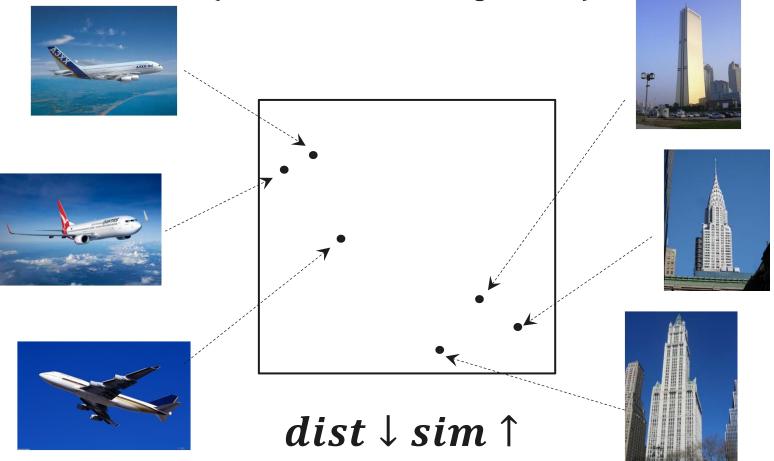
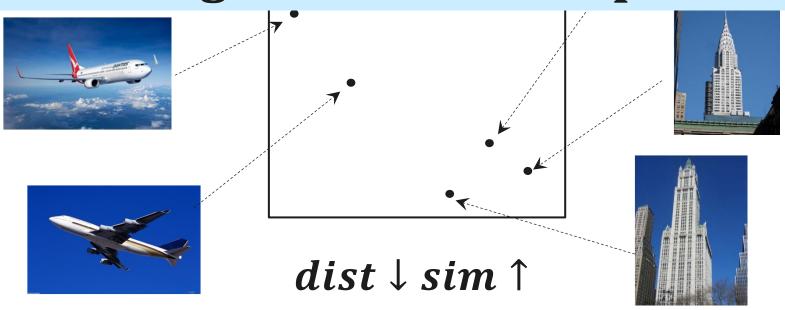


Image Descriptors

High dimensional point Image retrieval is reduced to nearest neighbor search in high dimensional space

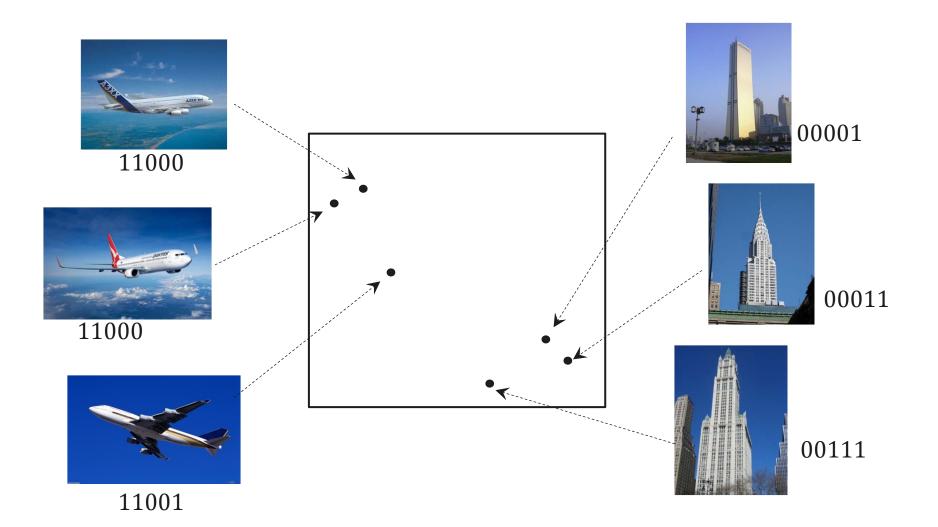


Challenge

	BoW	GIST
Dim	1000+	300+
1 image	4 KB+	1.2 KB+
1B images	3 TB+	1 TB+

 $\frac{144 \; GB \; memory}{1 \; billion \; images} \approx \frac{128 \; bits}{1 \; image}$

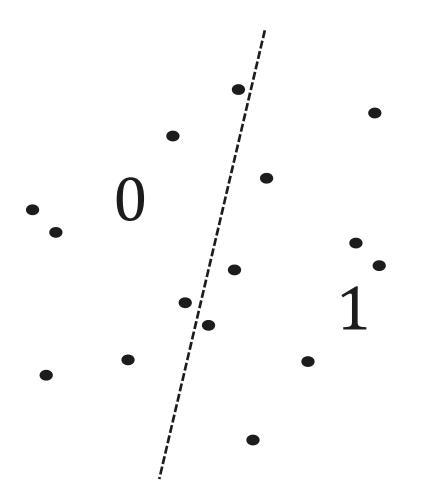
Binary Codes



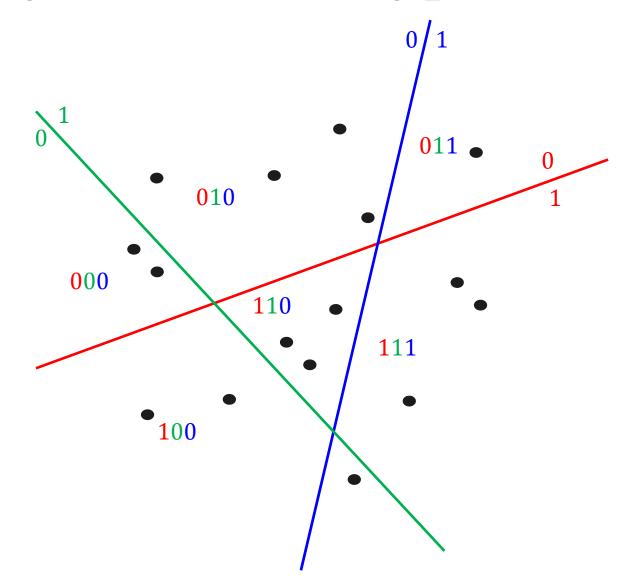
Binary Codes

- * Benefits
 - High compression ratio (scalability)
 - Fast similarity calculation with Hamming distance (efficiency)
- * Issue
 - How well do binary codes preserve data positions and their distances (accuracy)

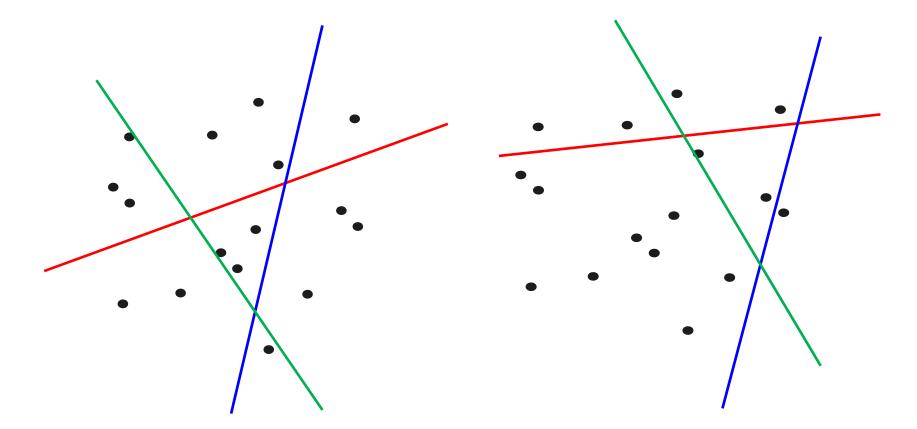
Binary Code with Hyper-Planes



Binary Code with Hyper-Planes



Good and Bad Hyper-Planes



Previous work focused on how to determine good hyper-planes

State-of-the-art Methods

- Random hyper-planes from a specific distribution [Indyk – STOC 1998, Raginsky – NIPS 2009]
- Spectral graph partitioning [Yeiss – NIPS 2008]
- Minimizing quantization error (ITQ) [Gong – CVPR 2011]
- Independent component analysis (ICA) [He – CVPR 2011]
- Support vector machine (SVM) [Joly – CVPR 2011]
- All of them use hyper-planes!

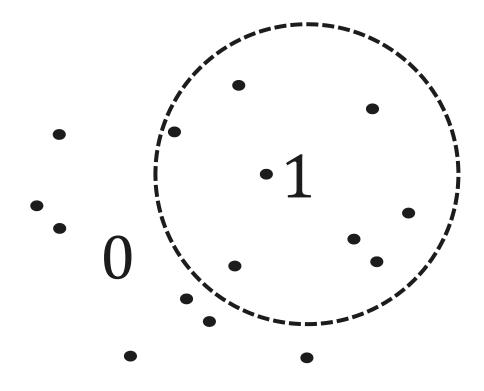
Our Contributions

- Spherical Hashing
- Iterative optimization scheme to determine hyper-spheres
- Spherical Hamming distance

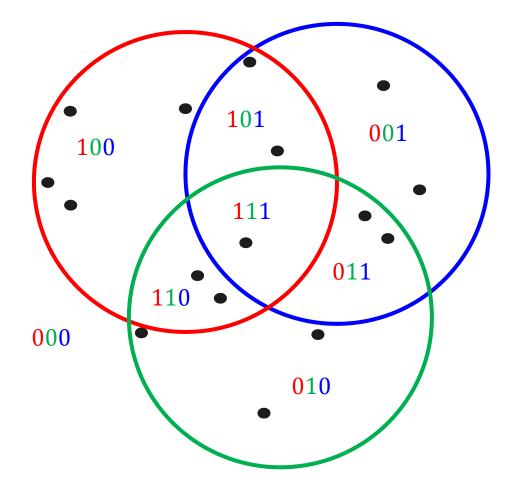
Our Contributions

- Spherical Hashing
- Iterative optimization scheme to determine hyper-spheres
- Spherical Hamming distance

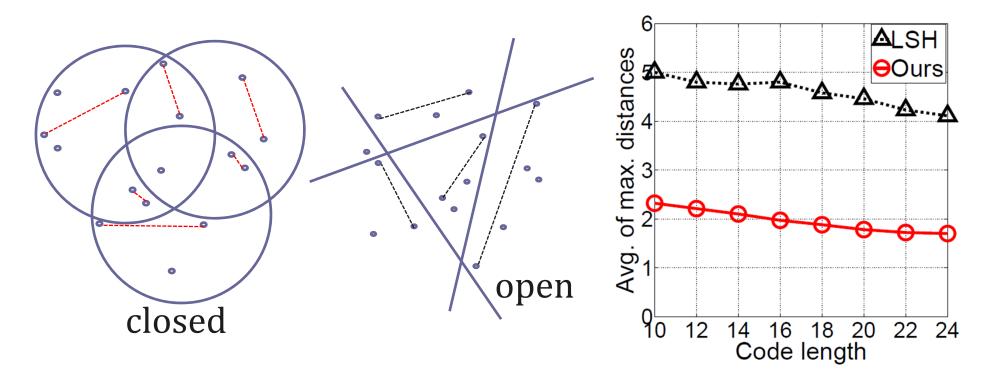
Spherical Hashing



Partitioning Example



Bounding Power of Hyper-Sphere

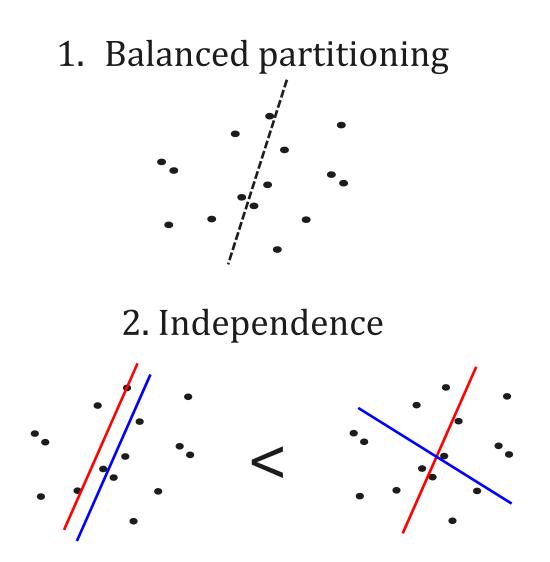


Average of maximum distances within a partition: - Hyper-spheres gives tighter bound!

Our Contributions

- Spherical Hashing
- Iterative optimization scheme to determine hyper-spheres
- Spherical Hamming distance

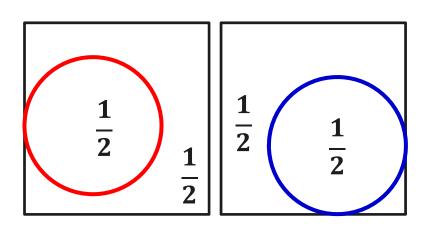
Two Criteria [Yeiss 2008, He 2011]

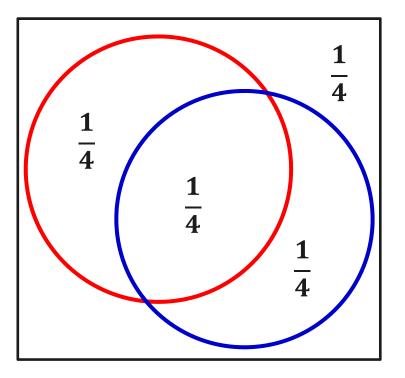


Two Criteria with Hyper-Spheres

1. Balance

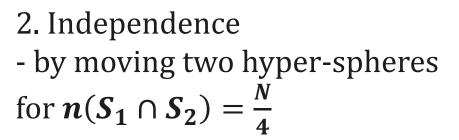
2. Independence

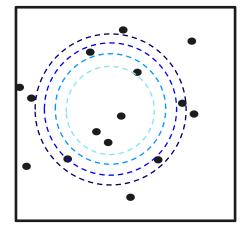


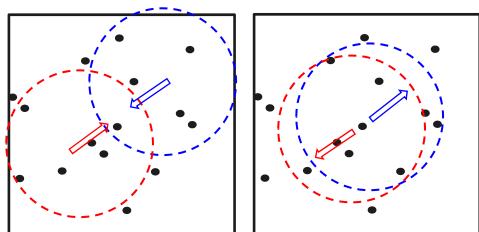


Iterative Optimization

1. Balance - by controlling radius for $n(S) = \frac{N}{2}$



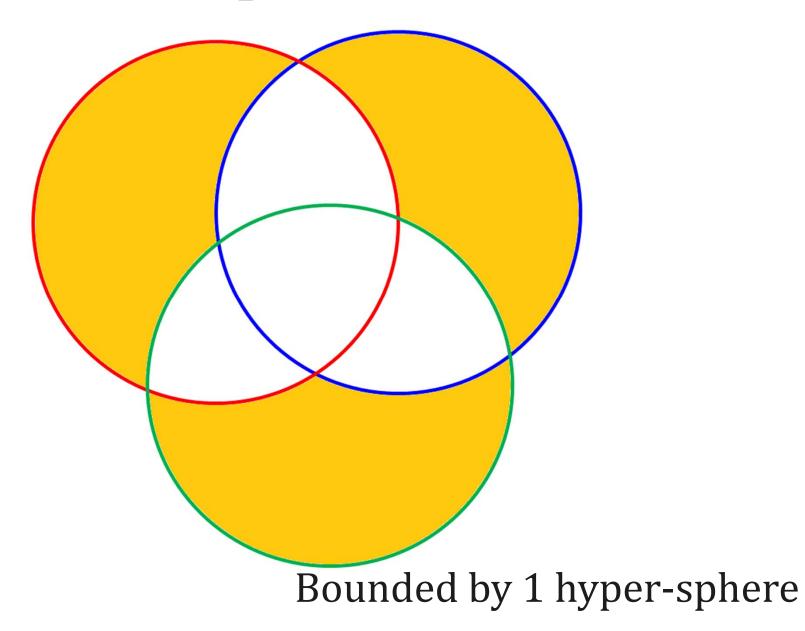


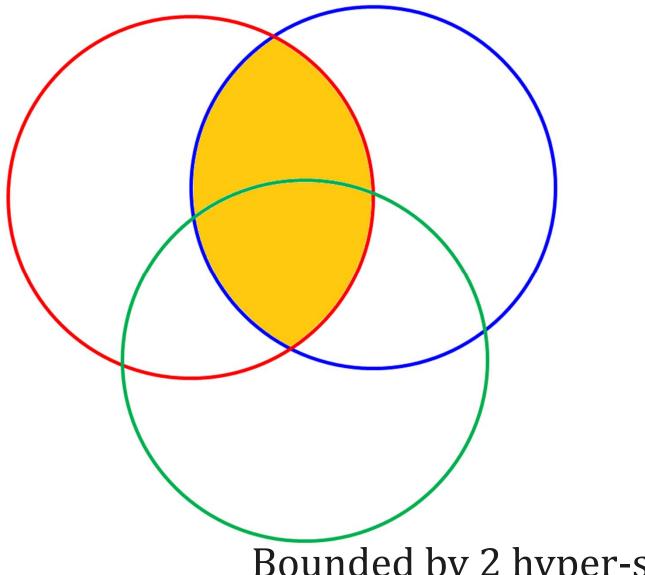


Repeat step 1, 2 until convergence.

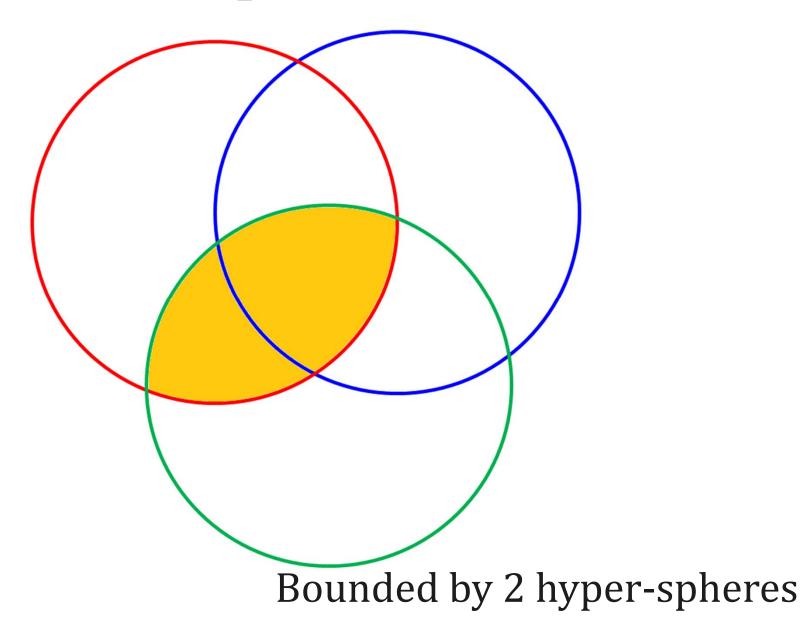
Our Contributions

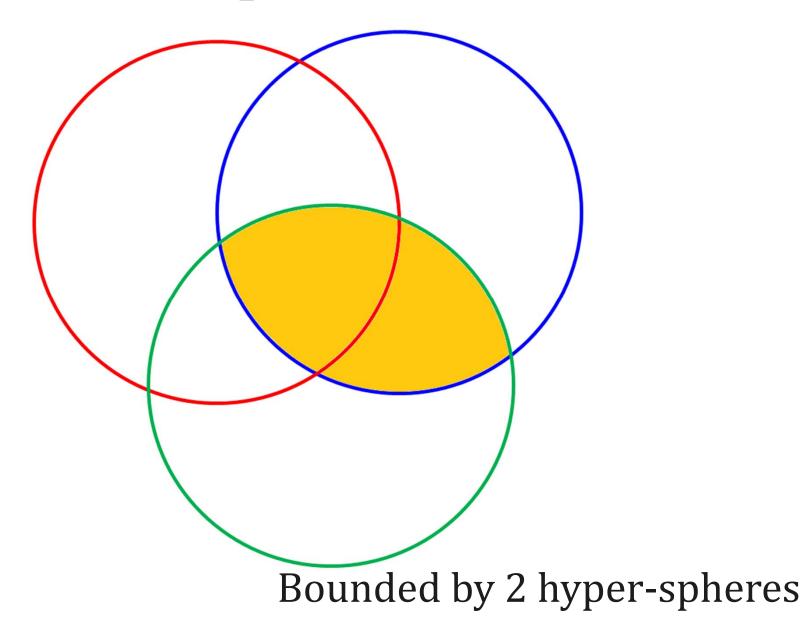
- Spherical Hashing
- Iterative optimization scheme to determine hyper-spheres
- Spherical Hamming distance

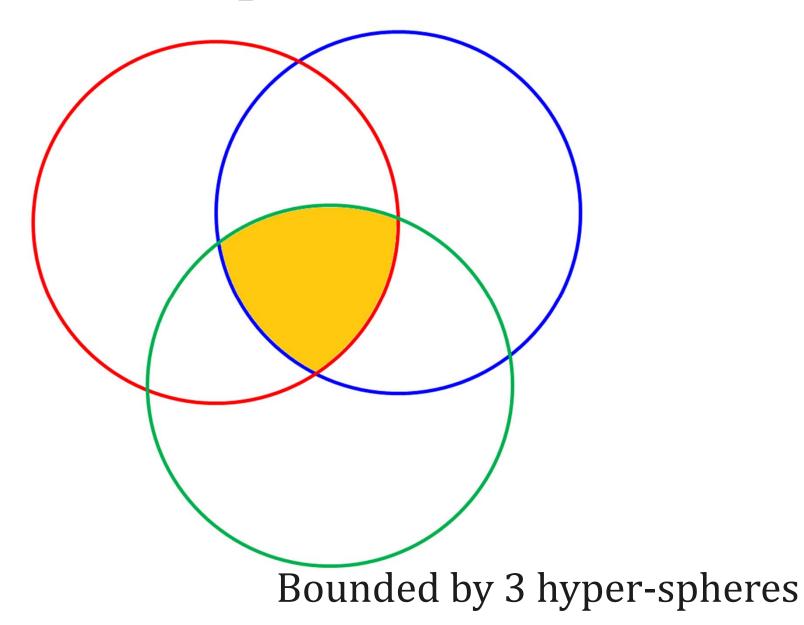




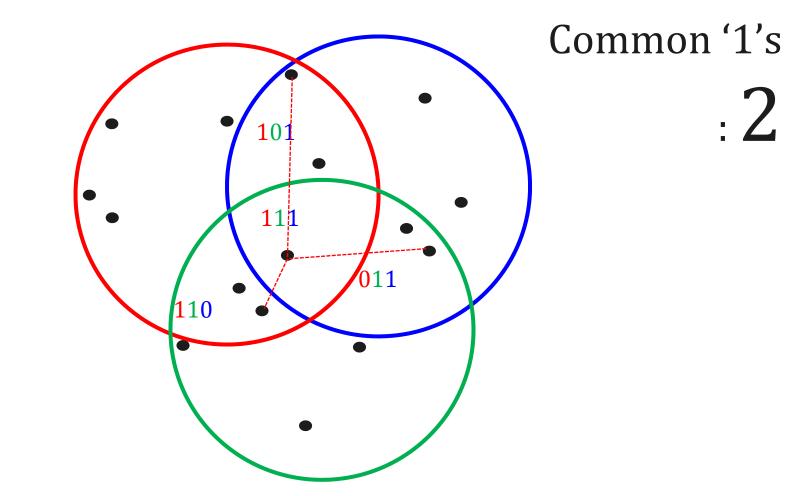
Bounded by 2 hyper-spheres



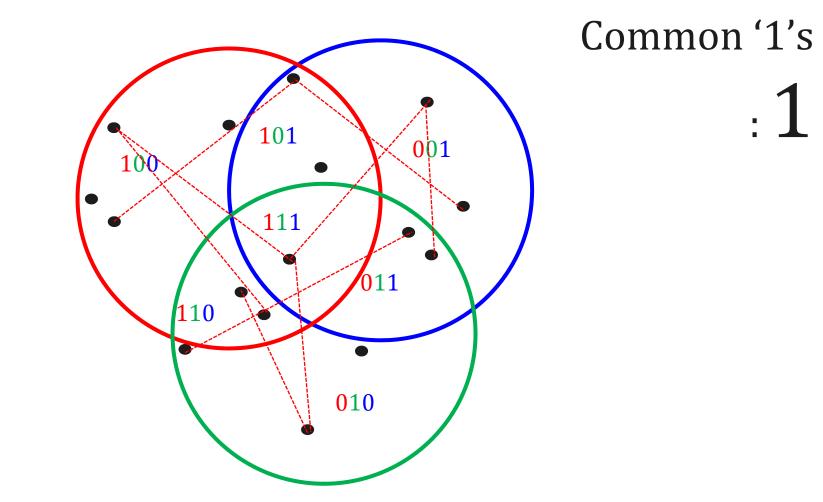




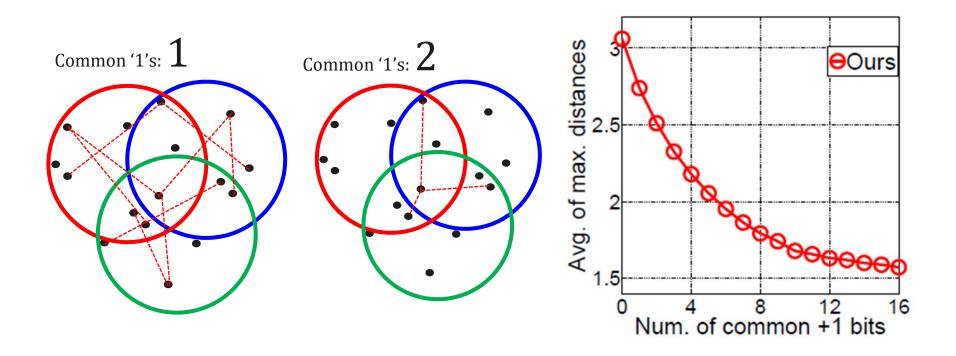
Max Dist. and Common '1'



Max Dist. and Common '1'



Max Dist. and Common '1'



Average of maximum distances between two partitions: decreases as number of common '1'

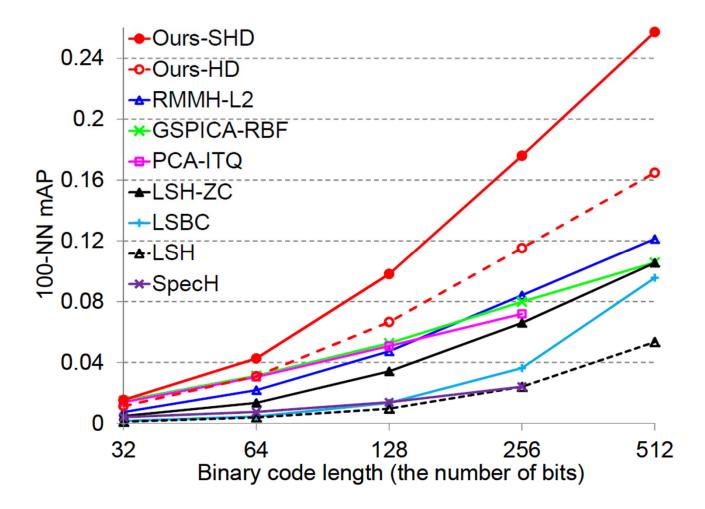
Spherical Hamming Distance (SHD)

$$d_{shd}(b_i, b_j) = \frac{|b_i \oplus b_j|}{|b_i \wedge b_j|}$$

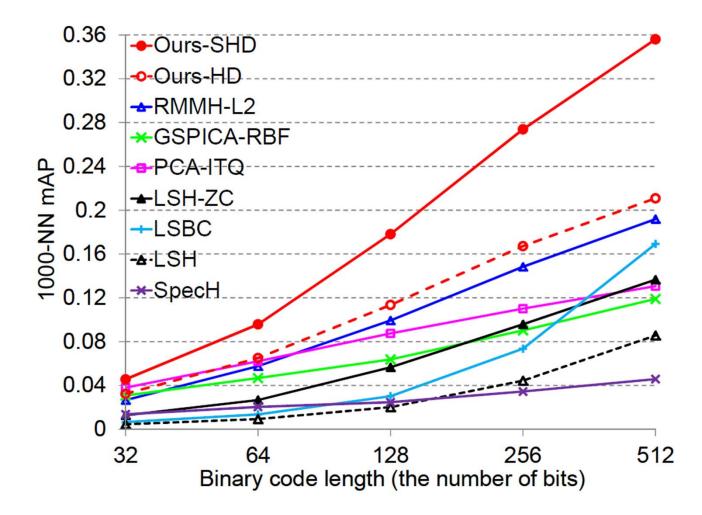
SHD: Hamming Distance divided by the number of common '1's.

$$b_i$$
: binary code \oplus : XOR \wedge : AND

Result (1M, 384 dim GIST)



Result (1M, 960 dim GIST)



Result (75M, 384 dim GIST)

