
Spherical	Hashing

Jae‐Pil Heo1,	Youngwoon Lee1,	Junfeng He2,	
Shih‐Fu	Chang2,	and	Sung‐Eui Yoon1

1KAIST 2Columbia	Univ.

IEEE	Conf.	on	Computer	Vision	and	Pattern	Recognition	(CVPR)	2012



Introduction

• Approximate	k‐nearest	neighbor	search	in	
high	dimensional	space
– widely	used	in	various	applications	
– high	computation	cost,	memory	requirement
– tree‐based	methods		do	not	give	any	benefit	
(curse	of	dimensionality)

– spatial	hashing	techniques	get	more	attention



Image	Retrieval

Finding	visually	similar	images



Image	Descriptors
High	dimensional	point
(BoW,	GIST,	Color	Histogram,	etc.)



Image	Descriptors
High	dimensional	point
(BoW,	GIST,	Color	Histogram,	etc.)Image	retrieval	is	reduced	to

nearest	neighbor	search	
in	high	dimensional	space



Challenge

BoW GIST
Dim 1000+ 300+
1	image 4	KB+ 1.2	KB+
1B images 3	TB+ 1	TB+



Binary	Codes

11000

11000

11001

00001

00011

00111



Binary	Codes
11000

11000

11001

00001

00011

00111

* Benefits
‐ High compression ratio (scalability)
‐ Fast	similarity	calculation	with	Hamming	distance
(efficiency)

*	Issue
‐ How	well	do	binary	codes	preserve	data
positions	and	their	distances	(accuracy)



Binary	Code	with	Hyper‐Planes

0

1



Binary	Code	with	Hyper‐Planes
10

1
0

1
0

111

011

010

110
000

100



Good	and	Bad	Hyper‐Planes

Previous	work	focused	on	
how	to	determine	good	hyper‐planes



State‐of‐the‐art	Methods
• Random	hyper‐planes	from	a	specific	distribution
[Indyk – STOC	1998,	Raginsky – NIPS	2009]

• Spectral	graph	partitioning
[Yeiss – NIPS	2008]

• Minimizing	quantization	error	(ITQ)	
[Gong	– CVPR	2011]

• Independent	component	analysis	(ICA)	
[He	– CVPR	2011]

• Support	vector	machine	(SVM)
[Joly – CVPR	2011]

• All	of	them	use	hyper‐planes!



Our	Contributions

• Spherical	Hashing

• Iterative	optimization	scheme	to	determine	
hyper‐spheres

• Spherical	Hamming	distance



Our	Contributions

• Spherical	Hashing

• Iterative	optimization	scheme	to	determine	
hyper‐spheres

• Spherical	Hamming	distance



Spherical	Hashing

0
1



Partitioning	Example

111

011

010

110
000

100 001101



Bounding	Power	of	Hyper‐Sphere

Average of maximum distances within a partition:
‐ Hyper‐spheres gives tighter bound!

open
closed



Our	Contributions

• Spherical	Hashing

• Iterative	optimization	scheme	to	determine	
hyper‐spheres

• Spherical	Hamming	distance



Two	Criteria	[Yeiss 2008,	He	2011]

1. Balanced	partitioning

2.	Independence

<



Two	Criteria	with	Hyper‐Spheres

૚
૛ ૚

૛

૚
૝

૚
૝

૚
૝

૚
૝

૚
૛ ૚

૛

1.	Balance 2.	Independence



Iterative	Optimization

1.	Balance
‐ by	controlling	radius
for	࢔ ࡿ ൌ ࡺ

૛

2.	Independence
‐ by	moving	two	hyper‐spheres	
for	࢔ ૚ࡿ ∩ ૛ࡿ ൌ ࡺ

૝

Repeat	step	1,	2	until	convergence.



Our	Contributions

• Spherical	Hashing

• Iterative	optimization	scheme	to	determine	
hyper‐spheres

• Spherical	Hamming	distance



Intuition	of	Spherical	HD

Bounded	by	1	hyper‐sphere



Intuition	of	Spherical	HD

Bounded	by	2	hyper‐spheres



Intuition	of	Spherical	HD

Bounded	by	2	hyper‐spheres



Intuition	of	Spherical	HD

Bounded	by	2	hyper‐spheres



Intuition	of	Spherical	HD

Bounded	by	3	hyper‐spheres



Max	Dist.	and	Common	‘1’

111

011
110

101

Common	‘1’s

:	2



Max	Dist.	and	Common	‘1’

111

011

010

110

100 001101

Common	‘1’s

:	1



Max	Dist.	and	Common	‘1’

Common	‘1’s:	1 Common	‘1’s:	2

Average of maximum distances between two partitions:
decreases as number of common ‘1’



Spherical	Hamming	Distance	(SHD)

SHD: Hamming Distance divided by the number of
common ‘1’s.

௜



Result	(1M,	384	dim	GIST)



Result	(1M,	960	dim	GIST)



Result	(75M,	384	dim	GIST)


