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Abstract—Many binary code embedding schemes have been actively studied recently, since they can provide efficient similarity
search, and compact data representations suitable for handling large scale image databases. Existing binary code embedding
techniques encode high-dimensional data by using hyperplane-based hashing functions. In this paper we propose a novel
hypersphere-based hashing function, spherical hashing, to map more spatially coherent data points into a binary code compared
to hyperplane-based hashing functions. We also propose a new binary code distance function, spherical Hamming distance,
tailored for our hypersphere-based binary coding scheme, and design an efficient iterative optimization process to achieve both
balanced partitioning for each hash function and independence between hashing functions. Furthermore, we generalize spherical
hashing to support various similarity measures defined by kernel functions. Our extensive experiments show that our spherical
hashing technique significantly outperforms state-of-the-art techniques based on hyperplanes across various benchmarks with
sizes ranging from one to 75 million of GIST, BoW and VLAD descriptors. The performance gains are consistent and large, up
to 100% improvements over the second best method among tested methods. These results confirm the unique merits of using
hyperspheres to encode proximity regions in high-dimensional spaces. Finally, our method is intuitive and easy to implement.

Index Terms—hashing, binary codes, large-scale image search
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1 INTRODUCTION

HANKS to rapid advances of digital camera and

various image processing tools, we can easily
create new pictures and images for various purposes.
This in turn results in a huge amount of images
available online. These huge image databases pose a
significant challenge in terms of scalability to many
computer vision applications, especially those appli-
cations that require efficient similarity search.

For similarity search, nearest neighbor search tech-
niques have been widely studied and tree-based
techniques [2], [3], [4], [5] have been used for low-
dimensional data. Unfortunately, these techniques are
not scalable to high-dimensional data. Hence recently
binary code embedding techniques have been actively
studied to provide efficient solutions for such high-
dimensional data [6]], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], 171, [18], [19], [20], [21]], [22], [23].

Encoding high-dimensional data points into binary
codes based on hashing techniques enables higher
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scalability thanks to both its compact data representa-
tion and efficient indexing mechanism. Similar high-
dimensional data points are mapped to similar binary
codes and thus by looking into only those similar
binary codes (based on the Hamming distance), we
can efficiently identify approximate nearest neighbors.

Existing hashing techniques can be broadly cat-
egorized as data-independent and data-dependent
schemes. In data-independent techniques, hashing
functions are chosen independently from the data
points. Locality-Sensitive Hashing (LSH) [6] is one of
the most widely known techniques in this category.
This technique is extended to various hashing func-
tions [7], [8], [11], [12], [13]]. Recent research attentions
have been shifted to developing data-dependent tech-
niques to consider the distribution of data points and
design better hashing functions. Notable examples
include spectral hashing [10], semi-supervised hash-
ing [17], iterative quantization [20], joint optimiza-
tion [21]], and random maximum margin hashing [22].

In all of these existing hashing techniques, hyper-
planes are used to partition the data points into two
sets and assign two different binary codes (e.g., —1 or
+1) depending on which set each point is assigned
to. Departing from this conventional approach, we
propose a novel hypersphere-based scheme, spherical
hashing, for computing binary codes. Intuitively, hy-
perspheres provide much stronger power in defining
a tighter closed region than hyperplanes (See Fig. [1).
For example, at least d 4 1 hyperplanes are needed
to define a closed region for a d-dimensional space,
while only a single hypersphere can form such a
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Fig. 1. The difference between our hypersphere-based
binary code embedding method and hyperplane-based
one. The left and right figures show partitioning ex-
amples of hypersphere-based and hyperplane-based
methods respectively, for 3 bit binary codes in the 2-D
space. Each function h; determines the value of i-th bit
of binary codes. The hypersphere-based binary code
embedding scheme gives a higher number of tightly
closed regions compared to hyperplane-based one.

closed region even in an arbitrarily high dimensional
space.

Our paper has the following contributions:

1) We propose a novel spherical hashing scheme,
analyze its ability in terms of similarity search,
and compare it against the state-of-the-art
hyperplane-based techniques (Sec. [3.1).

2) We develop a new binary code distance func-
tion tailored for the spherical hashing method
(Sec.[3.2).

3) We formulate an optimization problem that
achieves both balanced partitioning for each
hashing function and the independence between
any two hashing functions (Sec.[3.3). Also, an ef-
ficient, iterative process is proposed to construct
spherical hashing functions (Sec. 3.4).

4) We design an adaptive scheme to set the distance
threshold of the hyperspheres by a maximal
margin principle (Sec. B.5).

5) We generalize spherical hashing to support arbi-
trary kernel functions, and reformulate the opti-
mization process into a kernelized one (Sec. [4).

In order to highlight benefits of our method, we

have tested our method against different benchmarks
that consist of one to 75 million image descriptors
with varying dimensions. We have also compared
our method with many state-of-the-art techniques and
found that our method significantly outperforms all
the tested techniques, confirming the superior abil-
ity of defining closed regions with tighter bounds
compared to conventional hyperplane-based hashing
functions (Sec. [5).

2 RELATED WORK

In this section we discuss prior work related to nearest
neighbor search techniques.

2.1

Space partitioning based tree structures such as kd-
trees [2]], [3], R-trees [4], Vantage Point Trees (VPT) [24]
have been used to find nearest neighbors. Excellent
surveys for such tree-based indexing and nearest
neighbor search methods are available [25], [26]. Us-
ing kd-trees is one of the most popular approaches,
and thus there have been a lot of optimization ef-
forts such as randomized kd-trees [27], relaxed or-
thogonality of partitioning axes [28], and minimiz-
ing probabilistic search cost [29]. It has been widely
known, however, that kd-tree based search can run
slower even than the linear scan for high dimensional
data. Nistér and Stewénius [30] proposed another
tree-based nearest neighbor search scheme based on
hierarchical k-means trees. Muja and Lowe [5] have
proposed an automatic parameter selection algorithm
of some of techniques mentioned in above.

Although these techniques achieve reasonably high
accuracy and efficiency, they have been demonstrated
in small image databases consisting of about one
million images. Also, these techniques do not consider
compressions of image descriptors to handle large-
scale image databases.

Hierarchical Methods

2.2 Binary Code Embedding Methods

Binary code embedding methods that embed high
dimensional points to compact binary codes have
been actively studied recently, since they provide
both high compression efficiency and fast similarity
computation. Binary code embedding methods aim to
embed points in binary codes, while preserving rela-
tive distances among them. Most methods compute
a binary value using a hash function that preserves
distance among data points. Distances among the data
points are then approximated by similarity among
their binary codes such as Hamming distance.

Binary code embedding methods can be broadly
categorized as data-independent and data-dependent
schemes. In data-independent methods, the hash
functions are defined independently from the data.
One of the most popular hashing techniques in this
category is Locality Sensitive Hashing (LSH) [6]. Its
hash function is based on projection onto random
vectors drawn from a specific distribution. Many vari-
ations and extensions of LSH have been proposed
for L, norms [8], learned metrics [12], min-hash [11],
inner products [7], and multi-probe [31]. Kulis et
al. [32] generalized LSH to Kernelized LSH that sup-
ports arbitrary kernel functions defining similarity.
Raginsky and Lazebnik [13] have proposed a binary
code embedding scheme based on random Fourier
features for shift-invariant kernels.

There have been a number of research efforts to
develop data-dependent hashing methods that reflect
data distributions to improve the performance. Weiss
et al. [10] have proposed spectral hashing motivated
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by spectral graph partitioning. Liu et al. [33] ap-
plied the graph Laplacian technique by interpreting
a nearest neighbor structure as an anchor graph.
Strecha et al. [34] used Linear Discriminant Analysis
(LDA) for binarization of image descriptors. Wang et
al. [17] proposed a semi-supervised hashing method
to improve image retrieval performance by exploiting
label information of the training set. Gong and Lazeb-
nik [20] introduced a procrustean approach that di-
rectly minimizes quantization error by rotating zero-
centered PCA-projected data. He et al. [21] presented
a hashing method that jointly optimizes both search
accuracy and search time by incorporating a similarity
preserving term into the Independent Component
Analysis (ICA). Joly and Buisson [22] constructed
hash functions by using large margin classifiers such
as the support vector machine (SVM) with arbitrarily
sampled data points that are randomly separated
into two sets. In most cases, data-dependent methods
outperform data-independent ones with short binary
codes.

The efficiency of each hash function in data-
dependent methods is, however, getting lower as they
allocate longer binary codes. The main cause of this
trend is the growing difficulty of defining indepen-
dent and informative set of projections as the number
of hash functions increases. To avoid the issue there
have been a few approaches that use a single hash
function to determine multiple bits and use less hash
functions [33], [35], [36l, [37].

All the mentioned techniques compute binary codes
by partitioning data points into two different sets
based on hyperplanes. Departing from this conven-
tional approach, we adopt a novel approach of parti-
tioning data points by hyperspheres.

There is another category of compact data repre-
sentation techniques based on the quantization. Jégou
et al. have proposed Product Quantization (PQ) [38],
which decomposes a high-dimensional space into
multiple lower-dimensional spaces and constructs k-
means clusters in each subspace separately. They
encode a high dimensional data as a concatenation
of cluster indices over the subspaces. In [39], PQ is
further improved by the dimension reduction and
balancing the variance of components.

3 SPHERICAL HASHING

Let us first define notations. Given a set of N data
points in a D-dimensional space, we use X =
{z1,...,aNn}, ©; € RP to denote those data points. A
binary code corresponding to each data point z; is
defined by b; = {—1,+1}, where [ is the length of the
coddl]
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Fig. 2. The left figure shows how the avg. of the
max. distances among points having the same binary
code changes with different code lengths based on
hyperspheres or hyperplanes. We randomly sample
1000 different binary codes to compute avg. of the
max. distances. The right figure shows how having
more common +1 bits in our method effectively forms
tighter closed regions. For the right curve we randomly
sample one million pairs of binary codes. For each pair
of binary codes (b;, b;) we compute the max. distance
between pairs of points, (z;,z;), where H(z;) = b; and
H(xz;) = b;. We report the avg. of the max. distances
as a function of the number of common +1 bits, i.e.
|b; A bj|. Both figures are obtained with GIST-1M-960D

dataset (Sec.[5.).

3.1 Binary Code Embedding Function

Our binary code embedding function H(z) =
(h1(z),...,hy(z)) maps points in R” into the binary
cube {—1,+1}!. We use a hypersphere to define a
spherical hashing function. Each spherical hashing
function h;(z) is defined by a pivot p; € R and a
distance threshold ¢; € RT as the following:

haa) = {1 when d(p;, ) > t;

_ 1
+1  when d(p;, z) < t;, @

where d(-,-) denotes the Euclidean distance between
two points in RP; various distance metrics (e.g., L,
metrics) can be used instead of the Euclidean distance.
The value of each spherical hashing function h;(z) in-
dicates whether the point z is inside the hypersphere
whose center is p; and radius is ¢;. Fig. shows an
example of a space partitioning and assigned binary
codes with three hyperspheres in 2-D space.

The key difference between using hyperplanes and
hyperspheres for computing binary codes is their
abilities to define a closed region in R” that can be
indexed by a binary code. To define a closed region in
a d-dimensional space, at least d + 1 hyperplanes are
needed, while only a single hypersphere is sufficient
to form such a closed region in an arbitrarily high
dimensional space. Furthermore, unlike using multi-
ple hyperplanes a higher number of closed regions

1. (=1,+1)* codes are conceptual expression. Codes are stored
and processed as (0,1)* codes in practice.
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can be constructed by using multiple hyperspheres,
while the distances between points located in each
region are bounded. For example, the number of
bounded regions by having | hyperspheres goes up to
(D +2%, () [40]. In addition, we can approximate
a hyperplane with a large hypersphere that has a large
radius and a far-away center.

In nearest neighbor search the capability of form-
ing closed regions with tighter distance bounds is
very important in terms of effectively locating nearest
neighbors from a query point. When we construct
such tighter closed regions, a region indexed by the
binary code of the query point can contain more
promising candidates for the nearest neighbors.

We also empirically measure how tightly hyper-
spheres and hyperplanes bound regions. For this pur-
pose, we measure the maximum distance between
any two points that have the same binary code and
take the average of the maximum distances among
different binary codes. As can be seen in Fig.
hyperspheres bound regions of binary codes more
tightly compared to hyperplanes used in LSH [8].
Across all the tested code lengths, hyperspheres show
about two times tighter bounds over the hyperplane-
based approach.

3.2 Distance between Binary Codes

Most hyperplane-based binary code embedding meth-
ods use the Hamming distance between two binary
codes, which measures the number of different bits,
i.e. |b; ®b;|, where @ is the XOR bit operation and |- |
denotes the number of +1 bit in a given binary code.
This distance metric measures the number of hyper-
planes that two given points reside in the opposing
side of them. The Hamming distance, however, does
not well reflect the property related to defining closed
regions with tighter bounds, which is the core benefit
of using our spherical hashing functions.

To fully utilize desirable properties of our spher-
ical hashing function, we propose the following
distance metric, spherical Hamming distance (SHD)
(dsup(bi,b;)), between two binary codes b, and b,
computed by spherical hashing:

_ |bi &by

dsup(bi,bj) = b A by
i N bj

@

where |b; A b;| denotes the number of common +1
bits between two binary codes which can be easily
computed with the AND bit operations.

Having the common +1 bits in two binary codes
gives us tighter bound information than having the
common —1 bits in our spherical hashing functions.
This is mainly because each common +1 bit indicates
that two data points are inside its corresponding
hypersphere, giving a stronger cue in terms of dis-
tance bounds of those two data points; see Fig. |3| for
intuition. In order to see the relationship between the

1000-NN mAP with GIST-1M-960D

# bits 32 64 128 256
RMMH-SHD |[| 0.0279 | 0.0603 [ 0.0976 | 0.1466
RMMH-HD [[ 0.0266 | 0.0576 [ 0.0993 [ 0.1483
ITQ-SHD 0.0385 | 0.0578 | 0.0860 | 0.1060
ITQ-HD 0.0380 [ 0.0620 | 0.0875 | 0.1101
TABLE 1

Experimental results of hyperplane based methods
combined with SHD.

distance bound and the number of the common +1
bits, we measure the average distance bounds of data
points as a function of the number of the common +1
bits. As can be seen in Fig. the average distance
bound decreases as the number of the common +1
bits in two binary codes increases. As a result, we put
|b; Ab;| in the denominator of our spherical Hamming
distance.

In implementation we add a small value (e.g. 0.1)
to the denominator to avoid the division-by-zero.
Also, we can construct a pre-computed SHD table
T(|b; A bjl,|bi & bj]) whose size is (I 4+ 1)? and refer
the table, when computing SHD to avoid expensive
division operations.

The common +1 bits between two binary codes
define a closed region with a distance bound as
mentioned above. Within this closed region we can
further differentiate the distance between two binary
codes based on the Hamming distance |b; & b,|, the
numerator of our distance function. The numerator
affects our distance function in the same manner to
the Hamming distance, since the distance between
two binary codes increases as we have more different
bits between two binary codes.

In hyperplane based methods, the common +1 bits
do not give strong cue on estimating the real distance.
As a resulot, SHD does not provide any benefit for
hyperplane based methods as reported in Table.

An alternative definition of SHD can be constructed
based on the subtraction as following:

dsap—suB(bi,bj) = |b; © bj| — |b; A bjl. 3)

SHD-SUB is intuitive and free from the division by
zero. However, the estimated distance is linearly de-
creasing with respect to |b; A b;| and thus a little bit
different from our observation in Fig. We also
provide experimental comparison between SHD and
SHD-SUB in Table. 2l Since SHD provides slightly
better performance compared to SHD-SUB, we have
used SHD in all the experiments in this paper instead
of SHD-SUB.

3.3 Independence between Hashing Functions

Achieving balanced partitioning of data points for
each hashing function and the independence be-
tween hashing functions has been known to be im-
portant [10], [21], [22], since independent hashing
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(a) Each colored re-
gion is within one
hypersphere.
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(b) Each colored region is within two hyperspheres.
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(c) The colored re-
gion is within three
hyperspheres.

Intuition of the spherical hamming distance. If both two points «; and z; are located in one of colored

regions then their binary codes b; and b; have at least 1, 2, or 3 common +1 bits, respectively. As the number of
common +1 bits of b; and b; increases, the size of the region containing both points z; and xz; are expected to
become smaller. As a result, the expected distance between x; and x; also gets smaller.

100-NN mAP with GIST-1M-384D

# bits 32 64 128 256 512
SHD 0.0153 | 0.0426 | 0.981 | 0.1760 | 0.2572
SHD-SUB || 0.0139 | 0.0398 | 0.0931 | 0.1656 | 0.2402
TABLE 2
Comparisons between SHD and SHD-SUB described
in Sec.[3.2

functions distribute points in a balanced manner to
different binary codes. It has been known that achiev-
ing such properties lead to minimizing the search
time [21] and improving the accuracy even for longer
code lengths [22]. We also aim to achieve this inde-
pendence between our spherical hashing functions.
We define each hashing function h; to have the
equal probability for +1 and —1 bits respectively as
the following:
Prl hi(z)=+4+1]=

reX, 1<i<l (4

2 Y
Let us define a probabilistic event V; to represent
the case of h;(z) = +1. Two events V; and V; are
independent if and only if Pr[V;NV;] = Pr[Vi]- Pr[V}].
Once we achieve balanced partitioning of data points
for each bit (Eq. ), then the independence between
two bits can satisfy the following equation given z €
Xand 1 <i<j<L:
Prihi(z) = +1, hj(z) = +1]
= Prihi(x )=+1]-Pr[hj(w)=+1]=%-%=i ®)
In general the pair-wise independence between
hashing functions does not guarantee the higher-
order independence among three or more hashing
functions. We can also formulate the independences
among more than two hashing functions and aim
to satisfy them in addition to constraints shown in
Eq. [ and Eq. | However we found that considering
such higher-order independence hardly improves the
search quality.

3.4

We now propose an iterative process for computing
[ different hyperspheres, i.e. their pivots p; and dis-
tance thresholds t;. During this iterative process we
construct hyperspheres to satisfy constraints shown
in Eq. f and Eq.

As the first phase of our iterative process, we sam-
ple a subset S = {s1,s2,...,5,} from data points X
to approximate its distribution. We then initialize the
pivots of I hyperspheres with randomly chosen / data
points in the subset S; we found that other alterna-
tives of initializing the pivots (e.g., using center points
of K-means clustering performed on the subset S)
do not affect the results of our optimization process.
However, we observe that the optimization process
converges slightly quicker, when initial pivots are
closely located in the center of the training points. This
is mainly because by locating hyperspheres closely
to each other, we can initialize hyperspheres to have
overlaps. For this acceleration, we set the pivot posi-
tion of a hypersphere to be the median of randomly
chosen multiple samples, i.e. p; = ézgzl gj, where
g; are randomly selected points from S and g is the
number of such points. Too small g does not locate
pivots closely to the data center, and too large g locates
pivots to be in almost similar positions. In practice,
g = 10 provides a reasonable acceleration rate, given
its trade-off space.

As the second phase of our iterative process, we
refine pivots of hyperspheres and compute their dis-
tance thresholds. To help these computations, we
compute the following two variables, o; and o; ;, given
1<i4,5 <L

| {8glhi(sg) = +1,1 < g <n} |, (6)
= | {sglhi(sg) = +1,hj(sy) = +1,1 < g <n} |,

where || is the cardinality of the given set. 0o; measures
how many data points in the subset S have +1 bit
for i-th hashing function and will be used to satisfy
balanced partitioning for each bit (Eq. ). Also, o;;
measures the number of data points in the subset S

Iterative Optimization

0; =

0i,j
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;

Fig. 4. These two images show how a force between
two pivots is computed. In the left image a repulsive
force is computed since their overlap o; ; is larger than
the desired amount. On the other hand, the attractive
force is computed in the right image because their
overlap is smaller than the desired amount.

that are contained within both of two hyperspheres
corresponding to i-th and j-th hashing functions. o; ;
will be used to satisfy the independence between i-
th and j-th hashing functions during our iterative
optimization process.

Once we compute these two variables with data
points in the subset of S, we adopt two alternating
steps to refine pivots and distance thresholds for
hyperspheres in order to meet our optimization goal:

n

T @)

First, we adjust the pivot positions of two hyper-
spheres in a way that o; ; becomes closer to or equal

to 7. Intuitively, for each pair of two hyperspheres i

and j, when o; ; is greater than %, a repulsive force
is applied to both pivots of those two hyperspheres
(i.e. p; and p;) to place them farther away. Otherwise
an attractive force is applied to locate them closer.
Second, once pivots are computed, we adjust the
distance threshold ¢; of ith hypersphere such that o;
becomes 3 to meet balanced partitioning of the data
points for the hypersphere (Eq. [4).

We perform our iterative process until the com-
puted hyperspheres do not make further improve-
ments in terms of satisfying constraints. Specifically,
we consider the sample mean and standard deviation
of 0; ; as a measure of the convergence of our iterative
process. Ideal values for the mean and standard de-
viation of o; ; are % and zero respectively. However,
in order to avoid over-fitting, we stop our iterative
process when the mean and standard deviation of o; ;
are within ¢,,% and ¢,%, error tolerances, of the ideal
mean of o, ; respectively.

For these parameters, we conducted the following
experimental tests to find suitable values. We compute
mean Average Precisions (mAPs) of k-nearest neigh-
bor search with various experiment settings, and they
are shown in Fig. |5| According to the experimental
results, we pick €, and ¢; that provide the empirical
maximum. Based on these experimental tests, we have
chosen (¢,,=10%, €,=15%) for GIST-1M-384D, GIST-
1M-960D, and 1000 dimensional BoW descriptors. We
have, however, found that we need stricter termina-

tion conditions of the optimization process for higher

n
oi:fandoij:
2 k2

GIST-1M-384D / 100-NN/ 64 bits / HD

GIST-1M-384D / 100-NN / 64 bits / SHD
-0-GIST-1M-384D / 100-NN / 128 bits / HD
-»-GIST-1M-384D / 100-NN/ 128 bits / SHD
-0-GIST-1M-960D / 1000-NN / 64 bits / HD
-»-GIST-1M-960D / 1000-NN / 64 bits / SHD
-0-GIST-1M-960D / 1000-NN / 128 bits / HD
-e-GIST-1M-960D / 1000-NN / 128 bits / SHD

0.24

0.08

4%,6%

6%,9%

8%,12%
Parameter

10%,15%  12%,18%

Fig. 5. mAP curves for k-nearest neighbor search with
respect to various parameters. A pair of values in z-
axis are used for two parameters of ¢, and ¢, and y-
axis represents their corresponding mAP values. Each
legend consists of four experiment settings ‘dataset / k&
/ binary code length / distance metric type (HD: Ham-
ming distance, SHD: spherical Hamming distance)’.

dimensional data. The convergence rate of the objec-
tive functions is much faster in higher dimensional
space, since we have more degrees of freedom of pivot
positions, and this can cause an undesired under-
fitting. We have therefore chosen (e,,=4%, €,=6%) for
8192 dimensional VLAD descriptors (Sec. 5.1).

Force computation: A (repulsive or attractive) force
from p; to p;, ficj, is defined as the following (Fig. [4):

1 0j5—N / 4
2 n/d
An accumulated force, f;, is then the average of all

the forces computed from all the other pivots as the
following:

fiej = (pi —Pj)~ (8)

l
fi= 7 fies ©
j=1

Once we apply the accumulated force f; to p;, then
pi is updated simply as p; + f;. Our iterative opti-
mization process is shown in Algorithm |1} A simple
example of the optimization process in the 2-D space
is presented in Fig.ﬂ The value of % is getting
smaller during the iterative optimization process, and
it has a similar role to the learning rate.

The time complexity of our iterative process is
O((I1? + ID)n), which is comparable to those of the
state-of-the-art techniques (e.g., O(D?n) of spectral
hashing [10]). In practice, our iterative process is
finished within 30 iterations. Also, its overall compu-
tation time is less than 30 seconds even for 128 bits
code lengths. The convergence rate with respect to the
number of iterations is shown in Fig. [6]
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Algorithm 1 Our iterative optimization process

Input: sample points S = {s1, ..., 5, }, error tolerances
en and e,, and the number of hash functions [
Output: pivot positions p;, ..., p; and distance thresh-

olds ti,...,t; for [ hyperespheres

1: Initialize py,...,p; with randomly chosen [ data
points from the set S
(It can be replaced with p; = % ?:1 q; for
quicker convergence, where ¢; are randomly se-
lected points from S)

2: Determine ty, ..., #; to satisfy o; = % (Sec.

3: Compute o; ; for each pair of hashing functions
4: repeat

5 for i=1tol—1 do

6: for j=i+1tol do

7 fiej = %Oii}ff/“ (pi — pj)

8 fiei = —fiey

9 end for

10:  end for

11:  for z’zlt?l do

12: fz = % Zj:l fiej

13: pi = pi + fi

14:  end for

15:  Determine ¢, ...,#; to satisfy o; = % (Sec. [3.5)
16:  Compute o; ; for each pair of hashing functions

17 until avg(| 055 — 4 |) < em} and std-dev(o; ;) <

es%
0.6 —Test #1,
@ avg(loij—T|) —Test#2
c—:é 0.4 % ( Test #3,
std—dev(o; ;
> 027 — Z,j) i
0 7T
0 1020 3040 900 950 1000

Num. of iterations

Fig. 6. Convergence rates of our iterative optimization
with three individual trials. The optimization processes
are finished within 30 iterations when we se we set ¢,,
as 0.1 and ¢; as 0.15. This graph also shows that both
objectives converge to 0 when we increase the number
of iterations. This result is obtained with the GIST-1M-
384D dataset at the 64-bit code length.

One may wonder why we do not use k-means
to compute centers of hyperspheres. Using k-means
clustering to obtain centers of hyperspheres is very
intuitive, since k-means locates the centers in dense
regions and assigning the same hash value to those
dense regions seems an appropriate direction. How-
ever, this alternative does not ensure the indepen-
dence between hashing functions. The cluster centers
obtained by k-means clustering in a high dimensional
space are highly likely to be close to the data mean. It
leads that hyperspheres are highly overlapped, and
a high portion of regions are not covered by any

3l 4 LN

Fig. 7. Visualization of our optimization process with
three hyperspheres and 500 points in 2D space.

100-NN mAP with GIST-1M-384D
# bits 32 64 128 256 512
SHD+M || 0.0153 | 0.0426 | 0.0981 | 0.1760 | 0.2572
SHD 0.0147 | 0.0409 | 0.0938 | 0.1678 | 0.2434
HD+M 0.0113 | 0.0310 | 0.0665 | 0.1152 | 0.1648
HD 0.0107 | 0.0290 | 0.0653 | 0.1113 | 0.1583

1000-NN mAP with GIST-1M-960D
# bits 32 64 128 256 512
SHD+M || 0.0460 | 0.0982 | 0.1782 | 0.2738 | 0.3560
SHD 0.0439 | 0.0945 | 0.1756 | 0.2641 | 0.3398
HD+M 0.0322 | 0.0660 | 0.1132 | 0.1669 | 0.2103
HD 0.0310 | 0.0636 | 0.1126 | 0.1644 | 0.2058

TABLE 3
The effect of our max-margin based distance
thresholding (Sec. indicated by M. The
max-margin based distance thresholding improves
mAPs 3.8% on average over the median based
distance thresholding across various settings of
experiments.

hypersphere. As a result, the alternative optimiza-
tion scheme does not meet our independence criteria,
since hashing functions corresponding to highly over-
lapped hyperspheres will generated correlated hash
values.

3.5 Max-Margin based Distance Thresholding

In each iteration step, we need to determine distance
thresholds 1, ...,7; to satisfy o; = 5 for the balanced
partitioning. For this we could simply set each ¢; as
d(pi, sn/2) the distance from p; to s, /2, when samples
of S are sorted into sq,...,s, in terms of distance
from p;. However, this simple approach could lead
to undesirable partitioning, especially when s, /5 is
located in a dense region. To alleviate this concern, we
set the distance threshold ¢; to maximize the margin
from points to to the hypersphere without severely
comprising the balance partition criterion. For our
max-margin based threshold optimization, we first
sort samples of S into si, ..., s;, according to d(p;, s7)

ey Op



IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

the distance to the pivot. Instead of simply using
the median point s /2 with its index, n/2, indicating
a sample in the ordered list, we compute a set J
containing candidate indices near the median 7 for
the optimization:

T={lG-Pn<i<G+Amiet),  0)
where  is a parameter that controls the degree of
tolerance for breaking the balance partition criterion.
We set 5 = 0.05 in practice. We then compute an index
7 of a sample among the sorted list that maximizes the
margin to the hypersphere as the following;:

: (11)

J = argmaxd(ti, 53,,) — d(t;, 55)

The distance threshold ¢; is finally determined such

that the hypersphere partitions s; and S‘;.Jr , as the
following:

= 2 (d(ts,s3) + d(ti,s3,,)) (12)

2

Table. [3| shows that the max-margin based distance

thresholding can lead to performance improvement of
3.8% mAPs in average.

4 GENERALIZED SPHERICAL HASHING

Many applications benefit from the use of domain-
specific kernels that define data similarities [41], [42].
In this section we generalize our basic spherical hash-
ing (Sec. |3) to a kernelized one.

Let us first define notations. Given a set of N
data elements in an input space X, we use X =
{z1,29,....,2n} € X to denote those data elements.
We use a non-linear map ® : X — F from the input
space X to a kernel space F. We denote k(z,y) =
(®(z), ®(y)) as a kernel function corresponding to the
map ®, where (-, -) is the inner product operator.

41

The squared distance between two points ®(x) and
®(y) in the kernel space F can be expressed with the
kernel function as the following;:

| (z) — @(y) |
(@(z), 2(x)) — 2(2(x), 2(y)) + ((y), 2(y))
= k(z,2) = 2k(z,y) + k(y,y). (13)

Kernelized Binary Code Embedding Function

Our binary code construction function H(z) =
(hi(x), ..., (z)) maps a data element in the input
space into the Hamming space {—1, +1}'. Each kernel-
ized spherical hashing function h;(z) is defined with
the pivot point p; in the kernel space and distance
threshold ¢; as the following:

—1 when || ®(x) —p; ||*> 2
hi(z) = {

. 14
11 when || 8() —pi <z O

Intuitively, each kernelized spherical hashing func-
tion h;(z) determines whether ®(z), the point x
mapped into the kernel space, is inside the hyper-
sphere defined by its center p; and radius t;.

To represent the center of a hypersphere in the
kernel space, we use a set of m landmark samples Z =
{#1, ..., zm} € X, where m < n. We now express the
center p; by a linear combination of {®(z1),..., (zm)}
as the following;:

pi=» wid(z), (15)
j=1

where w) € R denotes a weight of ®(z;) for p;.

The squared distance between a point ®(z) and
the pivot p; used in our kernelized spherical hashing
function is computed as the following:

| @(z) —pi ||
= (®(z),®(x)) — 2( (x),pi) + (pi, i) by Eq.

= (B(x), 2(2)) — 2( 2(2), ) wjP(z;))
j=1

+ i; wiP(z5), ile@(zj» [by Eq.
= (®(2), D) - 2210;@(@,@(%»

+§;iw;wg<¢(zj),®(zg)> (16)
— ko) =23 o) + 3 3 ik )

Note that the last term 77", 3> whw}k(z;, 2)
can be pre-computed for each hypersphere, since it
is independent of x [43].

4.2 Kernelized Iterative Optimization

We first sample a training set S = {s1,...,s,} from
X to approximate its distribution, and also sample a
subset Z = {z1, ...,z } from S as landmarks that are
used for defining center positions of hyperspheres, as
described in Eq.

As an initial step of our optimization process, we
sample a training set T = {t1, ..., t,, } from the dataset
X to approximate its distribution, and also sample a
subset Z = {z1,...z;,} from T as landmarks that are
used for defining center positions of hyperspheres, as
described in Eq.

Initial center positions p; of hyperspheres are cho-
sen randomly. Specifically we initialize each element
of the weight vectors w’ that define centers p; of hy-
perspheres with randomly drawn values from the uni-
form distribution U(—1,1) and normalize the weight
vectors according to L, norm.
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To express the constraints specified in Eq. f] and
Eq. E] with the training set X, we recall the following
two variables o; and o; ; defined in Eq.

We perform the procedure described in Sec.
and Algorithm. [I| with the following kernelized force
model:

loj; —n/4
fi<—j = 207Jn/4n/(pi *pj)
1 i 4 m . m )
- 2W<g:1wg¢<zg>;wgq>(zg»
1 i, 4 = i i
- 2””/4”/ ;(wg—wm(zg). (17)

5 EVALUATION

In this section we evaluate our method and compare
it with the state-of-the-art methods [_8], [10], [13], [20],
[21], [22]. All experiments are conducted on a single
Xeon X5690 machine with 144GB memory where the
complete data set can be stored.

5.1 Datasets

We perform various experiments with the following
four datasets:

e GIST-1M-384D: A set of 384 dimensional, one
million GIST descriptors, which consist of a sub-
set of Tiny Images [9].

e GIST-IM-960D: A set of 960 dimensional, one
million GIST descriptors that are also used in [38].

e GIST-75M-384D: A set of 384 dimensional, 75
million GIST descriptors, which consist of a sub-
set of 80 million Tiny Images [9].

e ILSVRC: One million of 1000 dimensional BoW
descriptors which is a subset of the ImageNet
database [44].

e VLAD-1M-8192D: One million of 8192 dimen-
sional VLAD [39] descriptors (128 dimensional
SIFT features and 64 codebook vectors).

5.2 Evaluation on Euclidean Space

We first present results with the Euclidean space,
followed by ones with the kernel space.

5.2.1 Protocol

We tested with randomly chosen 1000 queries for
datasets GIST-1M-384D, GIST-1M-960D, and VLAD-
1M-8192D, and 500 queries for GIST-75M-384D that
do not have any overlap with data points. The per-
formance is measured by mean Average Precision
(mAP). The ground truth is defined by k& nearest
neighbors that are computed by the exhaustive, linear
scan based on the Euclidean distance. When calcu-
lating precisions, we consider all the items having
lower or the equal Hamming distance (or spherical
Hamming distance) from given queries.

--Ours-SHD
“eoursHD
+RMMH-L2
GSPICA-RBF
=PCAITQ
016 Lishze S “
~-LSBC

-a-L.SH

32 64 128 256
Binary code length (the number of bits)

512

Fig. 8. Comparison between our method and
the-state-of-the-art methods with the GIST-1M-384D
dataset when k& = 100.
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0.32 FOOHSHD -
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GSPICA-RBF
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Z -+LSBC
& 0.16
o

o
=012 %

0.28

0.08
0.04 §

32 64 128

256
Binary code length (the number of bits)

512

Fig. 9. Comparison between our method and
the-state-of-the-art methods with the GIST-1M-960D
dataset when k& = 1, 000.

5.22 Compared Methods

o LSH and LSH-ZC: Locality Sensitive Hashing [§]]
with/without Zero Centered data points.

o LSBC: Locality Sensitive Binary Codes [13]. The
bandwidth parameter used in experiment is the
inverse of the mean distance between the points
in the dataset, as suggested in [45].

o SpecH: Spectral Hashing [10].

o PCA-ITQ: Iterative Quantization [20].

o« RMMH-L2: Random Maximum Margin Hashing
(RMMH) [22] with the triangular L2 kernel. We
experiment RMMH with the triangular L2 kernel
since the authors reported the best performance
on k nearest neighbor search with this kernel. We
use 32 for the parameter M that is the number of
samples for each hash function, as suggested by
[22].

o GSPICA-RBF: Generalized Similarity Preserving
Independent Component Analysis (GSPICA) [21]
with the RBF kernel. We experiment GSPICA
with the RBF kernel, since the authors reported
the best performance on k& nearest neighbor
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! ~Ours-SHD 4 tables
0.9)e-Ours-SHD 1 table
0.8j*+RMMH-L2 4 tables

-4 RMMH-L2 1 table

0.7
GSPICA-RBF 4 tables

= 0.6]..-GSPICA-RBF 1 table

Sos{~PCAITQ  4tables '
o 04 = PCA-ITQ 1 table £
“~LSH-zC 4 tables &
0.3).+. SH-ZC 1 table
0.2
0.1t
10° 10" 107 10° 10* 10°
Number of retrieved samples
Fig. 10. Recall curves of different methods when

k = 100 for the GIST-1M-384D dataset. Each hash
table is constructed by 64 bits code lengths. The recall
(y-axis) represents search accuracy and the number of
retrieved samples (z-axis) represents search time.

search with this kernel. The parameter used in the
RBF kernel is determined by the mean distance of
kth nearest neighbors within training samples as
suggested by [22]]. The parameters v and P are
1 and the dimensionality of the dataset respec-
tively, as suggested in [21].

e Ours-HD and Ours-SHD: We have tested two
different versions of our method. Ours-HD rep-
resents our method with the common Hamming
distance, while Ours-SHD uses our spherical
Hamming distance (Sec. 3.2). Max-margin based
distance thresholding scheme (Sec. is also
applied to both versions of our method.

For all the data-dependent hashing methods, we
randomly choose 100K data points from the original
dataset as a training set. We also use the same training
set to estimate parameters of each method. We report
the average mAP and recall values by repeating all the
experiments five times, in order to gain statistically
meaningful values; for GIST-75M-384D benchmark,
we repeat experiments only three times because of its
long experimentation time. Note that we do not report
results of two PCA-based methods SpecH and PCA-
ITQ for 512 hash bits at 384 dimensional datasets,
since they do not support bit lengths larger than the
dimension of the data space.

5.2.3 Results

Fig. 8| shows the mAP of k nearest neighbor search of
all the tested methods when k& = 100. Our method
with the spherical Hamming distance, Ours-SHD,
shows better results over all the tested methods across
all the tested bit lengths ranging from 32 bits to
512 bits. Furthermore, our method shows increasingly
higher benefits over all the other tested methods as
we allocate more bits. This increasing improvement
is mainly because using multiple hyperspheres can
effectively create closed regions with tighter distance
bounds compared to hyperplanes.

02 --Ours-SHD
2 0-24 7 Surs-HD
£ 02 " L RMMH-L2 o
z 0.16 “SegspicA-RBF T uEn T
8012 spcauTQ T g
S 0,08 formmrmreneenemnenee s e S oSN
0.04 forrm-smosoza B BT
0 .
32 64 128 256 512
Binary code length (the number of bits)
Fig. 11. Comparison between our method and

the-state-of-the-art methods with the GIST-75M-384D
dataset when k£ = 10, 000.
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®
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32
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Fig. 12. Comparison between our method and
the-state-of-the-art methods with the VLAD-1M-8192D
dataset when k& = 1, 000.

Given 0.1 mAP in Fig. |8, our method needs to use
128 bits to encode each image. On the other hand,
other tested methods should use more than 256 bits.
As a result, our method provides over two times more
compact data representations than other methods. We
would like to point out that low mAP values of our
method are still very meaningful, as discussed in [22].
Once we identify nearest neighbor images based on
binary codes, we can employ additional re-ranking
processes on those images. As pointed out in [22], 0.1
mAP given k = 100 nearest neighbors, for example,
indicates that 1000 images on average need to be re-
ranked.

Performances of our methods with two different
binary code distance functions are also shown in
Fig. Our method with the Hamming distance
Ours-HD shows better results than most of other
methods across different bits, especially higher bits.
Furthermore, the spherical Hamming distance Ours-
SHD shows significantly improved results even than
Ours-HD. The spherical Hamming distance function
also shows increasingly higher improvement over the
Hamming distance, as we add more bits for encoding
images.

Our technique can be easily extended to use multi-
ple hash tables; for example, we can construct a new
hash table by recomputing 5, the subset of the original
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Fig. 15. k-nearest neighbor search performances on three different datasets when k& = 1000.
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Fig. 13. Comparison between our method and the-
state-of-the-art methods with the L2-normalized GIST-
1M-960D dataset when k& = 1, 000.
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Fig. 14. This figure shows how each component of
our method affects the accuracy. The mAP curves are
obtained with GIST-1M-384D dataset when k& = 100.

dataset. Fig. |10|shows recall curves of different meth-
ods with varying numbers of hash tables, when we
allocate 64 bits for encoding each image. Our method
(with our spherical Hamming distance) improves the
accuracy as we use more tables. More importantly, our
method only with a single table shows significantly
improved results over all the other tested methods
that use four hash tables.

We have also performed all the tests against the 960
dimensional, one million GIST dataset GIST-1M-960D

with k = 1000 (Fig.[9). We have found that our method
shows similar trends even with this dataset, compared
to what we have achieved in GIST-1M-384D.

We have performed each test multiple times, since
our method can be impacted by different initializa-
tions. However, our method shows robust results
against different initializations. For example, the stan-
dard deviation of mAPs of five experiments with
GIST-1M-960D when the code length is 64 bits is only
0.0017, while the average mAP is 0.0982. The standard
deviation with 256 bits is 0.0035, while the average is
0.2738.

In order to evaluate our method with very high
dimensional data, we have performed the tests with
8192 dimensional, one million VLAD dataset VLAD-
1M-8192D with & = 1000 (Fig. [12). Ours-SHD consis-
tently provides the best performance among the tested
techniques.

We have also performed all the tests against the 384
dimensional, 75 million GIST dataset GIST-75M-384D
with k& = 10,000 (Fig. [1I). We have found that our
method shows significantly higher results than all the
other tested methods across all the tested bit lengths
even with this large-scale dataset.

Since many applications wuse L2-normalized
data, we have performed an experiment with L2-
normalized GIST-1M-960D with k& = 1,000 (Fig. [13).
Ours-HD provides similar accuracy to RMMH,
but lower accuracy with short code lengths and
higher accuracy with long code lengths compared to
PCA-ITQ. It implies that minimizing quantization
error is important in the short code lengths, but
independence among hash functions is more
important in the long code lengths. Nevertheless,
Ours-SHD outperformed the tested state-of-the-art
methods in most configurations. Note that hyperplane
based hashing techniques do not receive any benefit
by using SHD even in the normalized data. This
result confirms that we can still exploit the benefit of
using hyperspheres over hyperplanes even with the
L2-normalized dataset.

In order to see how each component of our method
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affects the accuracy, we measure mAP by disabling
the spherical Hamming distance, the independence
constraint, and the balanced partitioning criterion
in our method (Fig. [[4). In the case of using 64
bits, mAP of our method goes down 28%, 83%, and
90% by disabling the spherical Hamming distance,
the independence constraint, and the balanced parti-
tioning/independence constraints respectively. From
these, we can see all proposed ideas are critical for
the effectiveness of the proposed method, while the
criteria of hash code independence and balance par-
tition are most important.

Finally, we also measure how efficiently our
hypersphere-based hashing method generates binary
codes given a query image. Our method takes 0.08 ms
for generating a 256 bit-long binary code. This cost is
same to that of the LSH.

5.3 Evaluation on Kernel Space
5.3.1 Datasets

We normalized GIST-1M-384D and GIST-1M-960D
datasets according to Lo-norm to make exact k-nearest
neighbors with the linear kernel to be equivalent to
the k-nearest neighbors with the RBF kernel as did
in [22]. As a result, we can compare results acquired
by using two different kernels in the same ground.
We also normalized ILSVRC dataset according to L;-
norm as suggested in [46]. For all the experiments, we
tested with randomly chosen one thousand queries
that do not overlap with data elements. We report the
average result by repeating all the experiments three
times.

5.3.2 Compared Methods

« RMMH: Random Maximum Margin Hash-
ing [22]. We used 32 for the parameter M that
is the number of samples for each hash function
as suggested by [22].

o GSPICA: Generalized Similarity Preserving In-
dependent Component Analysis [21]. We set the
parameter P as the dimensionality of the dataset
and v to 1 as suggested in the paper.

For our method Ours, we set the number of land-

marks m as the dimensionality of input data.

5.3.3 Used Kernels

We have tested our method with the following four
popular kernels:

o Linear: Linear kernel, k(z,y) = (z,y).

« RBF: RBF kernel, k(z,y) = exp(—y || z — y |?).
We set the bandwidth parameter v as an inverse
of the mean distance between randomly sampled
points as suggested by [45].

o HI: Histogram Intersection kernel, k(z,y) =
Z?: L min(x;,y;), where D is the dimensionality
of x and .

« CS: Chi Square kernel, k(z,y) = 237 | Zi¥

i=1 zi+y;°

5.3.4 Results

We evaluated our method with k-nearest neighbor
search. The ground truth is defined by top k data
elements based on each tested kernel function. The
performance is measured by mAP. When calculating
precisions, we consider all the items having lower or
equal Hamming distance from given queries.

Fig.[15|shows the mAP of k-nearest neighbor search
of all the tested methods when k£ = 1000; other cases
(e.g. k = 50,100, 500,2000) show similar trends. We
evaluated the performance of our method with Lin-
ear and RBF in GIST384D and GIST960D datasets
(Fig. [I5}(a) and -(b)); we report results of compared
methods only with RBF, since RBF gives better results
than Linear.

We also experimented with CS and HI in ILSVRC
dataset (Fig. (C)). Since RMMH performed better
than GSPICA in this experiment, we report results of
RMMH in this graph. We have found that our method
consistently shows higher performance than the state-
of-the-art methods in all the tested benchmarks with
various kernels.

5.4 Evaluation on Image Retrieval

We evaluated image retrieval performance of our
method by using the ILSVRC, which has 1000 dif-
ferent classes. We followed the evaluation protocol
of [22]. For each query we run a k-nearest neigh-
bor classifier on the top 1000 results retrieved by
each method. As suggested in ILSVRC, we evaluated
tested methods with the five best retrieved classes
(i.e. recognition rate@5). Specifically we first perform
1000-nearest neighbor search for a gien query with
binary codes. We then evaluate the correctness of
the five most frequent classes within the 1000-nearest
neighbor images contain the ground truth class.

Fig. [16| shows the recognition rates of our method
compared to RMMH with CS and HI kernels. Our
method consistently gives better retrieval perfor-
mance with both kernels over the other tested meth-
ods.

5.5 Discussion

SHD (Sec. drastically improves mAPs in the
Euclidean space (Sec. . However, we observed
that SHD does not provide significant accuracy im-
provements with the generalized spherical hashing.
Table |4/ shows how much the SHD improves mAPs
of the generalized spherical hashing over HD with
two popular kernels, and SHD provides 3.5% ben-
efits on the mAPs over the Hamming distance. The
reason why SHD shows a relatively small benefit
for generalized spherical hashing is that SHD does
not directly reflect inner product, since it is designed
to better reflect the Euclidean distance. Nonetheless,
generalized spherical hashing with both of HD and
SHD outperforms state-of-the-art kernelized binary
code embedding methods.
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Fig. 16. Image retrieval performances over the

ILSVRC dataset. Exact-CS and Exact-HI are the upper
bound of recognition rates obtained by the exact 1000-
nearest neighbor classifier based on the corresponding
kernel functions.

1000-NN mAP with GIST-1M-384D

# bits 32 64 128 256 512
RBF-SHD 0.0358 | 0.0789 | 0.1336 | 0.1992 | 0.2587
RBF-HD 0.0330 | 0.0725 | 0.1318 | 0.1997 | 0.2575

Linear-SHD 0.0345 | 0.0671 | 0.1385 | 0.1974 | 0.2424
Linear-HD 0.0325 | 0.0736 | 0.1295 | 0.1958 | 0.2450
1000-NN mAP with GIST-1M-960D

# bits 32 64 128 256 512
RBEF-SHD 0.0316 | 0.0672 | 0.1198 | 0.1757 | 0.2451
RBF-HD 0.0308 | 0.0680 | 0.1220 | 0.1811 | 0.2331

Linear-SHD 0.0335 | 0.0733 | 0.1270 | 0.1932 | 0.2517
Linear-HD 0.0332 | 0.0682 | 0.1194 | 0.1824 | 0.2321
TABLE 4

The effect of SHD with generalized spherical hashing.

6 CONCLUSION

In this work we have proposed a novel hypersphere-
based binary embedding technique, spherical hash-
ing, for providing a compact data representation and
highly scalable nearest neighbor search with high
accuracy. We have found that spherical hashing sig-
nificantly outperforms the tested six state-of-the-art
binary code embedding techniques based on hyper-
planes with one and 75 million high-dimensional
image descriptors. We have also proposed general-
ized spherical hashing to support various similarity
metrics defined by arbitrary kernel functions, and
we have demonstrated on three datasets with four
popular kernels that generalized spherical hashing
improves the state-of-the-art techniques.
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