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Abstract
We present a novel, compact bounding volume hierarchy, TSS BVH, for ray tracing subdivision surfaces computed by the
Catmull-Clark scheme. We use Tetrahedron Swept Sphere (TSS) as a bounding volume to tightly bound limit surfaces of such
subdivision surfaces given a user tolerance. Geometric coordinates defining our TSS bounding volumes are implicitly computed
from the subdivided mesh via a simple vertex ordering method, and each level of our TSS BVH is associated with a single
distance bound, utilizing the Catmull-Clark scheme. These features result in a linear space complexity as a function of the tree
depth, while many prior BVHs have exponential space complexity. We have tested our method against different benchmarks
with path tracing and photon mapping. We found that our method achieves up to two orders of magnitude of memory reduction
with a high culling ratio over the prior AABB BVH methods, when we represent models with two to four subdivision levels.
Overall, our method achieves three times performance improvement thanks to these results. These results are acquired by our
theorem that rigorously computes our TSS bounding volumes.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Raytracing

1. Introduction

Subdivision surfaces such as Catmull-Clark and Loop schemes
have been widely used for representing various models in computer
graphics. Especially, the Catmull-Clark scheme has been a default
standard for the geometric modeling and has surprisingly close-to-
optimal properties [Cas12], while it is one of earliest subdivision
schemes.

Ray tracing and its derived physically based rendering tech-
niques such as Monte Carlo path tracing have been extensively
studied. These techniques can support realistic effects such as mo-
tion blur, soft shadows, and reflections. Unfortunately, most of
these techniques are designed for polygonal meshes, but less on
subdivision meshes [WMG∗09], compared to its importance in the
field.

Ray tracing subdivision surfaces commonly have two problems.
The first issue is related to a high memory requirement of main-
taining subdivided meshes and acceleration data structures on those
meshes. The second issue is a low culling ratio of existing acceler-
ation data structures such as bounding volume hierarchies based on
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Figure 1: Memory requirement of different methods. Different
methods use the same, upper-level AABB BVHs, and subdivided
meshes. Our methods using TSS BVHs in their low-level BVHs have
the linear storage complexity, while prior methods such as AABB
BVHs have exponential storage complexity as a function of the tree
depth. (a) shows the total memory requirement of different meth-
ods, while (b) shows memory requirement of low-level BVHs. Our
TSS BVHs take 12.6 MB, 25.2 MB, 37.8 MB, and 50.4 MB from the
first to the fourth subdivision levels, respectively.

Axis-Aligned Bounding Boxes (AABBs). For example, we found
that ray tracing a virtual museum scene consisting of 7.9 M patches
in its control mesh requires 36.82 GB for having 809 M subdivided
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Figure 2: We test our method with a variety of rendering effects generated by path tracing and photon mapping.

quads with four subdivision level and their AABB BVHs: 25.86 GB
for AABB BVHs and 10.96 GB RAM for subdivided quads.

To address them, prior techniques on ray tracing subdivi-
sion surfaces focused on adaptive tessellation methods [MTF03,
CLF∗03], packetization [BBLW07], and on-demand computa-
tions [BWN∗15]. Nonetheless, ray tracing subdivision surfaces has
been considered slow and required high memory footprints at run-
time. Unfortunately, tighter BVHs tailored for subdivision surfaces
with compact memory requirement have been less studied.

Main contributions. To address these problems, we propose
a novel bounding volume hierarchy tailored for handling the
Catmull-Clark subdivision scheme. Especially, we propose to use
Tetrahedron Swept Sphere (TSS) to effectively bound each patch of
Catmull-Clark scheme (Sec. 4.3). Our TSS based BVH does not en-
code any geometric information, but encodes a distance bound per
each depth. This feature leads our TSS BVH to have a linear space
complexity. We also explain how to compute an error-bounded sub-
division within a user-specified error bound to the limit surface
(Sec. 4.1), and describe parallel slab based culling (Sec. 4.4) to
efficiently cull out our TSS bounding volumes.

To demonstrate benefits of our methods, we have tested four dif-
ferent benchmarks with path tracing and photon mapping (Fig. 2).
We found that our new acceleration hierarchy achieves a high in-
tersection test culling ratio (up to 97 %). Furthermore, our TSS

BVHs have a linear space complexity as a function of the hierarchy
depth, while prior methods have the exponential growth rate. As a
result, we found that TSS BVHs achieve more than two orders of
magnitude memory reduction over the prior AABB BVHs, when
we have the subdivision level of three or four (Fig. 1). Overall, we
get three times overall memory reduction considering all the subdi-
vided meshes and BVHs, and similar running time improvements
when considering four subdivision levels in our tested benchmarks,
compared with the prior AABB method. We believe that our BVH
representation takes one step closer toward handling subdivision
surfaces more efficiently for ray tracing.

2. Related Works

In this section, we review subdivision schemes, mainly the
Catmull-Clark scheme, and various ray tracing methods for the
scheme.

2.1. Subdivision Schemes

Many subdivision techniques have been proposed, since they
can provide unlimited resolutions. Influential techniques include
Catmull-Clark [CC78], Doo-Sabin [DS78], and Loop [Loo78] sub-
division schemes. Catmull-Clark and Doo-Sabin schemes are based
on tensor product of B-Splines and thus operate on quadrilateral
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meshes, while the Loop scheme is a popular subdivision scheme
for triangle meshes. Mathematically, the limit subdivision surfaces
constructed by Doo-Sabin, Catmull-Clark and Loop schemes cor-
respond to bi-quadratic, bi-cubic and bi-quartic spline surfaces with
singularities, respectively. See recent surveys for more detailed in-
formation [Cas12, ZS00].

Recently, several researchers have considered to use GPU tech-
niques for efficiently tessellating the Catmull-Clark scheme. Dif-
ferent kinds of data structure are proposed to represent Catmull-
Clark subdivision meshes such that the subdivision process can
be executed on the GPU completely based on these data struc-
tures [NLMD12,PEO09]. To reduce memory requirement and com-
putational overheads, Loop and Schaefer proposed a GPU tessella-
tion algorithm for visually approximating Catmull-Clark subdivi-
sion surfaces using a collection of bi-cubic patches (one for each
face of a quad-mesh), which is C2 continuous everywhere except
at extraordinary vertices [LS08]. These techniques are mainly de-
signed for the rasterization scheme, not for ray tracing methods. For
our work with ray tracing, we propose to use an error-bounded sub-
division scheme, to provide certain guarantees on ray intersection
tests with subdivision schemes.

2.2. Ray Tracing Subdivision Meshes

Ray tracing subdivision meshes has been developed for improv-
ing interactive performance and reducing the memory requirement.
Müller et al. presented an adaptive subdivision scheme, where more
refinement steps are adaptively applied to the surface, as the sur-
face is more closely located to the ray [MTF03]. Christensen et
al. [CLF∗03] proposed an efficient multi-resolution measure based
on the observation that coherent rays have small differentials, while
incoherent rays have large ones.

Benthin et al. [BBLW07] proposed a ray tracing Catmull-Clark
subdivision surfaces approach based on ray packet. To avoid mem-
ory overflow caused by large scale models, this approach does not
retain any of the subdivided patches in memory once rays termi-
nate. To efficiently evaluate the underlying surface representation,
Benthin et al. also proposed to lazily tessellate necessary patches,
while utilizing adaptive subdivision [BWN∗15].

Recently, converting the base patches to Bezier patches with
Newton or Bezier clipping methods [TFM15] has been shown to
reduce the memory size and could be fast. Nonetheless, tessellat-
ing subdivision surfaces into triangles and performing intersection
tests with them has been commonly adopted in practice. We there-
fore choose to study this approach in this work.

Kobbelt et al. [KDS98] proposed envelop meshes to bound the
limit surface of subdivision surfaces, and was tested with the Loop
scheme. The upper and lower envelope meshes are computed by
moving the vertices of the limit surface in the corresponding nor-
mal directions, and are used for ray intersection tests. While this
scheme can provide the same error reduction rate to our method,
the envelope meshes are required to be separately stored or locally
refined, while our approach encodes only one error bound for each
depth.

While useful subdivision schemes and caching techniques have

been proposed for ray tracing subdivision schemes, BVHs used
for handling triangular meshes are commonly adopted even for ray
tracing subdivision meshes. In this paper, we propose a novel BVH
tailored for the Catmull-Clark subdivision scheme.

3. Overview

We give a brief overview on the Catmull-Clark subdivision scheme
and its issues related to ray tracing, followed by presenting high-
level ideas of our approach.

3.1. Catmull-Clark Subdivision Scheme

The Catmull-Clark scheme recursively refines the subdivision mesh
from its initial mesh, the control mesh. It is an explicit iteration
method, which uses the coordinates of the current level to com-
pute the coordinates in the next level. Each iteration process can be
summarized as follows:

1. Generate new face points, f new, by computing the center of each
patch, where d j is j-th vertex coordinate among np different
vertices of the patch: i.e. f new = 1

np
×∑

np
j=1 d j.

2. Generate new edge points, enew, by averaging the two vertices,
v j, of each edge and two face points, f j, of its neighboring faces:
enew = 1

4 ∑
2
j=1( f j + v j).

3. Refine vertices. For each vertex of the primitive, the new vertex,
vnew, is the weighted average of the adjacent edge point mean
E, face point mean F , and itself v, where n is the number of face
points incident to the vertex: i.e. vnew =

F+2E+(n−3)v
n .

4. Generate a new mesh by connecting each new face point to all
of its surrounding new edge points.

To support the Catmull-Clark subdivision scheme for ray tracing,
many different methods have been proposed, as discussed in Sec. 2.
Nonetheless, it has remained as one of challenging problems for
ray tracing the Catmull-Clark subdivision schemes due to its high
memory requirement and slow ray-patch intersection tests.

3.2. Our Approach

To address the high memory requirement and slow ray-patch inter-
section tests for the Catmull-Clark subdivision scheme, we propose
a novel bounding volume, TSS, for ray tracing the scheme.

As one of design goals for our method, we allow users to set
a tolerance threshold between a subdivided mesh and the limit sur-
face determined by the input control mesh. As a result, users can di-
rectly control the resolution and accuracy of computed subdivision
meshes. Based on the tolerance, we also construct our acceleration
data structure and perform various ray tracing operations.

We first compute a subdivision mesh from the input control mesh
given the user-specified error tolerance. As our basic acceleration
data structure for ray tracing the Catmull-Clark scheme, we build
a two-level BVH from the input control mesh. The two-level BVH
(Fig. 3) consists of two parts: an upper AABB BVH and lower TSS
BVHs. We use an AABB BVH for the upper BVH computed from
the input control mesh. The AABB BVH is pre-constructed in a
bottom-up method to bound the limit surface defined by the input
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Figure 3: Two-level BVHs: We build a two-level BVH for the
Catmull-Clark subdivision mesh given a user-specified error tol-
erance. The upper part is a common AABB BVH constructed from
patches of the control mesh, while each lower TSS BVH with TSS
bounding volumes is constructed on demand in a top-down method.
This figure shows 2D illustration of AABB and our TSS bounding
volumes (BVs), while exact 3D TSS BVs are shown in Fig. 6.

control mesh. The leaf node of the upper AABB BVH contains a
single patch of the control mesh, and its AABB bounds the quad
and its limit surface. We then construct the lower TSS BVH from
the quad patch stored in each leaf node of the upper AABB BVH.
We build the TSS BVH on demand in a top-down manner to further
bound the subdivided mesh of the patch given the error tolerance.
We associate our TSS bounding volume with each node of the TSS
BVH.

During the rendering process, we traverse the two-level BVH to
effectively cull away rays that do not intersect with the subdivided
mesh. While traversing the upper AABB BVH, we perform stan-
dard ray-AABB intersection tests. When we traverse nodes of TSS
BVH, we perform parallel slab based culling to effectively cull out
non-intersection pairs of the ray and TSS. If an intersection occurs,
we decompose the intersected node into four sub-nodes and use the
culling method recursively. As we reach the leaf node of the TSS
BVH, we perform an intersection test between the ray and the sin-
gle quad associated with the leaf node; specifically, we break the
quad into two triangles and perform ray-triangle intersection tests.

4. Ray Tracing Subdivision Meshes

In this section, we explain main components of our method.

4.1. Error-Bounded Subdivision

We would like to bound computed subdivision meshes within the
user specified error bound, ε, from the limit surface. To achieve
our goal, we need to identify a conservative subdivision level from
its control mesh. Fortunately, this has been studied earlier, and we
utilize prior techniques.

Suppose that we have a central control patch, Fk(u,v), with sub-
division level k. Fig. 4(a) shows an example of the central con-
trol patch Fk(u,v) at its control mesh, i.e., k is 0. We also ar-
range vertices of the one ring neighbors of the central control patch
Fk(u,v) based on the control vertex ordering suggested by Stam’s
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2n+6
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Figure 4: Given a central control patch, F0, in a control mesh,
i.e., subdivision level zero (shown in the left), we show its vertex
ordering of the one ring neighbors of the patch on the right. n is the
valence of P1, which is 5 in the example.

method [Sta98]. Fig. 4(b) shows an example of such a vertex or-
dering from the control patch, where n represents the valence of a
vertex, Pi (1≤ i≤ 2n+8).

The error between the subdivision mesh computed at subdivision
level k and its limit surface, S(u,v), is then bounded as the follow-
ing [CCY06]:

||Fk(u,v)−S(u,v)|| ≤ 1
z
(

1
w
)
k
M, (1)

where M is the second order norm for the control mesh of F0(u,v),
and defined as the following:

M = max{{||P2i−2P1 +P2(i+1)%n+1|| : 1≤ i≤ n}∪
{||P2i+1−2P2(i%n)+2 +P2(i%n)+3|| : 1≤ i≤ n}∪
{||P2−2P3 +P2n+8||, ||P1−2P4 +P2n+7||,
||P6−2P5 +P2n+6||, ||P4−2P5 +P2n+3||,
||P1−2P6 +P2n+4||, ||P8−2P7 +P2n+5||,
||P2n+6−2P2n+7 +P2n+8||, ||P2n+2−2P2n+6 +P2n+7||,
||P2n+2−2P2n+3 +P2n+4||, ||P2n+3−2P2n+4 +P2n+5||
}}.

w and z are then defined as follows, depending on the valence of
the vertex Pi:

w =


3
2 n = 3
4 n = 4
25
18 n = 5

4n2

3n2+8n−46 n > 5,

z =


1 n = 3
3 n = 4
25
18 5≤ n≤ 8
4(n2−8n+46)

n2 n > 8.

Ineq. 1 requires the initial quadrilateral, control mesh to be sub-
divided at least twice [Sta98] to guarantee that each face of the
subdivided mesh contains at most one extra-ordinary vertex, whose
valence is not equal to four. Based on Ineq. 1, we can get the min-
imum subdivision level k under the given error bound ε as the fol-
lowing:

k = dlogw
M
zε
e. (2)
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Figure 5: The teapot shown in subdivision meshes computed with
different error bounds. From the left, we use 2, 0.5, 0.1 for ε. In
these cases, the teapot is approximated with 126, 504 and 2016
quads, respectively.

Given the chosen subdivision level, the actual distance bound, εk,
between the computed mesh with k subdivision level and its limit
surface is computed as the following:

εk =
1
z
(

1
w
)
k
M, (3)

where εk ≤ ε. In practice, εk tends to become much smaller than ε.
For example, εk becomes 0.002 when ε is set to be 0.1 for the virtual
museum scene (Fig. 2(a)). Fig. 5 show results of approximating the
teapot using subdivision meshes until the error bound εk becomes
less than 0.1.

4.2. Two-Level BVH

We use a two-level BVH as our basic acceleration hierarchical
structure. We use the AABB BVH for the upper-level culling
structure in the granularity of patches used for the Catmull-Clark
scheme. We choose simple AABBs for their efficient ray-AABB in-
tersection tests. Two-level hierarchies are also commonly adopted
in many other ray tracing approaches [LYTM08,HQL∗10,KSY14].

To construct AABBs of the upper-level AABB BVH, we con-
sider control points of each patch and then construct an AABB
from those points. It has been well known that the AABB com-
puted in this manner contains all the control points of the limit sur-
face and all the subdivided meshes from the control mesh [Fün07].
For ray intersection tests, we simply perform ray-AABB tests for
culling out rays that do not intersect during the hierarchical traver-
sal. When we cull out such rays, we can guarantee that those rays
are away from the user-specified error tolerance ε from the limit
surface.

While the upper-level BVH provides a certain degree of culling,
their BVs are rather loose, resulting in low culling ratio. To achieve
additional culling ratio, we use a low-level BVH. Once we arrive
at a leaf node of the upper-level BVH, we first check whether we
constructed a low-level, TSS BVH for the leaf node †. If not, we
first generate a subdivision mesh, whose error bound from the limit
surface is less than the user-specified error bound ε (Sec. 4.1). We
then construct the TSS BVH, which is significantly more compact
than an AABB BVH.

† For this, we use a simple LRU based caching scheme that also works well
in a parallel mode [KBK∗10]

4.3. Tetrahedron Approximations

For efficient ray tracing of the Catmull-Clark scheme, we need a
compact and effective BV representation for subdivided patches.
For our goal, we utilize a tetrahedron to approximate the Catmull-
Clark Subdivision Meshes (CCSM) within a conservative distance
bound based on the following, tetrahedron-CCSM distance bound
theorem.

Theorem 4.1 (Tetrahedron-CCSM Distance Bound) Suppose
that we have Fk(u,v), Fk in short, a CCSM computed with the
subdivision level k. We define a tetrahedron, T k, as a bounding vol-
ume to Fk, whose four vertices are four corner points of Fk(u,v).
We additionally use a bilinear surface defined from four corners of
Fk(u,v):

BFk = (1− v)[(1−u)Fk(0,0)+uFk(1,0)]

+v[(1−u)Fk(0,1)+uFk(1,1)]. (4)

We then enlarge the tetrahedron into Tetrahedron Swept Sphere
(TSS) by rolling a sphere with a radius of εt , the conservative
bound on the difference between the CCSM and the bilinear sur-
face, where

||Fk(u,v)−BFk(u,v)|| ≤ max|| fuv−buv|| ≡ εt , (5)

and fuv are vertex coordinates for Fk(u,v), and buv are their corre-
sponding points on the bilinear surface BFk(u,v). TSS then bounds
the CCSM.

Proof To compute a conservative distance bound between the tetra-
hedron bounding volume T k and the CCSM Fk, we need to com-
pute the one sided Hausdorff distance from Fk to T k. Consider a
triangle,4Fk

i , in Fk, and let f j ( j = 1,2,3) be the vertices of4Fk

i .

The one sided Hausdorff distance between two convex objects4Fk

i
and T k always realizes at one of vertices f j ( j = 1,2,3) [BHEK10].
Based on this fact, we can compute the one sided Hausdorff dis-
tance, h(4Fk

i ,T k), as follows:

h(4Fk

i ,T k) = max
j

d( f j,T
k), (6)

where d( f j,T k) is the minimum distance between f j and T k. We

can then easily compute h(Fk,T k) by using h(4Fk

i ,T k) [TLK09]:

h(Fk,T k) = max
i

h(4Fk

i ,T k). (7)

Based on the above equations, we can derive the following:

h(Fk,T k) =max
i

h(4Fk

i ,T k)

=max
i

max
j

d( f j,T
k)

≤max
i

max
j
|| f j−b j||= max|| fuv−buv||= εt , (8)

where b j is the corresponding vertex to f j from the bilinear surface
BFk . The inequality satisfies since we construct T k from four corner
points of Fk(u,v). As a result, once we compute a TSS by rolling a
sphere with a radius of εt to the tetrahedron T k, the computed TSS
bounds the CCSM Fk.
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Figure 6: This shows TSSs of our low-level BVH for a patch. From
the left, it shows the first, second, and third levels of TSSs with a
mesh subdivided two times.

We build a low-level BVH, TSS BVH, for the patch in a top-
down manner by utilizing Theorem 4.1. Starting from the root
node of a TSS BVH containing a patch, we construct a TSS from
the patch. In particular, we use four corners of the patch for con-
structing a tetrahedron and compute the distance bound between
the patch and the bilinear surface defined by those four corners.
TSS of the root node is then computed by rolling a sphere with
the radius of the distance bound along the tetrahedron. We recur-
sively apply the procedure by subdividing the patch into 2 by 2
sub-patches according to the Catmull-Clark scheme. We then per-
form the same procedure to each sub-patch for computing its TSS
(Fig. 6). Note that we do not store four corners defining a TSS of a
node. We identify those vertices from a vertex array storing vertices
of a patch associated with a TSS BVH during the BVH traversal.
For this, we use a simple, vertex ordering method (Sec. 4.5).

For each node of the low-level, TSS BVH, we need to store
the distance bound associated with its TSS. A naive, but accurate
method would store the distance bound for each node. Instead, we
store a single distance bound for all the nodes in each depth of the
TSS BVH, since those distance bounds are in a small range. For
this, we consider all the nodes in the same depth, and store only
the maximum distance bound for each depth of the low-level, TSS
BVH. This enables us to store only h distance bounds, as the func-
tion of the depth, h, of the low-level BVH containing n different
nodes; i.e., h = logn.

To perform a TSS-ray intersection test, we can decompose the
TSS into three parts: four spheres, six cylinders, and four triangular
prisms. Unfortunately, this naive TSS-ray intersection test is very
expensive; it can require about 290 float operations. Instead, we do
not perform this naive approach, and propose to use the parallel
slab based culling method as efficient TSS-ray intersection tests.

4.4. Parallel Slab based Culling for TSS BVs

We present an efficient culling technique for the TSS-ray intersec-
tion technique, inspired by prior slabs techniques [KK86]. This
culling technique is based on the following, parallel slab culling
theorem.

Theorem 4.2 (Parallel Slab Culling) Suppose that there are an i-th
pair of two parallel planes, P2i and P2i+1, bounding a TSS, whose
normal is~ni. Suppose also that a ray is represented by its origin, o,
and direction, ~d. Suppose that intersection points between P2i (and
P2i+1) and the ray are projected onto the normal vector ~n, and are
denoted as d2i (and d2i+1). The intersection time, t2i, between the
ray and the plane P2i, along the normal vector ~ni is defined as the
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Figure 7: This figure shows three pairs of parallel planes enclosing
four vertices defining a TSS.

Algorithm 1 Parallel slab culling that checks an intersection be-
tween a ray and a TSS.

1: Create the first pair of parallel slabs and calculate the contact
times t0 and t1.

2: if t0 < 0||t1 < 0 then
3: return false
4: Create the second pair of parallel slabs and calculate the con-

tact times t2 and t3.
5: if t2 < 0||t3 < 0 or [t0, t1]∩ [t2, t3] = ∅ then
6: return false
7: Create the third pair of parallel slabs and calculate the contact

times t4 and t5.
8: if t4 < 0||t5 < 0 or [t0, t1]∩ [t2, t3]∩ [t4, t5] = ∅ then
9: return false

10: return true

following:

t2i =
d2i−o ·~ni

~d ·~ni
. (9)

Suppose that we have n pairs of such parallel planes. If [t0, t1]∩
[t2, t3]∩ · · · ∩ [t2n, t2n+1] = ∅, where [t2i, t2i+1] is the intersection
interval of the i-th pair of parallel planes, then there are no inter-
sections between the ray and the TSS.

This theorem can be proved by contradiction, and, furthermore,
has been used in prior ray tracing methods as slabs [KK86], which
is also related to the Cyrus-Beck clipping algorithm [CB78]. In this
paper, we focus on its benefits and how to use the theorem for our
TSS BVs as an effective culling.

A straightforward culling on the intersection time ti with the
plane Pi is that when ti < 0, it guarantees no intersection between
the TSS and the ray. Note that this parallel slab culling is effi-
cient, especially compared to the naive TSS-ray intersection test,
since the culling method requires two dot products and one sub-
tract/division float operation for computing each intersection time,
resulting in 21 float operations on average.

To use the parallel slab culling method, we need to identify pairs
of parallel planes, each of which encloses the TSS. Fortunately, our
TSS is defined by four corner points, A,B,C, and D, of a quad that
is contained in the TSS. We therefore pick three vertices A,B,C
from the tetrahedron and define a plane, P2i, from those three ver-
tices. From those three vertices, we compute the normal vector ~ni
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(b) One-level subdivision
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Figure 8: Vertex ordering. The first and second two digits encode
indices along v- and u- directions, respectively, and the combina-
tion of those two indices defines an ID of a vertex of a patch. We
store vertices in the vertex array in the ascending order of IDs.

of the plane. We then construct a separate, parallel plane, P2i+1
passing the left, fourth vertex D of the tetrahedron. The parallel
slab culling theorem requires us to provide intersection points d2i
projected to the normal vector~ni of the plane P2i. Since any points
including such intersection points in the plane maps to the same po-
sition along the normal vector, we project one of vertices, e.g., A,
defining the plane P2i; we project D of the plane P2i+1 for comput-
ing d2i+1. Based on this simple procedure, we can construct three
pairs of parallel planes. Fig. 7(a) shows an example pair of such
planes from four vertices defining a TSS.

When we construct pairs of parallel planes based only on their
normals of the planes, we cannot get a high culling rate. This is
mainly because the quad is nearly flat and these pairs of parallel
slabs are similar. We therefore use only a single pair based on this
approach, and use another set of pairs of parallel planes vertical to
the cross product of the normal of a plane and an edge of the plane.
We compute two pairs in this process. Fig. 7(b) and (c) show those
two pairs of parallel planes. (b) is computed based on the cross
product between the normal of the plane passing A,B,C vertices
and an edge between A and B, and (c) is computed based on the
cross product between the same normal of the plane and another
edge between B and C. Overall, we consider only three pairs of
parallel planes, since those three pairs can tightly bound the TSS
with a small culling overhead.

The pseudo-code of this parallel culling method tailored to a TSS
BV is shown in Alg. 1. To consider the distance bound εt associ-
ated with a TSS, we offset each of computed parallel planes as the
amount of εt outwards from the center of the TSS.

4.5. Vertex Ordering

Storing primitives of subdivided meshes can take a high memory
requirement. Fortunately, for our two-level BVHs, we do not need
to explicitly store the topology of subdivision patches, resulting in
a more compact representation.

Table 1: Subdivision level and total rendering time given the error
bound, 0.001. We also report the relative length of the bound to the
diagonal length of the bounding box of each scene.

Scene Killeroo Teapots Dragons Museum
Init. quads 0.6M 1.7M 7M 7.9M
Sub. quads 61M 10M 183M 51M
Sub. level 4 2 3 2
Rel. length 0.1% 5.1% 0.87% 3.6%
Avg. curvature 0.25 0.38 0.022 0.043
Render time 4336s 9636s 2001s 10407s

Given the maximum subdivision level within the user-specified
error bound (Sec. 4.1), we can calculate the maximum number of
vertices along u- and v-directions, i.e. nsub, and we can then mark
the four corner points of the original patch starting from one to
nsub along u- and v-directions, respectively. As a result, the com-
bination of these indices defines unique IDs of those corner points
(Fig. 8). We can then recursively apply this indexing scheme to en-
code vertices of subdivided patches from the original patch. Since
each vertex has an unique ID, we can calculate its corresponding
index in the vertex array, and store all those vertices into a vertex
array with an ascending order of their IDs.

This vertex ordering scheme helps us to save memory by avoid-
ing topology recording, and to efficiently get the IDs of the corner
vertices given a subdivision level. Furthermore, we can compute
IDs of those corner vertices used for TSS BVHs. As a result, we
do not need to store IDs even in nodes of our TSS BVHs. Note that
this scheme also works for irregular quad patches, since we do not
need to consider one ring neighbors of each quad patch for ray-
mesh intersection tests. Compared with a method storing topology
explicitly, this simple vertex ordering method has 55% memory re-
duction and 8% to 11% performance improvement in our tested
benchmarks.

5. Results and Comparisons

We have implemented and integrated our methods into pbrt [PH04].
We use an Intel Xeon-E5440 CPU machine with 16 GB RAM and
four cores, each of which is 2.83 GHz. Since Windows 7 OS uses
about 2.7 GB, our ray tracing system can use up to about 13.3 GB
RAM as the maximum size of the memory pool.

5.1. Benchmarks and Tested Methods

To test behaviors of our method in a variety of rendering effects
generated by path tracing and photon mapping, we have chosen the
following well-known benchmarks:

• Virtual museum, Fig. 2(a). This model contains one Matthew,
two Lucy, and two David models in the Sponza scene. We use
path tracing with low-discrepancy sampling. All those scanned
models are represented by 7.9 M patches, while the Sponza scene
is represented by triangle meshes. To illuminate the scene, we
use 12 area lights, generate 128 samples, i.e., 128 rays per pixel.

• Killeroo, Fig. 2(b). This model is represented by a highly glossy
gold material and its image is generated by one light with path
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Figure 9: Rendering results with different subdivision levels of the David model, whose control mesh has 1M quads. By having more
subdivisions (two more subdivisions) for Fig. (b) we can achieve more smooth and visually pleasing results than Fig. (a).

tracing. The Killeroo model consists of 0.6 M patches, while its
background walls are represented with triangles.
• Teapots, Fig. 2(c). This scene contains three teapots with dif-

ferent materials, translucent, metal and plastic ones, in a room.
Three teapots consist of 1.7 M patches. We use photon mapping,
and generate 0.4 M indirect photons and use 128 rays per pixel
and 75 gathering samples.
• Dragons, Fig. 2(d). The scene contains twelve instanced dragons

consisting of 7 M patches with depth-of-field using path tracing.

To show benefits of our methods, we have tested the following
techniques:

• Our two-level BVHs w/ parallel slab culling (TSS BVHs w/
PSC). This uses our two-level BVHs consisting of the upper
AABB BVH and low-level TSS BVHs. It also uses Parallel Slab
Culling (PSC).
• Our two-level BVHs w/o parallel slab culling (TSS BVHs). This

method is same to the aforementioned one except using PSC.
For intersection tests, we perform TSS-ray intersection tests
that check collisions between the ray and three parts, i.e., four
spheres, six cylinders, and four triangular prims.
• Naive two-level BVHs (AABB BVHs). This method uses the

AABB BVH for the upper level BVH as well as for low-level
BVHs.

We have compared the performance of these techniques by utilizing
four working threads, unless mentioned otherwise. We also used
the lazy evaluation with the tessellation cache for all the tested
methods, as adopted for our method. Specifically, for subdivision
levels 1 and 2, we use a lazy evaluation. For subdivision levels 3
and 4, data required for our method can be fit in the cache, but data
for low-level AABBs are too huge to be stored in the cache. As a
result, we simply re-compute necessary low-level AABBs without
caching; we found that this approach is faster than using the cache
and thus adopted this approach.

As mentioned earlier, some portions of our benchmarks are rep-
resented by regular triangles, not by the Catmull-Clark scheme. We
report the performance of different methods in terms of culling ra-

tio and the overall rendering performance. We measure the culling
ratio only with quads represented by the Catmull-Clark scheme.

On the other hand, we report the overall performance improve-
ments while handling triangles and quads. This is chosen mainly
because it is rather difficult to measure runtime performance only
with the Catmull-Clark scheme. Reporting the overall performance
in this manner may be also useful, since many scenes in practice
have a mix of triangles and quads. Note that the overall perfor-
mance improvement of our method reported here will be lower than
that measured only with the Catmull-Clark scheme, since we sim-
ply use the common approaches using AABBs for handling ray-
triangle tests. For storing the subdivided meshes, we use our vertex
ordering for all the tested methods; there is no difference in terms
of the mesh representation.

5.2. Comparisons and Analysis

As the subdivision level increases, we can achieve more smooth
and visually pleasing results (Fig. 9). Table 1 shows computed sub-
division levels given a maximum error bound between CCSM and
its limit surface, i.e. 0.001, based on Eq. 2. We get two to four sub-
division levels for our tested benchmarks given the error bound.
These subdivision levels result in 10 M to 183 M quads from their
control meshes.

We measure how much performance improvement our method
TSS BVHs w/ PSC achieves over TSS BVHs w/o PSC and AABB
BVHs (Fig. 10). Our method achieves up to three times improve-
ment over AABB BVHs, and its improvement goes higher as we
use higher subdivision levels. This improvement is mainly thanks to
higher culling ratios and lower memory requirement. Specifically,
lower-level AABB BVHs take higher memory space over our TSS
BVHs, and thus require more memory swaps than our representa-
tion. For example, our TSS BVHs takes 25 MB, when low-level
AABB BVHs takes 1.6 GB for the museum scene.

Using parallel slab based culling, PSC, achieves runtime im-
provement up to 149% over our method that does not use PSC.
On average, we get 25% and 60% overall performance improve-
ment for the dragon and museum scenes, respectively. Note that
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Figure 10: Overall performance improvement of our method TSS
BVHs w/ PSC over our method w/o PSC and the AABB BVHs, as
the function of the subdivision level. The overall performance is
measured both with quads generated by the Catmull Clark scheme,
and input triangles representing the scene.

these performance improvement variations are mainly due to vary-
ing numbers of triangles intersected with rays under the study with
different benchmarks.

Memory requirement. We measure memory requirements of dif-
ferent methods with the virtual museum benchmark; other bench-
marks show similar trends. Fig. 1 shows how much memory re-
quirements different methods have as the subdivision level in-
creases. Different methods share the same data structures such as
the high-level BVH, vertex/edge/face tables of maintaining sub-
divided meshes, while different methods have different low-level
BVHs. Our TSS BVHs use only one float variable for each level of
low-level BVHs to reserve the distance bound, while AABB BVHs
need six float variables to define an AABB of its BVH node.

Our method has linear storage complexity as a function of the
tree depth, while prior methods have exponential ones. This differ-
ence in terms of storage complexity results in drastic savings for our
method compared to AABB BVHs, as shown in the right of Fig. 1.
For example, our low-level TSS BVHs require only 12.6 MB,
25.2 MB, 37.8 MB, and 50.4 M from the first and to fourth subdi-
vision levels. This results in 30:1, 63:1, 170:1, and 513:1 memory
reductions from the first to forth subdivision levels, roughly two
times more reductions as we get one more subdivision level. When
considering all the data structures including the subdivided meshes,
our method using low-level TSS BVHs achieves about 3:1 memory
reductions over the prior method using AABB BVHs.

Culling ratios. We use two types of culling ratio measures. The
first one, ray culling ratio, is to measure how well a culling method
culls out non-intersection rays given all the rays generated from a
rendering method. This is a useful definition in terms of analyz-
ing the behavior of ray tracing at a high level. The second measure
that we use is called intersection test culling ratio, which measures
how well a culling method culls out non-colliding intersection tests
given all the intersection tests that we generate to perform a render-
ing method. This measure is a more direct metric to see the culling
efficiency in terms of culling out intersection tests. The main rea-
son why we have such two different, but similar measures of culling
ratios is that processing a ray may require varying numbers of in-
tersection tests between BVs and the ray for computing the first
intersection point between the ray and the subdivision mesh.
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96.00%
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98.00%

Museum Teapots Dragons Killeroo

1 level 2 levels 3 levels 4 levels

Figure 11: Intersection tests culling ratios of our method TSS
BVHs w/ PSC with different subdivision levels. Culling ratios are
measured only with the Catmull-Clark scheme.

When we use the naive AABB BVHs, the ray culling ratio of
the high-level AABB BVHs is 47 % on average. The ray and inter-
section test culling ratios of the low-level AABB are 16.86 % and
93 % on average, respectively. Note that intersection test culling ra-
tios are usually higher than their corresponding, ray culling ratios
by definitions of these culling ratios. While the low-level AABB
BVHs achieves high intersection test culling ratio, they require
excessive amount of memory space, as mentioned before. On the
other hand, by adopting our low-level TSS BVHs w/o PSC, we use
much less memory space and, furthermore, achieve a higher inter-
section test culling ratio of 97.2%, given four subdivision level. The
culling ratio goes down by 0.03% with PSC, but the overall perfor-
mance improves a lot thanks to its low runtime overhead of using
PSC, while it is more conservative, resulting in a lower culling ra-
tio.

We also measure the intersection test culling ratio of our method,
TSS BVHs w/ PSC, as the subdivision level goes higher (Fig. 11).
Culling ratios increase, because subdivided quads become smaller,
and thus computed TSSs bound them more tightly. We also calcu-
late the average curvature [Tau95] for centers of the patches with
four subdivision levels, as shown in Table 1. Together with results
of Fig. 11, we can see that the culling ratio becomes lower as the
curvature increases.

Comparisons with Bezier Clipping (BC). We have conducted ad-
ditional comparisons with Bezier Clipping (BC) [TFM15]. At the
subdivision level four, our TSS BVHs w/ PSC method has five
times speedup compared with BC for the low-level culling, and
40%-50% improvement in terms of the overall rendering time.

Adaptive subdivision. Our method works with adaptive subdivi-
sion (Fig. 12). We follow many existing techniques with crack
stitching methods [MTF03, CLF∗03]. Nonetheless, our contribu-
tion on the adaptive subdivision is minor, and thus we did not dis-
cuss much along this aspect, and show results mainly with uniform
subdivision for the sake of simplicity in the paper.

Parallel performance. We measure throughput, the number of ray-
quad intersection tests of our method TSS BVHs w/ PSC per sec-
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Figure 12: This image is acquired with adaptive subdivision. We
perform a crack stitching method to prevent any cracks. On the
right images, we show wire-frame rendering of the computed adap-
tive subdivision mesh.
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Figure 13: Ray-quad intersection tests per second with different
threads.

ond with different numbers of threads (Fig. 13). We achieve the
highest throughput, about 2.5 million ray-quad intersection tests
per second, on the teapot scene, the simplest scene. As we have
more complexity such as more quads and additional rendering ef-
fects, we achieve less throughput. Once users set the tolerance
threshold, we precompute the subdivision level and construct vari-
ous data structures before the ray-quad intersection tests. As a re-
sult, we can achieve a high parallel scalability on ray-quad inter-
section tests in the experiment.

Construction time. We perform subdivision and build our TSS
BVHs for patches on demand, when they are necessary for per-
forming intersection tests. On average with a single-thread version,
our method spends 0.5 ms for computing a low-level TSS BVH
consisting of four levels of subdivision for each patch. Since the
total construction w/ subdivision takes less than 10% of the total
rendering time for the virtual museum scene with path tracing in
pbrt, we did not optimize our construction method. Nonetheless,
it is very important to design an efficient construction method for
real-time ray tracing methods (e.g., Embree [WWB∗14] and Op-
tiX [Par10]) and for dynamic models. We leave this issue for future
work.

Limitations. Our current work has certain limitations. First of all,
our current work was not tested with displacement mapping. For-

tunately, supporting displacement mapping has been reasonably
well known [BWN∗15], and our hierarchy can be extended in a
similar manner with a larger error bound containing the displaced
geometry. Nonetheless, the naive extension could be very conser-
vative and will require more elaborated study for computing tight
bounds. As a result, this is left for future work. As mentioned be-
fore, designing an efficient construction method for handling dy-
namic models and real-time ray tracing kernels is an important
topic.

6. Conclusion

We have presented a compact BVH representation, TSS BVHs, for
efficient ray tracing of subdivision surfaces. Our TSS BVH tightly
bounds the limit surfaces of the Catmull-Clark scheme, and keeps
only the distance bound information for each depth of the TSS
BVH, to reduce the memory consumption. To demonstrate benefits
of our method, we have tested our method with different render-
ing methods and benchmarks. In the tested experiments, we have
found that our method achieves high culling ratios up to 97.2% and
drastic memory reduction by a factor of two orders of magnitude
with three or four subdivision levels thanks to the linear space com-
plexity of our method. These improvements have resulted in overall
memory reduction and performance improvement up to a factor of
three over the prior AABB BVH based method.

Our tetrahedron-CCSM distance bound theorem can be applied
to triangles generated by the Loop subdivision, by considering a
triangle to be a quad whose one edge is contracted into a vertex.
We, however, found that this naive extension does not give much
performance improvement. We would like to design an optimized
technique tailored to the Loop subdivision. After using our TSS
representations, the subdivided meshes become the major bottle-
neck in terms of memory requirement. We would like to design a
compact mesh representation for representing subdivision schemes
in a memory-efficient manner.
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