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T-ReX: Interactive Global Illumination of
Massive Models on Heterogeneous

Computing Resources
Tae-Joon Kim, Xin Sun, and Sung-Eui Yoon

Abstract—We propose interactive global illumination techniques for a diverse set of massive models. We integrate these
techniques within a progressive rendering framework that aims to achieve both a high rendering throughput and interactive
responsiveness. In order to achieve a high rendering throughput we utilize heterogeneous computing resources of CPU and
GPU. To reduce expensive data transmission costs between CPU and GPU, we propose to use separate, decoupled data
representations dedicated for each CPU and GPU. Our representations consist of geometric and volumetric parts, and provide
different levels of resolutions and support progressive global illumination for massive models. We also propose a novel,
augmented volumetric representation that provides additional geometric resolutions within our volumetric representation. In
addition we employ tile-based rendering and propose a tile ordering technique considering visual perception. We have tested
our approach with a diverse set of large-scale models including CAD, scanned, simulation models that consist of more than
300 million triangles. By using our methods, we are able to achieve ray processing performance of 3 M∼20 M rays per second,
while limiting response time to users within 15 ms∼67 ms. We also allow dynamic modifications on light, and material setting
interactively, while efficiently supporting novel view rendering.

Index Terms—Massive models, ray tracing, photon mapping, global illumination, heterogeneous parallel computing, voxels, and
compression
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1 INTRODUCTION
The complexity of polygonal models has been increas-
ing dramatically in both areas of computer-aided-design
(CAD) and entertainments. This continuing trend is mainly
caused by the ever-growing demands of achieving higher
accuracy for CAD and better realism for movies and
games. This in turn causes significant challenges to high
quality visualization and rendering, because of the heavy
loads of computation and memory. The main bottleneck of
rendering massive models that cannot fit into main memory
of CPU or GPU is the data transmission time introduced
by fetching data from external drives (e.g., HDD or SSD).
The excessive data transmission costs hinder high rendering
throughput and interactive responsiveness.

Most prior methods for rendering massive models mainly
have been focused on providing basic visual effects such
as local illumination and hard shadows [1]. Supporting
global illumination requires significantly more computation
than local illumination. More importantly, unlike coher-
ent rays such as primary and shadow rays widely used
in local illumination, secondary rays generated in global
illumination such as path tracing and photon mapping are
incoherent and diverge into a wide area of a model, leading
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to excessive data loading given the limited available mem-
ory of CPU and GPU. As a result, the data transmission
time of global illumination of massive models can take a
larger portion compared to that in local illumination. Most
prior techniques developed in local illuminations can show
improvement, but insufficient performance for interactive
global illumination of massive models.

Recent GPUs provide high computational power and thus
realizes interactive, high quality global illumination mainly
for small scale models that can fit into the video memory.
Unfortunately, the video memory is generally more limited
than main memory of CPU and it is even more challenging
to support global illumination for massive models on GPUs.

In this paper we propose novel techniques enabling
interactive rendering of large-scale models consisting of
hundreds of millions of primitives by highly utilizing com-
putation power of GPU and minimizing data transmission
costs between CPU and GPU. The key idea is to use
both geometric and volumetric representations for an input
polygonal model to efficiently perform global illumination
and utilize available heterogeneous computing resources of
CPU and GPU.

Our hybrid representations named T-ReX (Tri-level Rep-
resentations for eXpress rendering) consists of separate,
three different levels-of-details (LoD) for the input model:
the original polygonal representation, and coarse and fine
volumetric representations (Sec. 4). We use the original,
fully detailed geometric representation only at the CPU,
while two volumetric representations are used at GPU.
Especially, the coarse, volumetric representation is designed
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(a) Overview (b) Cockpit (c) Cabin (d) Engine

Fig. 1: These figures show photon mapping results of the Boeing 777 model consisting of 366 M triangles in different views. These
results are progressively refined and are acquired after 40 k frames which take 8∼12 minutes. More importanlty, each rendering frame
is provided to users with less than 100 ms latency time, while allowing dynamic changes on camera, light, and material setting.

such that it can fit into the video memory of GPU, while the
fine, volumetric representation is stored at main memory of
CPU and fetched to the video memory asynchronously in
an on-demand fashion.

We choose photon mapping as our global illumination
rendering technique for massive models, since it has been
known to handle a wide variety of rendering effects ro-
bustly; we extend our methods to another global illumina-
tion. We partition various types of rays required to perform
photon mapping into two disjoint sets that do and do not
require high geometric resolutions. For rays (e.g., primary
rays) that generates high-frequency visual effects we use
the geometric representation on the CPU side. For all the
other rays (e.g., gathering rays) that tend to generate low-
frequency visual effects, we use our volumetric representa-
tion on the GPU side.

Partitioning various rays of photon mapping to two sets,
each of which can be supported well by either one of
our representations, enables a significant reduction on the
data transmission cost between CPU and GPU, leading
to a lower requirement on the communication bandwidth.
We then utilize available communication bandwidth for
asynchronously transmitting necessary portions of the fine
volumetric representation to the video memory, and then
progressively refine the rendering quality with the addition-
ally loaded, finer volumetric representation. As a result, our
system provides global illumination effects interactively for
massive models, and then converges to a high quality result
quickly.

Main contributions and results. In summary main
contributions of this paper are as follows:

• Hybrid representation consisting of geometric and vol-
umetric representations of massive polygonal models.

• Progressive rendering framework that utilizes
CPU/GPU heterogeneous computing resources and
minimizes the data transmission costs.

The proposed techniques and system provide the follow-
ing benefits:

• High performance and interactive responsive-
ness. By utilizing heterogeneous computing re-
sources and minizing data transmission costs, we

are able to achieve ray processing performance of
3 M∼20 M rays per second. More importanlty, for
various types of models with variying model com-
plexity, our system provides photon mapping rendering
results progressively within 15∼67 ms response time,
while allowing dynamic changes on camera, light, and
material setting at runtime.

• High complexity. By using separate, decoupled multi-
resolutions for CPU and GPU, we can achieve interac-
tive responsiveness even for massive models (Fig. 1)
consisting of up to 470 M triangles on commodity
hardware. Also, our techniques mainly designed for
massive models can handle small models robustly
without much computation overheads over the state-of-
the-art global illumination techniques specialized for
small models.

According to our best knowledge, the progressive render-
ing framework integrated with our proposed techniques is
the first system that interactively performs photon mapping
for massive models with the ability of dynamic changes on
the camera, lights, and materials.

2 RELATED WORK

In this section we explain prior approaches of supporting
global illumination for massive models.

2.1 Massive Model Rendering

There are orthogonal approaches for handling large-scale
models: compact representation, cache-friendly, multi-
resolution, etc.

2.1.1 Compact Representations

Mesh-based representations [2], [3] provide the most de-
tailed representation for models including a spatial hier-
archy for efficient ray tracing, but can require expensive
space and I/O access time. As a mesh-based representation
can achieve a high rendering quality, we use a tightly
compressed version of it only for handling operations
requiring high geometric resolutions at CPU.
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A point-based approach [4], [5], [6] like point clouds
decouples illumination data from the geometry, and em-
ploys multi-resolution techniques for efficient rendering.
The irregular distribution of point samples enables high
quality indirect illumination effects, but also leads to heavy
computation costs, hindering interactive applications.

Recently, volume-based representations such as regular
voxels are actively used for interactive performance. In this
approach the data of both geometry and estimated radiance
are approximated as voxels in sparse voxel octrees [7],
[8], [9]. It is well suited to GPU architectures thanks to
its compact storage, and efficient traversal, and provides
plausible rendering quality. Crassin [10] discussed some
difficulties of sparse voxel octrees such as computing
primary rays and detailed shadows that require a very
high resolution of the voxels. We address these issues
by using a separated geometric representation and our
proposed augmented voxel representation for the shadow.
VoxLOD [11] showed interactive color bleeding effects
on massive models by using asynchronous voxel loading.
Our rendering framework supports photon mapping and
can generate more realistic outputs. We also use a similar
asynchronous loading for out-of-core voxels for providing
better quality in a progressive manner, when the data
bandwidth is available.

2.1.2 Cache-Friendly Techniques

These techniques can be broken into out-of-core, i.e. cache-
aware, and cache-oblivious techniques. Out-of-core tech-
niques reduce the number of data fetching from disk [12]
assuming a particular cache size. Cache-oblivious tech-
niques were shown to improve the cache coherence across
different cache sizes [13]. In the field of ray tracing, there
are a few techniques that maximize cache utilization by
reordering rays [14], [15], [16]. However, these techniques
have not been widely applied to interactive global illumi-
nation, because of their limited performance improvement;
they can reduce, but not remove most of the expensive disk
I/O accesses at runtime.

Wald et al. demonstrated interactive visualization of a
Boeing model consisting of 366 million triangles by using
an out-of-core approach [17], but global illumination is not
supported. In our method we can provide a reasonable
rendering quality efficiently based on the coarse volumetric
representation that fits into the video memory, and then
progressively refine it with other representations proving
higher resolutions using CPU and GPU.

2.1.3 Multi-Resolution

Extensive research efforts have been put into designing var-
ious multi-resolution techniques for geometry [18], spatial
hierarchy [19], and lighting [20]. Sparse voxel octrees [9]
provide a multi-resolution scheme for all of them efficiently.
In this paper we extend this volumetric representation to
provide interactive global illumination for massive models.

2.2 Global Illumination

High-quality rendering techniques have been long studied,
and good books are available [21], [22].

Unbiased Monte Carlo ray tracing approach (e.g., bidi-
rectional ray tracing [23]) based on the rendering equation
is the standard reference solution of global illumination,
but converges to the reference slowly. Many extensions
have been made to improve its performance while in-
troducing bias. Two notable techniques among them are
virtual point lights (VPLs) based radiosity [24] and photon
mapping [25]. In this work we adopt photon mapping
because it has been known to provide various rendering
effects.

Recently, photon mapping has been extended to effi-
ciently support an infinite number of photons given an
available memory [26], stochastic rendering effects [27],
and robust error estimation with a progressive rendering
framework [28]. These techniques can be naturally com-
bined with our method that focuses on handling massive
models.

In addition to these approaches, many different interac-
tive techniques (e.g., image-space techniques) have been
proposed. See a recent survey on this topic [29]. As empha-
sized in its list of open problems, most global illumination
techniques have been mainly designed and tested for small-
scale models. Supporting scalability and large-scale models
remains one of under-addressed topics in the rendering
field.

2.3 Progressive and Adaptive Sampling

Progressive rendering techniques have been widely ac-
cepted especially for interactive global illumination. Un-
biased Monte Carlo ray tracing techniques are intrinsically
progressive [30], and photon mapping was extended to be
progressive [26].

Various sampling has been extensively studied and can be
integrated within a progressive rendering framework. Most
sampling techniques are based on variance of the previous
samples [31]. In addition, human perception is also taken
into account to guide sampling [32]. In this paper we also
use a saliency metric [33] that can be efficiently evaluated.

2.4 Heterogeneous Computing Resources

Recently computation-intensive applications including
global illumination have been accelerated by using multiple
heterogeneous resources such as CPUs and GPUs. For
the problem of collision detection, which is related to ray
tracing, HPCCD [34] divided tasks to either CPU or GPU,
according to how well characteristics of tasks suit well
to either one of architectures. In the context of global
illumination, Budge et al. proposed a generalized data
management on CPU/GPU hybrid resources for path trac-
ing [15]. Unlike the previous approaches, we separate data
representations for CPU and GPU and minimize expensive
data transmission overheads between them.
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Fig. 2: This figure shows our rendering framework and data transitions between different modules.

3 OVERVIEW

In this section we give an overview of our approach. We
classify rays required to perform photon mapping into two
disjoint sets called C-rays and G-rays, where C-rays and
G-rays are rays that tend to create high-frequency and low-
frequency rendering effects, respectively. We then process
C-rays on CPU with a detailed, but compressed polygonal
representation called HCCMesh, while processing G-rays
on GPU with our volumetric representation, augmented
sparse voxel octree (ASVO) (Fig. 2).

We define C-rays to be primary rays and their secondary
rays reflected on perfect specular materials, since they are
likely to generate high-frequency rendering effects. All the
other rays (e.g. gathering rays and shadow rays) are grouped
together into G-rays, even though some of them (e.g. gather
rays) produce low-frequency effects and others (e.g. shadow
rays) high-frequency effects.

In order to provide high quality results for C-rays, we
use detailed, but compressed polygonal models to process
those rays. We dedicate CPU to process C-rays, since CPU
has a relatively large main memory that is required to hold
the detailed polygonal models.

On the other hand, most rays in G-rays are generated to
produce low-frequency effects such as indirect illumination.
In addition, the number of rays in G-rays is much higher
(e.g., 4 to 12 times) than that in C-rays, leading to a
higher computation load. As a result, we propose to use
our volumetric representation ASVO and GPU to process
those rays in G-rays, since the volumetric representation
suits well to GPU. Furthermore, we subdivide leaf voxels
of sparse voxel octrees and represent geometric information
of the subdivided voxels with a compact occluder bitmap.
As a result, we can provide higher geometric resolutions
for rays (e.g., shadow rays) of G-rays that are sensitive to
geometric resolutions.

Runtime Algorithm. Fig. 2 shows an overall rendering
framework that uses both CPU and GPU to compute direct
and indirect illumination based on photon mapping. To
compute indirect illumination we perform a module of
Photon tracing that generates and traces photons in the

GPU side, and accumulate generated photons in our volume
representation ASVO.

We process rays tile-by-tile for better controlling the
response time of our rendering framework. We therefore
employ a Tile ordering module that computes a tile ordering
considering both cache coherence and visual importance of
tiles.

For each tile, we process C-rays associated with the tile
in the CPU side by using the HCCMesh; this is conducted
in a C-ray tracing module. Specifically we perform inter-
section tests for C-rays against the mesh in the CPU side
and then send their intersection results to the GPU side
for processing G-rays generated from those C-rays with
the ASVO representation in a G-ray tracing module and
shading the final rendering output in a Shading module.

At the startup of our system, we first load the HCCMesh
into main memory of CPU and then load a coarse version
of our ASVO representation to the video memory of GPU.
Once these initial data loading operations are done, our
system is ready to provide interactive response to users.

At runtime, we run an Asynchronous voxel loading mod-
ule that fetches necessary portions of the finer version of
our ASVO asynchronously to provide progressively better
rendering results; we do not send the original geometry to
GPU at all.

We also use a Preview module, which traces only primary
rays in a reduced resolution (e.g., 100 by 100) that can be
done quickly. This preview module guarantees that users
can receive a new rendering result interactively, even when
processing C-rays and G-rays in CPU and GPU takes much
larger time.

4 DATA REPRESENTATIONS
In this section we present our data representations for large-
scale global illumination, followed by their preprocessing
step.

4.1 Mesh Representation
As a detailed mesh representation for C-rays that produce
high frequency effects, we use a HCCMesh representa-
tion [2]. HCCMesh is a compact mesh representation that
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Fig. 3: Augmented Sparse Voxel Octree (ASVO): Our ASVO
consists of upper and lower ASVOs, each of which is combined
with occluder bitmaps for every leaf node. The occluder bitmap
has bit values, each of which indicates whether its corresponding
sub-voxel overlaps with the original geometry.

tightly integrates an input triangular mesh and its BVH
(Bounding Volume Hierarchy) together. It reduces the size
of the BVH by using connectivity templates of a hierarchy,
and compactly encodes of bounding volumes (BVs) based
on vertices of the mesh. Furthermore, it provides random
access on the compressed mesh and its BVH.

HCCMesh has in-core and out-of-core representations; i-
HCCMesh and o-HCCMesh, respectively. i-HCCMesh sup-
ports high-performance decompression, but has relatively
low compression ratio (about 7:1). On the other hand, o-
HCCMesh provides high compression ratio (about 20:1),
but low decompression performance because of its more
complex encoding scheme. In our current approach, we
use only i-HCCMesh, since i-HCCMeshes of all the tested
models fit into the available memory of our tested system;
we can use o-HCCMesh additionally for even bigger mod-
els.

4.2 Augmented Sparse Voxel Octree (ASVO)
We use ASVO for efficient handling of G-rays that pro-
duce indirect illuminations in the GPU side. ASVO serves
both as an approximated geometry for the input model
and a volumetric representation of photons for indirect
illumination. ASVO consists of three different components
that provide increasing higher resolutions: upper and lower
ASVOs, and occluder bitmaps (Fig. 3). We pre-load all the
data of the upper sparse voxel octree and its corresponding
occluder bitmaps to the video memory of GPU and thus
avoid their data transmission overhead between CPU and
GPU at runtime. On the other hand, necessary portions of
lower ASVOs (and their occluer bitmaps) are identified at
runtime and asynchronously loaded to improve rendering
quality progressively.

Upper ASVO. The upper ASVO is constructed such that
it can fit into the video memory of GPU. As a result, the
upper ASVO is resident on the video memory and never
swapped out at runtime. It has a r3u resolution. In practice
we set ru to be in a range between 256 and 1k, resulting
in a few hundred MBs (e.g. 300 MB).

We set three dimensional sizes of the upper ASVO (and
thus its voxels) to have the equal size for efficient ray

(a) Bounding cubes of ASVO (b) Leaf voxels of ASVO

Fig. 4: The left figure visualizes bounding cubes of voxels that
have a depth of six, while the right figure visualizes leaf nodes
of the ASVO.

tracing. Because of this constraint the bounding cube of
the ASVO is bigger or equal to the bounding box of the
model; we use the word of bounding cube to highlight the
regularity of dimensions of ASVO and its voxels as shown
in Fig. 4(a). The constraint on three dimensional sizes of
the ASVO would generate many empty octree nodes. We
store octrees as sparse octrees [9] to effectively represent
such empty octree nodes.

The bounding cube of the upper ASVO is recursively
subdivided in the middle along each dimension to generate
a sparse octree. All the non-empty nodes are stored in an
array by the breath-first-search order. For each non-empty
leaf node, we compute and record representative normal
and material for the corresponding voxel. The normal and
material are computed using triangles weighted by its in-
tersected area with the voxel. These representative material
and normal in each leaf node serves as an Level-of-Detail
(LOD) representation to geometry contained in each voxel,
and are used for efficiently tracing multi-bounced photons
and G-rays. Each internal node contains only pointers to its
child nodes. Note that leaf nodes of the sparse octree do not
contain the original geometry of the model nor any pointers
to theirs; ASVO is totally a decoupled representation from
the mesh. In addition we bake photons by accumulating
their information at leaf voxels of the upper and lower
ASVOs for indirect illumination at runtime in a similar
manner to [9].

Lower ASVOs. Lower ASVOs contain finer LOD rep-
resentations over the upper ASVO. Conceptually lower
ASVOs have finer voxel resolutions than that of the upper
ASVO. However, having lower ASVOs causes increased
memory requirement and more importantly increased data
access time. In addition, there are potential overheads
caused by sychronizations in the GPU side for connecting
lower ASVOs to the upper ASVO as we discuss later.

In order to efficiently access lower ASVOs and reduce
various synchronization operations, we create lower ASVOs
for internal nodes in a particular depth, not for leaf nodes,
of the upper ASVO, as shown in Fig. 3. Let us denote such
internal nodes of the upper ASVO linking nodes. At runtime
when we access a certain linking node of the upper ASVO,
it is expected to access its sub-tree. We therefore prefetch
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Fig. 5: The left figure shows a number of loaded lower ASVOs
per each frame, and the right figure shows synchronization time
used for connecting lower ASVOs to the upper ASVO.

its corresponding lower ASVO asynchronously [35] and
connect it with the linking node of the upper ASVO.
Since we cannot hold all the lower ASVOs in the video
memory, we use a simple memory management method
for unloading less-frequenly used lower ASVOs.

Benefits of having lower ASVOs for internal nodes
instead of leaf nodes come from the fact that the num-
ber of update operations drastically reduces and thus I/O
throughputs improve. This is because the number of internal
nodes is typically much smaller than the number of leaf
nodes given the octree representation, and accordingly
the granularity of lower ASVOs increases. In practice we
choose internal nodes that have three depth lower than leaf
nodes for linking nodes and thus we reduce up to 83 update
operations.

To use lower ASVOs at runtime we need to connect them
with linking nodes of the upper ASVO. To do so we simply
overwrite the child pointer of each linking node with the
address of its corresponding lower ASVO after appropriate
locking on data. Since we need only a single address
update for each lower ASVO, this update can be done
quite efficiently. We perform the connection and unloading
process right after we process all the G-rays in the G-ray
tracing module to reduce expensive synchronization.

In order to verify benefits of connecting lower ASVOs
with the linking nodes, we measured a number of loaded
lower ASVOs and synchronization time in each frame be-
tween two methods of connecting lower ASVOs to linking
and leaf nodes (Fig. 5). The average cost with the chosen
method is 0.16 ms, while the cost of creating lower ASVOs
for each leaf node is 4.4 ms, which is about 28 times slower
than our method. This is mainly because of the drastically
reduced number of update operations.

Since we create lower ASVOs for linking nodes, there are
overlapping nodes between upper and lower ASVOs. When
we allowed three depth overlaps between them the memory
overhead of the data redundancy is 0.15% of the total size
of the ASVO. Since this overhead is negligible, we do not
adopt any compression techniques to remove or reduce this
overhead. We denote rl an effective subdivision level for
leaf voxels of lower ASVOs that excludes the overlapping
factor bewteen lower and upper ASVOs. In practice rl is
set to 2∼4. As a result, the total resolution considering the
upper and lower ASVOs is (ru ∗ rl)3.

Occluder bitmaps. The upper and lower ASVOs provide

Fig. 6: The left and right images show rendering results com-
puted w/o and w/ occlusion bitmaps with the resolution of 43,
respectively. When we do not use the occlusion bitmaps shadow
rays intersect with coarse voxels and produce false shadows, while
bright spots are created since photons falsely interact with coarse
voxels.

enough resolutions for various indirect illuminations (e.g.,
color bleeding) to our tested models, while providing inter-
active rendering performance. Nonetheless we found that
it is necessary to have more detailed LOD representations
of the geometry for visibility tests, especially for high-
frequency shadows. To address this issue, we propose to
use an occluder bitmap in each leaf node of the upper and
lower ASVOs. The occluder bitmap of a leaf node provides
additional visibility information for a voxel corresponding
to the node. To construct the occlusion bitmap we subdivide
the voxel of the node into r3o sub-voxels, and check only
whether each sub-voxel is empty or not. We use this
binary information of each sub-voxel for providing higher
geometry information for shadow rays (Fig. 6). In practice
we set ro to be 4, and thus we require 43 = 64 bits, which
require 8 bytes for each node.

In summary our sparse octrees in ASVOs provide up
to (ru ∗ rl)3 resolutions to the indirect illumination, while
ASVOs with the occlusion bitmaps provide (ru ∗ rl ∗ ro)3
resolution for the geometry.

5 RENDERING ALGORITHM

When we receive events of light or material changes we
trigger the photon tracing module (Fig. 2). For photon
tracing, we use the common photon tracing method of
the standard photon mapping approach [25]; we generate
photons from light sources and bounce them with the model
based on the Russian roulette. The difference between our
method and the standard photon tracing is that we perform
photon tracing in the GPU side and accumulate photons
on leaf voxels [9] of both upper and lower ASVOs. Once
photon tracing is done each leaf node of ASVOs maintains
a radiance value of all the accumulated photons in its
corresponding voxel.

To quickly respond to user’s modifications on the cam-
era, lighting, and materials, we compute a low-resolution
preview that contains only direct illumination of the model
in the preview rendering module. Especially when a user
quickly navigates the model, the user sees only the preview.
The resolution of the preview is computed such that its
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computation time is less than a user-specified threshold for
rendering a frame, tmax. tmax is set to be 100 ms, which
is the time we consider as a longest response time to users.
Since we need to give time for other modules, we set that
the preview is done within one third of tmax, which is
about 30 ms. By providing the preview in this manner, we
can avoid excessively long response time to any user input.
When the user stays in a particular view point and thus
gives time for our rendering system, we asynchronously
perform photon tracing and gathering in the GPU side, and
then show its result to the user in a progressive manner
(Fig. 8). This is also demonstrated in the accompanying
video.

Finally, shading is done with photon mapping, and we
perform the well-known G-Buffer based filtering [36] to
reduce a variance level of indirect illuminations.

5.1 GPU-based Photon Tracing

We generate and trace photons from light sources. When
a photon hits a leaf voxel of a ASVO, its intensity
and incident direction are accumulated to the voxel. We
compute an outgoing direction of the intersected photon
based on the normal and material information stored in
the voxel. To decide whether a photon hits a geometry in
a leaf voxel as its visibility test, we additionally use an
occluder bitmap associated with the voxel. This effectively
improves the quality of visibility tests and thus the overall
rendering quality (Fig. 6). The traversal scheme of rays with
occlusion bitmaps are same to that of ASVOs, since they
are constructed based on regular grids.

When a user changes settings of lights or materials,
we initialize accumulated photon information stored in all
the ASVOs and then re-start the photon tracing module.
Since photon tracing takes a lot of time in most cases,
we generate new photons progressively and asynchronously
in a background mode and store them in additional, tem-
porary ASVOs. While generating new photons with the
updated settings in a background mode, we also process
photon gathering performed in the G-ray tracing module
for indirect illumination with the current ASVOs. We then
get radiance from both the current ASVO and temporary
ASVOs, but with different weights. Initially we give a
higher weight to the current ASVOs, but to the temporary
ASVOs, as the photon tracing module generates more
photons; we finish the photon tracing module once it
generates photons with a user-defined target number (e.g.
5 M photons for each light). This idea is in the same
spirit to geomorphing widely adopted in rasterization based
multi-resolution rendering [37]. Once all the photons are
generated, the temporary ASVOs are swapped with the
current ASVOs, and thus we see rendering results only
with the current ASVOs. In practice it takes approximately
5 sec., i.e. around 300 frames, to trace 10 M photons for
the cockpit viewpoint (Fig. 1(b).)

If we do not allow users to modify the lighting/material
settings, we can then perform the photon tracing step with
our mesh representation, HCCMesh, for the best rendering

Fig. 7: The right image visualizes a saliency map of the left image.
Red colors indicate high saliency, while blue colors low saliency.

quality, and bake its results in ASVOs. At runtime we
need to perform G-ray tracing with the backed ASVOs and
shading in the GPU side.

5.2 Tile-based Rendering

We compute rendering results in a tile-based manner for
better controlling the response time to users. We divide
an image screen to tiles and process all the pixels stored
in a tile in a parallel manner. We set each tile to have
less than 100 pixels that can be processed in a parallel
manner by SIMD based packet tracing in CPU and GPU.
Furthermore we also process multiple tiles simultaneously
in C-ray and G-ray tracing modules with multiple working
threads. We aim to provide a rendering result to a user
within tmax for interactivity. As a result, it is possible to
process only a portion of tiles within a frame. If so, we
process other tiles in its subsequent frames. As a user does
not change the viewpoint, we can keep process tiles and
provide progressively improved rendering results to the user
at the viewpoint.

When we process a tile, we generate only a single
primary ray for each pixel in a tile. We then generate ns

and ng shadow and final gathering rays spawned from each
primary ray, respectively. Later when we process the tile
again after processing all the other tiles, we also apply the
same procedure to the tile and thus improve its rendering
quality in a progressive manner.

Tile ordering. There can be many options for an ordering
of processing tiles. The most common ordering methods for
tiles include row-by-row or z-curve [38]. Z-curve is usually
recommended for higher performance, since it maximizes
the cache coherence arising during processing tiles sequen-
tially. We also identified that z-curve ordering shows the
best rendering performance, but it does not accommodate
users’ preference on which regions he or she wants to see
earlier than others.

In order to accommodate the users’ preference, we
propose a salience-based tile ordering. We estimate the
users’ preference based by predicting important, i.e. salient,
regions of the final reference image based on a salience
metric. Since we cannot compute the final reference image,
we use the preview image computed with the current
viewpoint for the estimation.
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We adopt a saliency metric proposed by Achanta et
al. [33] because of its simplicity and efficiency. For each tile
we evaluate the saliency metric for each pixel of the preview
image, and then compute an average saliency value for each
tile. We then sort tiles based on its saliency values and
process them sequentially; higher saliency values indicate
more importance regions (Fig. 7).

We have tested with different tile ordering including
our saliency-based, z-curve based, random, and row-by-row
ordering. We observed that z-curve based ordering shows
the best performance followed by row-by-row, ours, and
random ordering. Nonetheless, the performance differences
between our method and the z-curve are very small (e.g.,
up to 4% difference). As a result, we employ saliency-
based tile ordering for our approach, since it achieves best
rendering quality in our progressive rendering framework
with a reasonably high runtime performance.

Once processing a tile is done at the C-ray tracing
module in the CPU side we enqueue the tile and its
associated information (e.g. hit points and material index of
primary rays generated for the tile) to a job queue (Fig. 2),
which contains tiles to be passed to the GPU side. Instead
of sending an available tile to GPU, we collect and send
them in a block, called fetching block. Specifically when the
size of the job queue is bigger than a threshold, fetching
block granularity, we dequeue all the tiles as a fetching
block and send their information to the GPU side, followed
by launching the G-ray tracing module that performs the
final gathering and others in the GPU side. Once the G-ray
tracing model is done, we perform the shading and then
show its final result to a viewer.

The granularity of the fetching block is controllable
based on a threshold by users. If the user prefers higher
responsiveness, we need to use a smaller threshold (e.g.,
64 tiles). On the other hand, when users target optimized
rendering throughputs, larger fetching blocks (e.g., 2 k tiles)
are recommended. More detailed analysis is available in
Sec. 6.2. We use the user-specified granularity of fetching
blocks to respect his or her preference on the rendering
throughputs. Nonetheless, the response time of the current
frame is larger than tmax(= 100 ms) the size of fetching
block is automatically reduced for the next frame to make
the response time to be less than tmax. When the response
time becomes within tmax, we gradually increase the
fetching block size to the user-specified granularity.

5.3 G-Ray Tracing

From the hit points computed by processing primary rays
of a tile in the CPU side, we generate shadow rays and
final gathering rays in the GPU side and process them
in the G-ray tracing module. We use an octree traversal
algorithm [39] to trace both kinds of rays with both
ASVOs and occlution bitmaps in a similar manner that
we trace photon in the photon tracing module. In order
to maximize utilization of GPU, we process a bundle of
rays simultaneously by considering the SIMT architecture
of the modern GPUs [40]; we map the bundle of rays to 32

Model Tri Size (MB) of ru ru ∗ rl
(M) HCCM. u-ASVO l-ASVO

Boeing 777 366 6708 243 5789 1024 4096
Double Eagle Tanker 82 1758 278 5549 1024 4096
Power plant 13 258 89.3 1898 1024 4096
Sponza 66k 2.6 191 767 512 1024
St. Matthew 372 5612 150 629 512 1024
Iso-surface 469 7341 182 5268 256 1024

TABLE 1: This table shows model complexity, size of each
representation and resolution of voxels (ru and rl) for benchmark
models. HCCM. stands for the HCCMesh. u-ASVO and l-ASVO
indicate upper and lower ASVOs, respectively.

threads, a warp in the recent NVIDIA GPU architecture.
Since these threads for the bundle of rays in a warp
executes one common instruction at a time, the utilization is
lowered when the threads have data-dependent conditional
branches. To minimize such serializations, we perform a
cache-oblivious ray reordering for rays [16]. In particular,
we sort the rays based on their ray directions and then
assign rays with similar directions to a warp.

5.4 Asynchronous Voxel Loading
When a ray traverses a linking node of the upper ASVO, we
check whether its corresponding lower ASVO is loaded or
not in the video memory. When the lower ASVO is loaded,
it indicates that it is already linked to the linking node of
the upper ASVO. As a result, we can keep traverse into
the corresponding lower ASVO. On the other hand when
the lower ASVO is not loaded yet, we send a data loading
request to the CPU side, and process the rays only with the
information stored in the upper ASVO.

The voxel loading manager running asynchronously on
the CPU side receives such requests. It then asynchronously
loads requested lower ASVOs in a separate CPU thread.
Once a lower ASVO is loaded, it is then sent to the video
memory asynchronously. As a final step, we connect it
based on a simple pointer update, as discussed in Sec. 4.2.

6 RESULTS AND COMPARISONS

We have tested our method on a PC, which has 3.3 GHz
Intel Core i7 CPU (hexa-core), 8 GB RAM, NVIDIA
GTX 680 graphics card with 2 GB DRAM, and HDD. We
have implemented our system on Windows7 and NVIDIA
CUDA 4.2 toolkit. We allocate a certain portion of the
available video memory to a ASVO buffer that permanently
holds the upper ASVO, while the rest of the video memory
is reserved for caching lower ASVOs. Specifically, 15% of
the available video memory, which is 300 MB, is set for the
ASVO buffer; a range of 10% to 50% works well without
much performance and quality difference.

Benchmarks. We have tested our method with a diverse
set of models (Table 1) that have different characteristics.
Our main benchmark model is Boeing 777 model (Fig. 1)
consisting of 366 M triangles. The model takes 15.6 GB
and 21.8 GB for its mesh and BVH, respectively. We
encode its mesh and BVH compactly in a HCCMesh. The
HCCMesh representation takes only 6.55 GB. We use 11
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(a) Preview< 30 ms (b) 1 frame< 60 ms (c) Compl. I.< 0.2 s (d) 800 frames< 10 s (e) Converged I.

Fig. 8: These images show progressive results after finishing preview rendering, a fetching block to generate a frame, all the tiles for
the complete image (Compl. I.), and 800 frames. The converged image is computed after 40 k frames.

area lights for the model. In addition, we have tested our
method with different CAD models including Double Eagle
Tanker (82 M triangles), power plant (13 M triangles), and
Sponza models (66 k triangles) (Table 3) with 4, 8, and
2 area lights, respectively. The CAD models usually have
irregular distributions of geometry and drastically varying
triangle sizes. Other types of benchmark models include
St. Matthew model (372 M triangles) as a scanned model,
and iso-surface model (469 M triangles) extracted from a
scientific simulation (Table 3) with 1 and 2 area lights,
respectively. Triangles in these models are distributed rela-
tively regularly, but are highly tessellated.

6.1 Implementation Details
We elaborate implementation details that are important to
achieve high performance of our method reported in this
paper.

Preprocessing. Parameters ru and rl play a major role
in terms of the overall performance and rendering quality.
Since the upper ASVO should have the highest resolution
while it fits within the ASVO buffer, we incrementally
increase the value ru of the upper ASVO by a factor of
two and use the maximume resolution value given the
constraint. Our system allows that we can have a high
resolution rl for lower ASVOs, since they are fetched
asynchronously on demand at runtime. As a result, we
let users to set rl depending on a required resolution for
a model. Nonetheless, four times higher resolution over
ru for rl shows a good balance in terms of quality and
performance. Detailed parameter values for each tested
model are shown in Table 1.

Runtime rendering. We use the Russian roulette for
tracing photons, but we set it such that the average num-
ber of bounces for photons is three. We use the Phong
illumination model for BRDF. To process primary rays
efficiently in the C-ray tracing module we adopt packet
ray tracing [41]. Some of our benchmark models have
many lights. Generating shadow rays for all the lights can
be very time consuming, hindering interactive response
to users. To efficiently consider many lights, we adopt
a simple importance sampling for lights. Whenever we
need to generate shadow rays, we randomly select lights
and generate shadow rays only for those selected lights.
We use a simple heuristic of measuring the importance of

lights; we simply set a probability of each light based on
its light intensity and distance from the camera position.
One can use more advanced techniques such as an adaptive
technique proposed by Ward et al. [42].

6.2 Performance
We show performance achieved mainly with the Boeing
model, the most challenging benchmark model among our
benchmark set. We also discuss performances with other
models, if they show different results over those of the
Boeing model.

Our unoptimized construction method for our represen-
tations processes 30 k triangles per a second on average.
For example, it takes about two and a half hours for the
Boeing model.

Runtime rendering. A common method for evaluating
performance of a rendering system is measuring rendering
performance with a predefined camera path. However, this
evaluation protocol is not very meaningful to our case, since
our system is progressive and focuses on delivering quick
responsiveness to users (see the accompanying video).
Instead, we have measured average response times between
a user event and its first result of our rendering system
across various views. More specifically, we generate tiles
for a new setting provided by a user and send tiles in
a fetching block to GPU, followed by showing a result
corresponding to those tiles. The response time is thus
measured between the time when the user provided an event
and the time that our system provides the initial result to
the event. We also compute a complete image time that
takes a time to process all the tiles of the final image. The
complete image time is provided only for comparison with
other non-progressive rendering systems.

To measure response time in the Boeing 777 benchmark
model we choose views such as overview, cockpit, cabin,
and engine, as shown in Fig. 1, following reference views
listed by Wald et al. [17]. We use a 512 by 512 image
resolution for all the tests. We test parameters ns and ng

with two different values: ns = ng = 2, and ns = 4 and
ng = 8. We generate 5 M photons for each light, since the
rendering quality is almost converged with the number of
photons [25].

As shown in Table 2, our approach shows the response
time of 25.9 ms∼36.9 ms across different views when
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ns ng Overview Cockpit Cabin Engine

Ours

Resp. T 2 2 36.9 25.9 34.9 31.9
4 8 36.3 36.0 67.3 60.3

M rays/s 2 2 3.4 10.4 9.3 9.5
4 8 6.6 15.0 12.4 13.0

CIT

CPU NA NA 141 89 64 64

GPU 2 2 43 81 123 111
4 8 66 166 253 226

Total 2 2 152 106 141 130
4 8 151 186 273 246

CPU-

Resp. T 2 2 76.4 102.4 129.0 122.0

GI

4 8 132.0 206.6 279.6 273.8

M rays/s 2 2 1.6 2.6 2.4 2.4
4 8 1.8 3.2 2.9 2.7

CIT 2 2 321 432 541 516
4 8 560 877 1184 1170

Full-

Resp. T 2 2 173 2407 6838 815

GI

4 8 404 7088 25895 2625

M rays/s 2 2 0.62 0.11 0.039 0.31
4 8 0.45 0.080 0.027 0.25

CIT 2 2 822 10120 33701 4009
4 8 2215 34991 126444 12568

TABLE 2: This table shows rendering performance including
response time, Resp. T, and ray processing throughput measured
in M rays/s at different views shown in Fig. 1. We also report
complete image time, CIT, for comparison with other work. Time
is reported in ms unit.

we use ns = ng = 2. These results directly indicate
that users can get a feedback within this response time,
even when they modify camera, lighting, and materials.
While providing this interactive responsiveness, our method
also achieves 3.4 M∼10.4 M rays/s across different views.
In terms of complete image time our method generates
7∼9 complete images per second. When we use bigger ns

and ng (i.e. ns = 4 and ng = 8), we can achieve higher ray
throughputs (6.6 M∼15.0 M rays/s), but longer response
time (36.0 ms∼67.3 ms). Since the response time with
ns = 4 and ng = 8 may not be preferred for interactive
applications the parameters ns = ng = 2 are chosen and
used in the accompanying video. Progressive results for the
cockpit viewpoint are shown in Fig. 8.

In order to see utilization of CPU and GPU, we also
measure time spent on each computing resource when we
process all the tiles in the screen space. Since CPU and
GPU run simultaneously, the total complete image time is
slightly longer than the maximum of each time spent on
CPU and GPU. CPU is the main bottleneck for overview
and cockpit viewpoints, but GPU for cabin and engine
viewpoints. In all the cases our method shows response
time around 30 ms.

Fetching block granularity. Ray processing throughput
and responsiveness of our system depend heavily on the
fetching block granularity. In order to find reasonable
ranges for the parameter, we first tested various sizes of
fetching blocks with the fixed setting of ns = ng = 2
(Fig. 9). We tested with the Boeing 777 model at the
overview and cockpit, and all the other parameters are
same to ones used for prior experiments. We observed
the natural trade-off between the ray processing throughput
and response time, as we increase the fetching block size.
We found that using 128 to 512 fetching block sizes

Block size Overview Cockpit Block size Overview Cockpit

64 2.38 7.23 64 6.53 4.49

128 2.74 8.86 128 11.42 7.48

256 3.26 9.98 256 19.23 13.35

512 3.4 10.4 512 35.77 26.05

1 k 3.47 11.24 1 k 69.64 46.57
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Fig. 9: These graphs show response time and ray processing
throughputs as a function of the fetching block sizes.

is a good compromise in terms of both throughput and
responsiveness. For the rest of tests, we use 512 block sizes
as the default fetching block size. For St. Matthew scene
the size is, however, automatically reduced to 128, to make
the response time within tmax as discussed in Sec. 5.2.

Other benchmark models. We reported results mainly
with the Boeing model so far. We also discuss results
with other models among our benchmark set. We achieve
4.7 M∼20.2 M rays/s and response time of 15.3∼60.4 ms
for other models. CAD models such as Double Eagle
tanker, power plant, and Sponza models show similar per-
formance trends to the Boeing 777 model, even though they
have varying model complexity, i.e. more than three orders
of magnitude difference in terms of triangle counts. From
these results we can conclude that our method shows a ro-
bust performance with a largely varying model complexity.
This is mainly because the voxel-based representation of
ASVOs is decoupled from the original geometry.

On the other hand, the St. Matthew and iso-surface
models show different results over CAD models. In these
models, especially the St. Matthew model, the main compu-
tational bottleneck is on operations performed at CPU, since
many triangles are mapped to a single tile (i.e. 300∼400
triangles per a pixel), leading to ineffective utilization for
the packet tracing in the CPU side. To verify this, we dis-
abled packet tracing and measured the performance again
with these models. We found that the rendering system
without packet tracing shows higher performance (about
four times) than using packet tracing; parenthesized results
in Table 3 are achieved without packet tracing. Therefore,
it is not a good choice to use packet tracing for these kinds
of models. Data structures for improving the performance
even for such incoherent rays were proposed [43]. Even
though it is not investigated further, it is straightforward to
adopt this scheme in our method.

Extensions to other global illumination techniques.
Even though we demonstrated our method mainly with
photon mapping our method can be easily extended to
support other kinds of global illumination. For example, we
can adopt ambient occlusion by tracing random rays using
our ASVOs from each visible point, in addition to using the
HCCMesh for primary rays. We tested progressive ambient
occlusion tracing 10 rays per a frame for each visible point
and observed 16.6 M rays/s and 40.9 ms response time for
the cockpit viewpoint (Fig. 10).
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Fig. 10: Ambient occlusion (AO) result on the left and the final
image (on the right) combining AO and direct illumination.

6.3 Comparisons

To highlight benefits of our approach, we compare our
CPU/GPU hybrid rendering algorithm with a framework
that runs entirely on CPU. We call this CPU-based frame-
work CPU-GI. In addition, we compare our method with a
framework that uses the original, full detailed model, HC-
CMesh, even for shadow and gathering rays; in other words,
no geometry approximations are used for this framework at
all. We call this framework Full-GI. For Full-GI, we do not
use ASVOs and photons are recorded in a separate kd-tree
as the usual photon mapping method. Full-GI runs entirely
on CPU, because the full detailed model cannot be loaded
into GPU.

Comparisons with CPU-GI and Full-GI. We achieve
3.9 times improvements on average compared with CPU-
GI. The major difference between ours and CPU-GI is that
modules of photon tracing and G-ray tracing are performed
in the CPU side for CPU-GI. Therefore, this result indicates
that these modules are more efficiently performed in the
GPU side. This is mainly because traversal algorithms are
performed on ASVOs, which are defined on a regular grid
and thus are well suited for various GPU operations.

In order to see benefits of using only the ASVOs, we
compare CPU-GI with Full-GI, since the CPU-GI uses
our representation in the CPU side, while the Full-GI
running also in the CPU side does not use it. CPU-GI, our
method running on the CPU, achieves 3.3, 32, 84, and 9.3
times performance improvement on average over Full-GI
for the overview, cockpit, cabin, and engine viewpoints,
respectively. Complete image times at the cockpit and
cabin viewpoints using Full-GI are much longer than those
measured in other viewpoints, because photon densities
needed for these viewpoints are very higher than others,
and hence KNN search becomes takes much larger time.
On the other hand, using ASVOs for photon gathering
is independent to the density of traced photons because
the photons are accumulated to voxels. As a result, our
method shows steady performance across different regions
and viewpoints.

Overall our method utilizing CPU and GPU achieves
135 times improvement on average over Full-GI. Nonethe-
less, results of our method are approximations to those of
Full-GI (Fig. 11); results computed by Full-GI are reference
images computed by photon mapping. The major difference

(a) Full-GI (b) Ours (c) Diff.

Fig. 11: Converged rendering images of our method are similar to
the reference image generated by Full-GI, photon mapping with
full detailed geometry and photon kd-tree.

comes from the fact that our volumetric representation
conservatively covers more space than the original mesh.
As a result, this conservativeness causes false-positive ray
intersections, and makes our method a biased technique.

Comparison with coupled representations. Several
LOD based approaches [11], [19] are coupled representa-
tions that consist both of a hierarchical LOD representation
and primitives (i.e. triangles of the original model) that are
spatially grouped and assigned to leaves of the hierarchical
representation. Although these coupled representations can
be more compact than our representation, they were not
mainly designed for rendering with heterogeneous comput-
ing resources such as CPU and GPU. As a result, they can
cause frequent, but unnecessary data transfers between main
memory and video memory, which are one of major bottle-
necks of rendering large-scale models [15]. Departing from
this coupled approach, we decouple the original mesh and
its LOD representation into HCCMesh and ASVOs. This
decoupling requires additional memory space. For example
we use 89% more space over HCCMesh by having ASVOs
for the Boeing model. We found that even though we have
such additional memory requirements, it effectively reduces
data transfer costs by fitting our volumetric representation,
especially the upper ASVO, in the GPU video memory, and
thus achieves a high throughput and low response time.

Comparisons with prior voxel octrees. Crassin et al. [8]
proposed efficient voxel octrees as an volumetric LOD
representation, and used the same representation for filtered
(i.e. low-frequency effects) global illumination with small
models that can fit into main memory [9]. At a high level
there are two main differences between our representation
and theirs. We use the compact HCCMesh to process C-rays
in the CPU side and augment voxel octrees with occlusion
bitmaps. As a result, we are able to support high-frequency
effects better and thus test our method with a diverse
set of massive models including CAD models that have
irregular distribution of geometry. In addition, we minimize
the expensive data transmission costs for effective handling
massive models on heterogeneous resources by decoupling
the mesh representation and its volumetric representations,
followed by having the upper (coarse, but small) and lower
(fine, but large) augmented voxel octrees.

Comparisons with small models. Our techniques are
mainly designed for handling massive models. Nonetheless
our results indicate that our method can handle small
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models robustly without much computation overheads in
terms of ray processing performance, even when com-
pared with the state-of-the-art global illumination tech-
niques specialized for small models [44]. This is mainly
because our voxel representation drastically reduces the
computation of global illumination. The technique proposed
by Wang et al. [44] processes 5.0 M∼6.9 M rays per
second (107 k photon rays, 250∼500 gathering rays for
5 k sample point, and 2 M rays for local illumination per
frame) on NVIDIA GTX 280, and showed 1.5 FPS for a
kitchen scene containing 21 k triangles. Since our graphics
hardware outperforms about 2∼3 times over GTX 280,
the performance of Want et al’s approach is expected to
be 10 M∼20 M rays per second on our test machine.
Even though the Sponza model consisting of 66k triangles
may have different characteristics to the kitchen model, our
method for the Sponza model shows 12.6 M∼20.2 M rays
per second.

7 CONCLUSION AND FUTURE WORK

We have presented various techniques and their integrated
progressive rendering framework to achieve low response
time to users and high throughputs for global illumination
of massive models. In particular, we proposed to use a
decoupled representation consisting of polygonal and vol-
umetric representations, HCCMesh and ASVOs, to reduce
expensive transmission costs and achieve high utilizations
for CPU and GPU. We also augmented ASVOs with occlu-
sion bitmaps to provide higher geometric resolutions from
our volumetric representation. We also proposed saliency-
based tile ordering within our progressive rendering frame-
work.

Limitations and future work. As other prior techniques
employing volumetric representations, our method is bias
and not even consistent. Also, our volumetric representa-
tion spans more spaces compared to its original polygo-
nal model, causing false-positive intersections and wider
shadow regions. In scenes with point light sources and
highly glossy materials our method can generate box-like
artifacts even when we use occlusion bitmaps (Fig. 12).
This artifact becomes more noticeable when voxels are
closed to shadow or gathering rays. We tried an approach
to detect such cases, but it required too much computations,
lowering ray throughputs. We leave this issue as one of our
future work. Also, ASVOs may have storage overheads for
small models such as Sponza model because the ASVOs
do not depend on number of primitives. Note that these are
common drawbacks of voxel based ray tracing.

In our current rendering framework we manually as-
signed each type of rays to CPU and GPU depending
on its characteristics. A better approach is to measure
ray footprints based on ray differentials [18] and assign
rays with small footprints to CPU using HCCMesh, while
the rest of rays with wider footprints are processed on
GPU with ASVOs. Also, even though our approach pro-
vided interactive rendering results within our progressive
framework, the workload of CPU and GPU can vary a lot

(a) Point light sources (b) Highly glossy materials

Fig. 12: These images show artifacts caused by a limited resolu-
tion of our volumetric representation.

depending on camera, geometry, and materials. This can
result in a low utilization of either CPU or GPU. To address
this issue, we would like to extend our approach to off-load
jobs of a busy resource to another resource.

There are many other interesting avenues for future work.
Our method can be extended to adopt progressive photon
mapping [45] for better quality and better handling of
dynamic changes. Also, our approach aimed to both a high
rendering throughput and low responsive time to users. We
would like to design an optimization process considering
our two goals and use it as a principle to re-design various
components of our progressive rendering framework.
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View1 View2
Double Eagle Tanker (82 M triangles)

Size (MB) of HCCMesh 1758
Size (MB) of u-ASVO 278

View1 View2
ns/ng 2 / 2 4 / 8 2 / 2 4 / 8
Resp. T 26.1 32.7 28.1 54.0
M rays/s 7.9 14.8 11.2 15.1

CIT 105 133 115 219
CPU T 94 93 94 90
GPU T 61 114 97 202

Power plant (13 M triangles)

Size (MB) of HCCMesh 258
Size (MB) of u-ASVO 89.3

View1 View2
ns/ng 2 / 2 4 / 8 2 / 2 4 / 8
Resp. T 18.2 30.3 21.8 41.4
M rays/s 9.5 13.1 11.9 15.8

CIT 104 187 109 213
CPU T 43 42 30 36
GPU T 88 170 94 196

Sponza (66 k triangles)

Size (MB) of HCCMesh 2.6
Size (MB) of u-ASVO 191

View1 View2
ns/ng 2 / 2 4 / 8 2 / 2 4 / 8
Resp. T 20.0 37.4 15.3 27.4
M rays/s 12.6 16.8 14.7 20.2

CIT 104 203 88 166
CPU T 15 15 11 11
GPU T 89 186 72 147

St. Matthew (372 M triangles)

Size (MB) of HCCMesh 5612
Size (MB) of u-ASVO 150

View1 View2
ns/ng 2 / 2 4 / 8 2 / 2 4 / 8
Resp. T 26.1 50.1 51.9 (40.0) 52.3 (40.5)
M rays/s 10.5 13.4 1.5 (7.6) 3.9 (16.0)

CIT 125 255 848 (172) 863 (213)
CPU T 64 63 840 (161) 852 (164)
GPU T 111 237 91 198

Iso-surface (469 M triangles)

Size (MB) of HCCMesh 7341
Size (MB) of u-ASVO 182

View1 View2
ns/ng 2 / 2 4 / 8 2 / 2 4 / 8
Resp. T 51.8 53.2 60.4 61.5
M rays/s 4.7 11.4 4.8 12.1

CIT 224 229 276 281
CPU T 215 220 269 272
GPU T 68 115 88 160

TABLE 3: Rendering performance with our benchmark models. CPU T and GPU T show time spent only on CPU and GPU for a
complete image time, CIT, respectively.


