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Abstract— We present a novel approach, Super Ray, for
efficiently updating map representations such as grids and
octrees with point clouds. In this paper, we define a super ray
for points as a representative ray to them with an associated
frustum. A super ray is constructed in a way that updating
those points has the same set of cells accessed during the
map update process. As a result, we can perform the update
process with a super ray in a single traversal on the map,
resulting in performance improvement without compromising
any representation accuracy of the map. For constructing super
rays efficiently, we propose mapping lines for handling 2-D
and 3-D cases from an observation that edges or grid points
branch out the access pattern of updating the map. Our method
is general enough to be applied for variety of occupancy
map structures based on axis-aligned space subdivisions such
as grids and octrees. We test our method into indoor and
outdoor benchmarks, and achieve 2.5 times on average (up to
3.5 times) performance improvement over the state-of-the-art
update method for OctoMap and grid maps.

I. INTRODUCTION

Many robotic systems use various sensor data for under-
standing their environments. Point clouds have been known
as an effective representation of the environment around
robots, and are easily captured in recently emerging, in-
expensive consumer-level depth sensors (e.g., Kinect and
Xtion). The point clouds are represented by a large amount
of points representing geometric information of environments
in high resolution, yet with various levels of sensor noise. In
applications such as path planning or SLAM, it is difficult to
use such point clouds directly because of the sheer amount
of generated data itself as well as the noise.

To address these issues, various occupancy map represen-
tations such as grids [1] and octrees [2] have been proposed
to represent point clouds, for reducing the memory require-
ment and considering uncertainty of point clouds. Recent
applications use such map representations to achieve higher
performance for their goals. For example, path planning algo-
rithms use an occupancy map representing free or occupied
states in each cell for efficiently finding a collision free path
instead of accessing large and uncertain point clouds.

Unfortunately, constructing such occupancy maps out of
point clouds can take a high computation overhead, espe-
cially when we use a high resolution for the map to achieve
a high representation accuracy, it can take a huge amount of
time for traversing and updating the map. On the other hand,
when we use a lower resolution for the map, we can achieve
a high performance, but comes with a low representation
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(a) Indoor dataset (b) Outdoor dataset

Fig. 1. These figures visualize map representations for two public
datasets [2]. a) Blue and green cubes represent occupied and free spaces, re-
spectively. b) We use heat colors to represent relative heights for visualizing
the dataset.

accuracy, which may result in serious problems for various
robotic operations such as motion planning.

Main contributions In this paper, we present a novel,
efficient map update method based on super rays, while
achieving high performance without compromising represen-
tation accuracy of map at all. Specifically, we propose to use
super rays of points as our main update method for maps.
A super ray is a representative ray for set of points, and
is constructed in a way that updating the map with those
points traverses the same set of cells and can be processed
together. To construct such super rays given input points,
we propose to use a mapping line for updating 2-D maps
(Sec. IV-A), and generalize it to 3-D maps such as grids and
octrees (Sec. IV-C).

To demonstrate benefits of our method, we test it with in-
door and outdoor scenes (Fig. 1) for two different occupancy
map representations: grids and OctoMap. We found that our
method is robust enough to show improvement, up to 3.5
times improvement, across a diverse set of configurations
over the prior, exact method based on 3DDDA (3-D Digital
Differential Analyzer) (Sec. V). These results are achieved
mainly thanks to identifying coherent updates on maps and
processing them in a single traversal with a super ray.

II. RELATED WORK

In this section, we discuss prior work on map representa-
tions modeling environments and their updating methods.

A. Map Representations

Point clouds is one of the most common sensor data
that are captured by a depth sensor or a laser range finder.
Point clouds themselves can serve as a map representation
for the environment under the study. Recently, many cheap
consumer-level depth sensors become available. Some of
recent work use point clouds and apply them directly to
applications (e.g., collision detection [3]). Nonetheless, point
clouds can have excessive amount of points especially for



large-scale scenes, and more severely it can have inherent
sensor noise. Due to these issues, many prior approaches [4],
[5] convert point clouds to other representations (e.g., tri-
angular meshes) in order to process them in a simple and
efficient way.

In robotics, one of popular representations is the grid
map [1], [6] approximating point clouds. While this grid
map is proposed early, it has certain limitations. Its main
drawback is that it requires a tremendous size of memory,
when we handle large-scale outdoor environments or require
high resolutions for accurate representations.

Tree-based representations such as quad-tree maps in 2-
D and octree maps in 3-D have been studied in order to
overcome the problems. The octree map divides a 3-D space
into 8 sub-spaces that have the same volume, and represents
a space with a cell having an occupancy state. When all
the children cells have the same state, this map results in a
compact representation than the grid map.

Thanks to this useful property, tree-based representations
have been used for modeling environments [7], [8]. Payeur
et al. [9] suggested to augment octrees with probabilistic
occupancy states for considering sensor noise. Recently,
Wurm et al. [2] adopted unknown states for representing
regions occluded by obstacles. Coenen et al. [10] considered
the unknown state as the region with a high probability
having collision. Many applications such as navigation [11]
and point cloud compression [12] have been developed based
on this octree map representation.

In this paper, we assume that a robotic application uses
grid or octree based occupancy map representations to deal
with point clouds efficiently. For such applications, we
develop an accurate, yet efficient update method for these
maps.

B. Real-Time Updates for Point Clouds

When we have a point from a sensor, it means that
we do not have any collisions from the sensor origin to
the point. We need to reflect this information on grid or
octree based occupancy map representations. This process
can be very slow, especially when we have many points
in large-scale environments and applications requiring high-
resolution maps.

A useful approach to accelerate the speed of updating point
clouds is to decide an adequate resolution of an octree based
map representation, instead of updating the full resolution of
the octree map. Along these lines, different methods have
been proposed for using various resolutions depending on
objects [13] or statistics of updated states of each cell [14].
While it uses adaptive resolutions, its performance can vary
depending on parameters related to the resolutions, and the
updated maps can be significantly different from the original
results.

In graphics literature, various techniques traversing grids
have been studied for ray tracing, a specialized form of col-
lision detection [15], [16]. Recent occupancy map represen-
tation, OctoMap [2], uses the 3DDDA based algorithm [15]
as an exact method to update the map with point clouds.

Wald et al. [17] proposed a method to traverse a grid with
coherent rays. This work packetizes rays traversing similar
space in the grid to reduce the number of intersection tests
used for ray tracing. This work is neither designed for our
occupancy maps, nor is applicable to our work. Nonetheless,
we are inspired by this approach, and propose super rays to
our problem.

Voxel filtering of PCL [18] is used frequently to accelerate
speed of processing point clouds in the robotics literature.
This method decreases the processing time by reducing
the number of points using voxels, while sacrificing the
representation accuracy of maps in the same spirit of using
adaptive resolutions. Departing from these prior approaches,
our method maintains the original representation accuracy
of occupancy maps and improves the overall update per-
formance by utilizing access pattern of updating maps with
point clouds.

III. OVERVIEW

We give backgrounds on occupancy maps and give an
overview of our method.

A. Backgrounds on Occupancy Maps

Point clouds consist of points captured by a depth sensor
or laser range finder. When a point is reported by the sensor,
it implies that the space between the sensor origin and the
point is empty. As a result, we associate a ray with the point
starting from the sensor origin. Thus, the problem can be
transformed into map traversal along the ray from the sensor
origin toward the reported end point.

Such a ray provides two kinds of state information about
space under the study: occupied and free states. The end
point of the ray has the occupied state, since the sensor
reports some objects on that particular point. On the other
hand, other space that the ray passes through has the free
state. This information is critical for various applications
such as motion planning. As a result, it is very important
to construct a map representation accommodating this infor-
mation acquired from sensors.

Unfortunately, data captured by sensors accommodates
various levels of noise. To consider such noise, map repre-
sentations commonly use an occupancy probability, instead
of simple boolean occupancy states of occupied or free. The
occupancy probability, P(n |z1:t), represents the occupancy
state of a cell, n, given sensor measurements, z1:t , from the
initial time step 1 to the current time step t, and can be
modeled by the Bayes rule [19] as follows:

P(n |z1:t) = 1−
[

1+
p(n |z1:t−1)

1− p(n |z1:t−1)

p(n |zt−1)

1− p(n |zt)

]−1

(1)

For the fast update to the map representation, recent
approaches use the log-odds notation [20], [2], and the prior
equations are transformed into:

L(n |z1:t) = L(n |z1:t−1) + L(n |zt) (2)
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Fig. 2. Each figure represents occupancy probabilities of cells after
updating each ray to the octree-based occupancy map representation. In
this example, we traverse the same set of cells for four different rays.
The bold numbers with ∗ notation in cells indicate that those cells are
classified into fully occupied or fully free state. The blue ray in figure d)
is an example of causing redundant computation, since it does not change
any occupancy probabilities of the traversed cells. In this figure, we use
locc = 1.7, l f ree =−0.8, lmax = 3.5, and lmin =−2.0.

where the inverse sensor model L(n |zt) is defined as the
following:

L(n |zt) =

{
locc, if the end point of a ray is in cell n
l f ree, if a ray passes through the cell n

When a cell has an occupancy probability that has been
accumulated over long time steps, a new input data that
conflicts with the current state of the cell cannot change the
state immediately. This over-confidence problem can occur
frequently in dynamic environments. OctoMap [2] solves the
problem by using a clamping policy that limits the occupancy
probability of a cell based on minimum and maximum state
bounds: lmin and lmax. The state of a cell limited by either one
of those two bounds is considered to be fully free or fully
occupied with a high occupancy probability. Fig. 2 shows an
illustration of updating the octree map given point clouds.

B. Motivations

Occupancy maps such as octrees and grids have been
widely used for various applications. We, however, found that
updating these maps can take a huge amount of computation
time. Furthermore, we have identified that the original
update method for occupancy maps has redundant compu-
tations, because of the discrete nature of grid and octree
representations. For example, Fig. 2 shows four different rays
traverse the same set of cells in the octree representation,
while these rays have different end points. When we update

the map with these rays one-by-one, redundant computations
are made on traversal and updating through exactly same set
of cells, resulting in lower performance.

Additionally, certain rays do not contribute at all to
cells whose occupancy probabilities are out of range of the
min and max bound values due to the clamping policy.
These problems occur frequently because the original update
method does not consider the discrete nature of grid and
octree representations.

C. Overview of Our Approach

To overcome these problems, we propose to use super rays
and their update method for occupancy maps. We define a
super ray of points as a representative ray for rays generated
for those points. The super ray is constructed in a way that
traversing those rays for updating the map requires to access
the same set of cells in the map. We then update the map
by traversing those cells with the super ray only a single
time, while considering the number points associated with
the super ray, thus removing redundant computation and
achieving higher performance.

Our algorithm consists of three phases. We first propose a
mapping line and explain how to use it for generating super
rays starting from a single, seed frustum containing all the
points of a cell in the map (Sec. IV-A). We then identify
which points in a cell have the same set of cells traversed
for updating the map based on the mapping line (Sec. IV-
A). We also explain how to update cells that each super ray
passes without compromising the representation accuracy of
maps (Sec. IV-D). We explain our concepts based on the 2-D
case first and then expand it to the 3-D case (Sec. IV-C).

For the sake of simplicity, we explain our method based
on the uniform grid as an occupancy map representation
for point clouds. Our method, however, is easily applied to
octrees, and results with grids and octrees are reported in the
result section.

IV. REAL-TIME UPDATES USING SUPER RAYS

In this section, we explain our approach in detail.

A. Generating a Mapping Line

In general, point clouds are defined in the sensor coordi-
nate system, while occupancy maps model them in the world
coordinate. Based on the assumption that we know the po-
sition and orientation for the sensor in the world coordinate,
we transform point clouds from the sensor coordinate to the
world coordinate, and update the map with them.

For each cell, c, in the map, we conceptually construct a
seed frustum (and its associated super ray) starting from the
sensor origin to the cell box containing all the points in the
cell c, the red box shown in Fig. 3-a). Starting from the seed
frustum, we partition it into multiple ones, each of which
accesses the same cells of the map. To do this, we design
our algorithm to access grid cells slice-by-slice, where a slice
contains cells in a line for the 2-D data. For this process, we
pick an axis, i.e., X , Y , or Z axis, for computing such slices,
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Fig. 3. This figure shows an example of updating a mapping line for a
cell c. The red grid point g1 in b) divides the seed frustum into two sub-
frustums, and its projected point generates two segments on the mapping
line. In c), two grid points in out2 in the slice 2 also generates two more
segments in the mapping line shown in d).

and treat it as a processing direction. Fig. 3 shows X as the
processing direction and computed slices.

For identifying which points are mapped to the same super
ray, we introduce a mapping line, which is a line segment
that overlaps between the cell c and the slice containing the
cell c. Fig. 3-a) shows an initial mapping line. Each segment
of mapping line corresponds to one of the super rays, while
we also use the terms of frustums or super rays conceptually
to explain our geometric concepts. The initial mapping line
starts with a single line segment representing a super ray,
but can be broken into multiple segments corresponding to
multiple super rays.

One key observation for updating the mapping line to
represent different frustums is that the traversal patterns of
cells differ along grid points, when we consider cells slice-
by-slice. Fig. 3-b) shows a grid point, shown in the red circle
within the initial frustum. Given the grid point, the traversed
cells differ, and thus we need to partition the seed frustum
into two different ones, resulting in two segments on the
mapping line (Fig. 3-b)). Based on this observation, the key
operations are how we efficiently compute grid points within
the frustum.

Let out i of i-th slice to denote the faraway line of the slice
along the processing direction. Fig. 3-b) shows an example
of out1 for slice 1. We can then compute intmin and intmax
that are two intersection points of the seed frustum for each
i-th slice like the blue circles in Fig. 3.

Suppose that the first slice containing the sensor origin is
slice 1 and the last slice containing point clouds is slice N.
Our algorithm of computing a mapping line works in an
iterative manner from slice 1 to slice N − 1. To compute

2 1 2 1 2
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a) Map to a new segment b) Map to the same segment

c) Map to a new segment d) Final result

Fig. 4. This figure shows how we compute three different super rays out
of five points using the computed mapping line. a) A new point maps to a
new segment, and we treat it as a new super ray with a weight of one. b)
Another point maps to the prior segment, and we increase its weight to two.
c) The new point maps to a new segment and a new super ray is assigned
to it. d) shows the final, three super rays with their weights.

grid points that differentiate the access pattern, we first
compute two points intmin and intmax in out i of each slice
starting from slice 1. We then project all the grid points
between intmin and intmax onto the mapping line. Suppose
that there are m grid points, g = {g1, g2, · · · , gm }. These
grid points partition the current frustums into m + 1 sub-
frustums, resulting m + 1 corresponding segments on the
mapping line. Each pair of two consecutive elements in the
mapping line implicitly defines a segment and its associated
frustum (and its super ray). Note that we can easily compute
these grid points thanks to the discrete nature of occupancy
maps, and compute segments of the mapping line without
using expensive sorting methods, resulting in a fast method.
The pseudo code of generating a mapping line for a cell is
shown in Alg. 1.

B. Generating Super Rays using the Mapping Line

After we computed the mapping line of each cell at the
prior step, we use it for computing how many points are
assigned to each computed frustum. To perform this process,
we traverse all the input points, project each of them to the
mapping line, and count how many points are assigned to
each segment of the mapping line that maps to a frustum
(Fig. 4).

The points assigned to the same segment in the mapping
line have the same access patterns in terms of cells traversed
to update the map. Therefore, we treat them to be in a super
ray. Especially, we do not store all those points, but store
the first point (or any one of them) and the number of
assigned points as a weight to the super ray. We use this



Algorithm 1: BUILD MAPPING LINE
Input: Cbox, a cell box in 2-D, O, a sensor origin in

2-D
Output: Mline, a mapping line

1 Mline← InitMappingLine(Cbox)
2 Sslice← InitSlices(O,Cbox)
3 for i in 1 : length(Sslice)−1 do
4 g←ComputeGridPoints(Sslice[i],Cbox)
5 for j in 1 : length(g) do
6 // project onto mapping line without sorting

Mline.insert(Pro jection(g j))

7 return Mline

Algorithm 2: GENERATE SUPER RAYS
Input: P, a set of points in a cell, O, a sensor origin
Output: Sray, a set of super rays

1 Cbox←ComputeCellBox(P)
2 Mxy← BuildMappingLine(Cbox(X , Y ), O(X , Y ))
3 Myz← BuildMappingLine(Cbox(Y, Z), O(Y, Z))
4 Mzx← BuildMappingLine(Cbox(Z, X), O(Z, X))
5 Sray← GenerateSuperRays(Mxy, Myz, Mzx, P)
6 return Sray

information associated with a super ray to efficiently update
our occupancy map (Sec. IV-D).

C. Extension to the 3-D Case

In this section, we explain how we extend our prior 2-D
approach into handling 3-D points. Essentially, we handle the
3-D cases by considering them in three different 2-D planes
with their mapping lines.

Similar to the 2-D case, we first compute a bounding
volume containing point clouds in the map representation.
We also construct a seed frustum traversing to the volume,
and then partition the frustum into sub-frustums, each of
which accesses the same set of cells.

The key observation for the 3-D case is that access patterns
of cells differ along edges of cells. Fig. 5-a) shows that two
rays access different cells since they are partitioned by the
blue edge. In this case, the access pattern of two rays differs
from the blue grid point projected into the Y-Z plane. Based
on this observation, we project points into three different
planes, Y-Z, Z-X, and X-Y planes, and check whether those
points are partitioned by grid points in those 2-D planes. As a
result, we can solve the 3-D problem using our 2-D approach
mentioned in Sec. IV-B. We compute each mapping line for
each plane.

To generate super rays using three mapping lines, we
project input points into each mapping line. When points
are assigned to the same segment in all of three mapping
lines, those points have the same access patterns. Similar to
the 2-D case, we generate a super ray for those points. The
pseudo code of generating super rays for a cell in the 3-D
case is shown in Alg. 2.
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(a) An example of classifying two rays in 3-D
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Y

X
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Fig. 5. This figure shows an example of generating super rays in the 3-D
case. The rays access different cells, since they are partitioned by the blue
edge. This information can be identified by three different 2-D projections,
the Y-Z, Z-X, and X-Y projections shown on the right.

D. Updating Occupancy Map with Super Rays

To update occupancy maps with super rays, we use
existing update methods proposed by the OctoMap [2]. To
determine cells needed for the update, we use the 3DDDA
based algorithm [15]. Because all the points in a super ray
access the same set of cells, we traverse and update those
cells only a single traversal.

Since a super ray is generated for multiple points, we take
account of the weight of the super ray w (the number of
contained points), and use the following, modified inverse
sensor model:

L(n |zt) =

{
wlocc, if the end point of a super ray is in n
wl f ree, if a super ray passes through the cell

It is then guaranteed that we achieve the same occupancy
map to that computed by processing points individually with
multiple traversals.

V. RESULTS AND DISCUSSIONS

We test our method and others on a machine that has
3.4GHz Intel i7-4770 CPU. For all the experiments, we
use two public datasets, indoor and outdoor datasets, used
in OctoMap [2]. The indoor dataset consists of 66 scans
captured in a corridor, and the outdoor dataset consists of
81 scans captured in a campus (Fig. 1). Scans of the indoor
and outdoor datasets have point clouds consisting of 89,446
points and 247,817 points on average, respectively.

Implementation detail. Our method of generating super
rays has preprocessing cost induced by generating super ray,
while it is designed for efficient process. At the worst case,
we attempt to generate super rays, but each super ray can
have only a single point, demonstrating only the overhead
of our method without any benefits. We can estimate such
cases depending on two factors: the number of points in a
cell and the geometric configuration (e.g., distance and angle)
between the sensor origin and the cell. Fortunately, we found



TABLE I
THIS TABLE SHOWS THE NUMBER OF GENERATED SUPER RAYS WITH

DIFFERENT RESOLUTIONS.

# of Points Indoor [89,446] Outdoor [247,817]

Evaluation
# of # of Points # of # of Points

Super Rays / Super Ray Super Rays / Super Ray

0.2m 25064 3.6 150453 1.6

0.4m 10668 8.3 102076 2.4

0.6m 5106 17.5 72191 3.4

0.8m 3072 29.1 52906 4.7

1.0m 2073 43.1 40833 6.1

that simply checking the number of points in a cell works
fine for our method.

Specifically, we use a threshold value, k, on the minimum
number of points in a cell for generating super rays. In other
words, for a cell with points less than k, we process all the
points individually by simply creating a super ray per each
point in the cell. For the rest of other cells, we apply our
method. We tested different k values in a range between 0
and 40, and found that 20 shows the best performance in
practice. As a result, we report all the results in this setting.

Table I shows the number of generated super rays as a
function of the resolution. In the case of 0.6 m resolution,
our method groups on average 17.5 points (up to 43.1 points)
and 3.4 points (up to 6.1 points) per super ray in indoor
and outdoor datasets, respectively. This high grouping ratio
results in the dramatic decrease for the number of cells
traversed during the map updates in indoor and outdoor
datasets.

A. Overall Performance

We compare overall performance of our super rays based
method and the prior 3DDDA based method [15]. The overall
performance of our method includes both the generation time
of super rays and update time of the map with those super
rays. In the following experiments, we use the 3DDDA based
update method implemented in the OctoMap library [2]. We
test these two different methods in OctoMap, the octree based
occupancy map, and GridMap, the grid based occupancy
map. For the update methods, we use the same logOdds
values, locc = 0.85 and l f ree = −0.4, for any kinds of rays
(i.e., super and regular rays) to update cells, and the same
parameters, lmin =−2 and lmax = 3.5, of the clamping policy
adopted from OctoMap.

We measure all the computation time of generating super
rays and updating cells for both indoor and outdoor datasets
with various resolutions, and report the average frame per
second (FPS) computed with all the available scans (frames).
Fig. 6 shows the average FPS of each tested method with two
map representations, OctoMap and GridMap. As can be seen,
our method shows higher performance than the 3DDDA in
all the tested configurations. Since improvements observed
with OctoMap are similar to those with GridMap, we simply
mention the average improvement measured from OctoMap

0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1

A
v

g
. 

u
p

d
a
te

 s
p

e
e
d

 [
F

P
S

]

Resolution [m]

GridMap+Ours

GridMap+3DDDA

OctoMap+Ours

OctoMap+3DDDA

(a) Indoor Dataset

0

2

4

6

8

10

12

14

0.2 0.4 0.6 0.8 1
A

v
g

. 
u

p
d

a
te

 s
p

e
e
d

 [
F

P
S

]

Resolution [m]

GridMap+Ours

GridMap+3DDDA

OctoMap+Ours

OctoMap+3DDDA

(b) Outdoor Dataset

Fig. 6. These figures show average performances, Frame Per Second (FPS),
in two datasets according to various map resolutions.

and GridMap in the text for simplicity. Detailed results with
generation time and update time are reported in Table II.

We achieve 2.5 times and 1.6 times faster performances on
average compared to the prior 3DDDA method with indoor
and outdoor datasets, respectively. In the indoor dataset, our
method shows from 1.6 to 3.2 times higher performance over
the prior method. In the outdoor dataset, our method shows
better, but similar performance to the prior method in a small
resolution (e.g., 0.2 m), but shows up to 1.9 times higher
performance in the other tested resolutions.

To analyze reasons of achieving such overall performance
improvements, we also measure the number of cells traversed
and accessed during the update process (Fig. 7). As can be
seen in the figure, our method reduces the number of cells
traversed across all the tested settings up to 20 times. As a
result, it results in significant decrease for the update time
of our method.

Table II shows the separate times spent on generating super
rays and updating with our method. Overall, our method
decreases the update time by a factor of 5.6 times on average,
up to 20 times. The time spent on generating super rays
varies depending on the resolutions and datasets, while the
overall performance of ours is better than the prior one. For
example with the indoor dataset consisting of 89 K points,
our method spends about 16.6 ms to generate 25.1 K super
rays from the 0.2 m resolution. As a result, we generate
1.51 K super rays per ms, where each super ray has 3.6
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Fig. 7. These figures show graphs of average number of accesses to cells
in two datasets according to various resolutions of map representation.

points on average. On the other hand, our method spends
8.6 ms to generate 2.1 K super rays from 1 m resolution.
This translates that we generate 0.24 K super rays per ms,
where each super ray has 43.1 points. This results in overall
performance improvement thanks to a high decrease rate in
the number of cells traversed.

B. Discussions

In theory, our method is an exact update method, which
provides the same results to those computed by the 3DDDA
update method. We also demonstrate numerically how well
our method update occupancy probabilities compared to the
prior update method. For this purpose, we measure mean
squared errors between our occupancy map and the map
updated by the prior method. We verify that the numerical
errors turn out to be zero across all the tested settings.

In a case that a cell of the map has a few points, updating
the map with point clouds can be better than with super rays
because of overhead for generating super rays. To overcome
this problem, we use the simple threshold k to be 20 for
efficiently checking whether it is beneficial to generate super
rays in a cell or not. Even without using this threshold, i.e.
k = 0, we achieve 1.9 times faster performance on average
compared to the prior 3DDDA method with two datasets.
Our method without using the threshold spends more time
on generating super rays, but less time on updating maps in
general.

VI. CONCLUSION

We have proposed a novel update method for occupancy
maps based on super rays. We construct a super ray of points
in a way that processing those contained points accesses the
same set of cells in occupancy maps. Specifically, we have
proposed to use a mapping line for efficiently generating
super rays, and extend it to handle the 3-D case. We have ap-
plied our method into two different datasets and two different
occupancy maps: octree and grid based maps. Our method
is robust enough to show consistent overall performance
improvement across all the tested configurations. This robust
performance improvement is thanks to the fast super ray
generation using mapping lines and the drastically reduced
number of cells traversed during the map update process.

There are many interesting future research directions. We
currently used a simple threshold k not to generate super
rays on unpromising cells that do not have many points. We
would like to design an optimized technique on this aspect by
considering the geometric configuration between the sensor
origin and the cell under the update process. We expect that
this additional study can result in additional performance
improvements, while keeping the overhead of generating
super rays low. Furthermore, we would like to extend our
method to work well in modern streaming architectures such
as GPU for achieving real-time update performance in a rate
of 30 ms.
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