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ABSTRACT

We present a novel, View-Dependent Representation of Articulated Models (VDR-AM), and show its main benefits
in the context of view-dependent rendering integrated with occlusion culling for large-scale crowd scenes. In order
to provide varying resolutions on each animated, articulated model, we propose to use a cluster hierarchy in the
VDR-AM for an articulated model. The cluster hierarchy serves as a dual representation for both view-dependent
rendering and occlusion culling. For a high-performance view-dependent rendering and occlusion culling, we
construct each cluster of the cluster hierarchy to contain a spatially coherent portion of the mesh that also has
similar simplification errors. To achieve our goal, we present an error-aware clustering method for articulated
models. We also identify a subset of animation poses that well represents the original pose data and perform the
well-known quadrics-based simplification to efficiently compute our representation, while achieving a high quality
simplification. At runtime, we choose a LOD cut from the cluster hierarchy given a user specified error bound in
the screen space and render all the visible clusters in the LOD cut. We implement our method in GPU and achieve
interactive performance (e.g., 40 frames per second) for large-scale crowd scenes that consist up to thousands of
articulated models and 242 M triangles, without noticeable visual artifacts.

Keywords

View Dependent Rendering, Character Animation, Level of Detail

1 INTRODUCTION

Owing to advances of data capture and modeling
technologies, detailed articulated models are easily
generated and widely used in many different applica-
tions. Moreover, various crowd simulation techniques
have been designed and a high number of articulated
models are frequently used in large-scale crowd
scenes [TOYT07, NGCL09]. In typical crowd scenes
with lots of articulated characters, it can require high
computation costs of rendering and performing other
operations (e.g., collision detection) for handling those
articulated characters.
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Figure 1: This figure shows two images of an exhibition
crowd scene that has 1 K articulated characters. All
the characters and the scene have 83 M triangles. Our
method achieves 46 frames per second (fps) on average

A significant amount of research has been put in or-
der to improve the performance of rendering and con-
ducting various operations for polygonal models. Some
of them include designing multi-resolution representa-
tions of polygonal models [LRC102, YGKMOS], per-
forming visibility culling [COCSDO03], collision detec-
tion [TCYMO9], etc. Unfortunately, most of these prior
techniques assume polygonal models and do not eas-
ily apply to articulated models. This is mainly because

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

for this model with 0.5 pixel-of-error (PoE) in a 1280
by 720 HD screen resolution.

articulated characters are dynamically animated with
an underlying deformation model (e.g., skeleton) that
changes the shapes of characters.

In terms of rendering articulated models, many tech-
niques have been proposed to improve the rendering
performance. At a high level, these techniques can be
classified as image-based [DHOO05, KDC'08] and
mesh simplification approaches [MGO03, DROS, LS09]
for articulated models. Image-based approaches have
been reported to achieve a high rendering performance
by rendering textures instead of triangles. However,
these techniques may provide low quality render-
ing results for certain views (e.g., overhead or near
views [DHOOO05, KDC'08]) or may not be used



for other geometric applications such as collision
detection.

Geometric simplification methods for articulated
models, on the other hand, can provide high-quality
polygonal meshes that can be used for various views.
However, these simplification methods have focused on
computing different versions of level-of-detail (LOD)
meshes from an input articulated mesh, and have not
been applied widely to view-dependent rendering
that uses different LODs for portions of the mesh
depending on viewing information. To the best of
our knowledge, there have been no prior methods
that adopt view-dependent rendering integrated with
culling for large-scale scenes consisting of hundreds or
thousands of articulated models [RDO05].

Main contributions. In this paper we propose a
novel, View-Dependent Representation of Articu-
lated Models, VDR-AM. We show its benefits in
the context of rendering, especially view-dependent
rendering integrated with occlusion culling. VDR-AM
consists of a cluster hierarchy that serves as both a
multi-resolution representation and a bounding volume
hierarchy. We use its multi-resolution representation
for view-dependent rendering, and its bounding volume
hierarchy for occlusion culling. We construct each
cluster of the cluster hierarchy to contain a spatially-
coherent small portion of the mesh that also has similar
simplification errors. To construct such clusters, we
propose an error-aware clustering method. Given the
cluster hierarchy of VDR-AM, we can compute a LOD
cut that satisfies a user-specified screen space error in
terms of pixels-of-errors (PoE) at runtime. We also
perform occlusion culling for clusters in the LOD
cut in an efficient manner that utilizes the temporal
coherence between consecutive frames.

We have implemented our method and applied it to
three large-scale crowd scenes that consist of up to five
thousand articulated models that have 242 M triangles
in total. Even though our VDR-AM representation is
not mainly designed for static polygonal models, it can
be naturally applied to handling those models without
major modifications. Therefore, we have also applied
our representation even for static models that are parts
of tested crowed scenes. Our method shows 16 to 50
frames per second (fps) without visible artifacts in a
1280 by 720 HD screen resolution. Compared with
a base rendering method that uses the original articu-
lated models combined with view-frustum culling, our
method achieves four to eight times improvement.

2 RELATED WORK

In this section we give a background on animating ar-
ticulated models based on skinning, and briefly review
previous work related to our method. For detailed in-
formation about crowd rendering in general, refer to an
excellent survey by Ryder et al. [RD05].

Figure 2: This figure shows a stampede crowd scene
that has 5 K articulated characters and 242 M triangles.
Our method can achieve 16 frames per second (fps) on
average for this large-scale crowd scene.

2.1 Background of Articulated Models

Articulated models are typically designed with skin-
ning and skeleton animations. In this case an articu-
lated model consists of a base mesh, a skeleton, and
vertex weights. The base mesh, also known as skin,
is a 3D polygonal mesh, and the skeleton is a hierar-
chical representation of bones. The vertex weights as-
sociated with vertices of the base mesh represent the
skin-to-skeleton binding. One of the most popular tech-
niques used to achieve interactive animation is linear
blend skinning.

The animation of the base mesh of an articulated model
is defined by a series of poses. Each pose is defined by a
4 by 4 transformation matrix representing positions and
orientations of bones of the skeleton. A vertex position,
v, in the base mesh is then moved to a new position,
v, by linear blend skinning with a pose, based on the
following equation:

p=Y wiMyy, (1)
i

where M; is the transformation of the ith bone associ-
ated with the vertex with the weight w; given the input
pose. There are more advanced skin blending methods
such as skinning using the dual quaternions, and they
can be also used with our method.

2.2 Mesh Simplification

Mesh simplification has been extensively studied for
polygonal meshes, and numerous techniques have
been presented. Among them the quadric error metric
(QEM) and edge collapse operations [GH97] have been
most widely used for high-quality mesh simplifications.

Many simplification techniques have been also pro-
posed for dynamic models, but some of them [KGOS,
HCCO06] are not directly applicable to articulated mod-
els that are animated with an underlying deformation
model. In this section we focus on simplification meth-
ods that can handle articulated models with skinning.

Simplification for articulated models. Mohr and Gle-
icher [MGO03] applied the QEM method for simplify-
ing articulated meshes. Their method takes a skinned



mesh and a series of example poses. It computes the
quadric error for each vertex by considering all the ex-
ample poses. DeCoro and Rusinkiewicz [DRO5] im-
proved this method by considering the bone transfor-
mations and computing the quadric error in a base refer-
ence pose. Recently, Landreneau and Schaefer [LS09]
perform the simplification by considering weights as-
sociated with vertices and thus achieve higher simpli-
fication quality over other techniques. Our simplifi-
cation method is based on the work of DeCoro and
Rusinkiewicz [DROS5], but can be improved by adopt-
ing techniques proposed by Landreneau and Schae-
fer [LS09]. In addition, Pilgrim et al. [PSAQ7] pro-
posed a progressive skinning technique that progres-
sively uses a subset of original bones of articulated
models. This technique can be combined with our
method for higher rendering performance.

Image-based simplification methods. As an alter-
native representation for polygonal representations,
image-based representations [DHOO05, KDC'08] like
impostors have been proposed for articulated models
and reported to achieve a high rendering performance,
while maintaining a reasonable memory require-
ment [YYBEI3]. As downsides, these techniques
may provide low quality rendering results for certain
views (e.g., overhead views) or require a high storage
requirement. In addition, image-based representations
may provide low-quality results for various geometric
operations such as collision detection. Nonetheless,
these image-based representations can be used together
with polygonal representations including ours, to
achieve a higher rendering performance and quality.
For example, one can use polygonal representations
in a near field and use imposters in a far field, as
suggested by Kavan et al. [KDCT08]. As a result, our
method is orthogonal to image-based techniques in the
context of rendering.

2.3 View-Dependent Rendering and
Culling

View-dependent rendering (VDR) uses lower resolu-
tions for portions of the mesh that are located farther
away from the viewer. This technique aims to reduce
the number of rendered triangles of complex models
depending on viewing configurations and has been
extensively studied for polygonal meshes [YGKMOS].
VDR originated as an extension of the progressive
mesh (PM) that is a linear sequence of encoding
finer meshes [Hop97]. Hoppe [Hop97] improved this
method by organizing the PM as a vertex hierarchy
instead of a linear sequence. The vertex hierarchy is
known to provide very smooth LOD transitions, while
requiring high runtime computations. This technique
has been extended to large-scale polygonal models that
consist of hundreds of millions of triangles [YSGMO04].
However, VDR has not been applied widely to
articulated models for large-scale crowd rendering.

Active clusters
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Figure 3: This figure shows our cluster hierarchy of our
VDR-AM representation with active clusters (i.e. LOD
cut) including visible and occluded clusters. Note that
leaf clusters contain the original mesh.

Visibility culling also has been well studied to reduce
the number of rendered triangles in scenes that have a
high depth complexity [COCSDO03]. For general en-
vironments, image-based occlusion representations are
widely used, and high-performance culling algorithms
use GPUs to perform occlusion culling [YSMO03].

Hybrid algorithms for rendering acceleration. Many
hybrid algorithms [RLOO, YSGMO04, CBWRO07] that
combine simplification with visibility culling for static
polygonal models have been proposed. These tech-
niques have integrated various visibility techniques into
VDR frameworks of static polygonal meshes. Our
VDR-AM representation can enable hybrid rendering
methods for articulated models.

3 OVERVIEW OF OUR METHOD

In this section we explain our representation, followed
by an overview of its construction and our runtime ren-
dering algorithm.

3.1 Dual Representation

We use a cluster hierarchy (Fig. 3) for an articulated
model, as a dual representation. The cluster hierar-
chy serves both as a multi-resolution hierarchy for
View-Dependent Rendering (VDR), and as a bounding
volume hierarchy for occlusion culling, view-frustum
culling, and other geometric operations.

We call each node of the hierarchy a cluster. Each clus-
ter serves as a main processing unit for VDR and occlu-
sion culling. Each leaf cluster of the hierarchy contains
a portion of the base mesh of the articulated model. For
an intermediate cluster of the hierarchy, we merge two
sub-meshes contained in its two child clusters, simplify
them, and store them in the intermediate cluster. There-
fore, each leaf cluster can provide the original resolu-
tion of a portion of the mesh, while an intermediate
cluster can provide a low resolution for a portion of the
mesh. Also, each cluster is associated with a bounding
volume that contains all the geometry throughout the
animation.

Each cluster records its maximum geometric simplifica-
tion error that is caused by simplifying the sub-mesh of
the cluster, while considering poses of an animation for
the articulated model. In order to allow drastic simpli-
fications on the articulated model given an error bound,



it is critical to cluster vertices that have similar simpli-
fication errors, thus leading to smaller geometric sim-
plification errors for each cluster. In order to provide
a high culling ratio, each cluster should be constructed
such that it contains a spatially coherent portion of the
base mesh of the articulated model.

3.2 Construction

In order to construct the cluster hierarchy of an articu-
lated model, we first decompose the base mesh of the
model into clusters, which become the leaf clusters of
the hierarchy. We perform our error-aware clustering
method to construct each cluster to have a spatially-
coherent portion of the mesh whose vertices have sim-
ilar simplification errors (Sec. 4.2). For the simplifi-
cation of sub-meshes contained in clusters, we use the
well-known edge-collapse and quadric-based simplifi-
cation methods, which also consider poses of the ani-
mation of the model. Since the simplification process
can take a large amount of time for the animation that
consists of many poses, we propose a pose selection
method that chooses representative poses for the ani-
mation and simplify the mesh by considering only those
representative poses (Sec. 4.1).

3.3 Rendering Algorithm

To show benefits of our VDR-AM representation, we
apply it to view-dependent rendering integrated with
occlusion culling for articulated models. At runtime,
we compute a new position and orientation (e.g., an-
imation pose) of each articulated model in the scene.
To perform VDR, we maintain active clusters (i.e. a
LOD cut) that represent the articulated model with the
lowest number of triangles, given a user-specified er-
ror bound (Sec. 5.1). To determine active clusters, we
compute a screen-space projected simplification error
for each cluster and compare it with the user-specified
error bound. To perform occlusion culling we com-
pute a conservative set of visible clusters based on the
bounding volume information encoded in the cluster hi-
erarchy and render them for the final images (Sec. 5.2).

4 CLUSTER HIERARCHY CON-
STRUCTION

In this section we explain our cluster hierarchy con-
struction method. We also compute clusters from the
static polygonal models of scenes, as we compute clus-
ters from the animated, articulated models.

Pose space reduction. Since an articulated model can
have many bones (e.g., 30 to 60 bones for human-like
characters), each pose can be considered as a point in
a high dimensional pose space. Unfortunately, any op-
erations on these high dimensional points can be very
difficult and expensive because of the well-known curse
of dimensionality. To ameliorate this issue, we reduce
the dimensionality of the pose space. In particular, we
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Figure 4: This figure shows the process of our pose se-
lection method that performs the clustering and parti-
tioning. The red points are the selected final poses that
represent the distribution of the original poses.

use the multi-dimensional scaling, a statistical tool for
reducing dimensions of data [McG68]. This method
maps data into a reduced dimensional space, while pre-
serving the distance between data in the original dimen-
sional space. For all the tested models in the paper, we
reduce the pose space of such models to 9 dimensional
space, as suggested by Assa et al. [ACCOO05]. Though
Assa et al. suggested mainly for human-like models,
we found that 9 dimensional space works well to other
tested animal models.

4.1 Representative Pose Selection

In order to reduce the time taken on simplifying mod-
els, we propose to consider only representative poses
instead of considering all the original poses during the
simplification process. As the number of representation
poses decreases, we can improve the performance of the
simplification, but can underestimate the simplification
error more, leading to a low-quality simplification.

To minimize this negative effect, we define pose groups,
each of which contains a coherent set of poses. We then
choose a representative pose from each pose group. Af-
ter reducing the dimension of the pose space, we parti-
tion poses into pose groups based on our clustering and
partitioning framework (Fig. 4).

We start with creating a pose group for each pose point.
Our pose selection method consists of two stages: clus-
tering and partitioning stages. In the clustering stage,
we recursively merge two groups into a new pose group,
if any two points chosen from those two pose groups
are within the Euclidean distance of d. In order to ef-
ficiently perform this operation, we can construct a kd-
tree from poses in the reduced pose space and find near-
est neighboring pose points [Ben75].

The pose groups computed from the clustering stage
can be quite big (e.g., the top group computed from the
clustering step shown in Fig. 4), since we compute pose
groups based only on the local distance information be-
tween poses. We adopt a second, partitioning stage that
splits big groups into smaller groups. More specifically,
we check whether the diagonal size of the bounding box
computed from a pose group, c, is bigger than a thresh-
old (e.g., 1.5 x d). If so, we recursively split the group
¢ into two pose groups by using a median spatial parti-
tioning, which divides the longest width of the bound-
ing box of the group c into half. For each final pose



Figure 5: This figure shows eight poses chosen out of
35 poses for the walking animation based on our pose
selection method.

group, we choose a representative pose (e.g., red cir-
cles shown in Fig. 4) that is closest to the center of the
group.

We tried a well-known clustering method, K-means, for
computing representative poses. We chose our clus-
tering and partitioning framework instead of K-means,
mainly because it is hard to set the target number of
pose groups that well represents the distribution of the
original poses for different animation patterns (e.g.,
walking, running, etc.).

4.2 Error-Aware Clustering Method

To construct the cluster hierarchy of an articulated
model, we first decompose the base mesh of the model
into a set of clusters. These computed clusters become
leaf clusters of the cluster hierarchy.

We identify two different criteria and consider them for
the cluster construction. First, each cluster should be a
spatially coherent portion of the mesh, in order to keep
the bounding box of the cluster small and thus achieve
a high culling ratio. Second, each cluster should con-
tain vertices that have similar simplification errors. For
example, if a cluster contains two different mesh re-
gions such as a joint and upper arm, highly deforming
and less deforming regions respectively in the anima-
tion, then the cluster can get a high simplification error
caused by the joint region, even though some portions
(e.g., the upper arm) contained in the cluster may have
a much lower simplification error. In this case, we may
have to render a higher number of triangles even though
some of those triangles can be simplified further given
the user-specified error bound.

We, therefore, propose an error-aware clustering
method that considers the simplification error as well
as the spatial coherence for the sub-mesh contained in
each cluster. To consider the simplification error for the
geometry contained in each cluster during clustering,
we have to simplify the mesh and compute simplifi-
cation errors. However, this causes a chicken-and-egg
problem, since we have to construct clusters first before
simplifying clusters.

In order to avoid this problem, we measure how much
a vertex deforms during the animation as a deformation
level for the vertex, and use it as a rough approximation
of the simplification error for the vertex. This is because
as a vertex deforms more, it tends to generate a higher
simplification error computed by considering different
poses of animations.

Figure 6: This figure shows two images of an office
evacuation crowd scene with two hundred articulated
characters. This scene consists of 16.4 M triangles. Our
method can achieve 49 frames per second (fps) on av-
erage for this scene.

To measure the deformation level of a vertex, we iden-
tify a bone, b,, that is a least common ancestor for
bones that affect the vertex and then compute a tight-
est bounding box that contains the trajectory of the ver-
tex during the animation in the reference frame of the
bone b,. The deformation level of the vertex, then, is
computed as the diagonal length of the bounding box.
The computed deformation level does not fully capture
the simplification error, which is also affected by the
neighboring triangles of the vertex. Nonetheless, we
have found that it works well for our tested benchmarks
and is very easy to compute the deformation level dur-
ing the clustering stage.

For computing clusters of the base mesh, we adopt a
clustering and partitioning framework that is similar to
the one we used for computing pose groups. In the first
clustering stage, we group adjacent vertices (i.e. spa-
tially coherent vertices) with similar deformation levels
into a cluster. We define that two vertices have the sim-
ilar deformation levels, when their deformation levels
differ within the range of 10%. We continue this pro-
cess until we cannot merge vertices any more.

Clusters computed from the clustering stage can have
a very high number of triangles. Therefore, we ap-
ply the partitioning stage, which recursively splits clus-
ters that have more than s (e.g., 100) triangles based on
the median-based spatial partitioning. Fig. 7-(b) shows
computed leaf clusters based on our method for an input
model.

4.3 Hierarchy Construction

We construct the cluster hierarchy in a bottom-up man-
ner, starting from leaf clusters computed in Sec. 4.2.
We construct the hierarchy by merging two adjacent
clusters that have similar deformation levels. We de-
fine two clusters to be adjacent, if they have adjacent
triangles that share the same vertices. We also define
the deformation level of a cluster to be the maximum
of the deformation levels of vertices contained in the
cluster.

Particularly, among adjacent clusters for a cluster, ¢, we
identify a cluster, ¢, that has the minimum difference
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Figure 7: This figure shows an original model (a) and
its leaf clusters generated by our error-aware clustering
method (b). (c) show zoomed regions of boxed parts
in (b). The top of (c) shows a deforming elbow region
with increasing simplification levels. The bottom shows
a non-deforming torso region, resulting in more aggres-
sive simplification.

of the deformation level to that of the cluster ¢, and
merge ¢, and ¢ into their parent cluster. We repeat this
procedure until we construct the root node of the cluster
hierarchy.

Simplification. Once we construct the hierarchy, we
then perform the simplification for each cluster by
traversing clusters in a bottom-up manner. For each
leaf cluster, we simplify the sub-mesh contained in the
cluster such that the number of the triangles in the clus-
ter is reduced into half. For the simplification, we apply
the pose-independent simplification method [DRO3]
that uses the well-known quadric simplification error
metric. During the simplification, we consider only
representative poses computed by our pose selection
method (Sec. 4.1).

S GPU-BASED RENDERING

In this section we explain how we can design an inter-
active GPU-based VDR method integrated with occlu-
sion culling based on our VDR-AM representations for
articulated models.

5.1 LOD Selection

In order to perform VDR and culling, we first compute
a LOD cut in the cluster hierarchy that represents the
articulated model given the error bound. To compute
the LOD cut, we measure the geometric simplification
error of each cluster in the screen space. To do that, we
pre-compute a sphere whose diameter corresponds to
the maximum Hausdorff distance between the original
mesh and its corresponding simplified mesh contained
in each cluster. For efficient computation, the maxi-
mum Hausdorff distance is approximated as the square
root of the maximum quadric error associated with each
cluster. We project the sphere associated with each
cluster to the screen space. If the diameter of the pro-
jected sphere is equal to or smaller than the user speci-
fied pixels-of-error (PoE) value, we treat the cluster to
have an enough resolution that can represent the artic-
ulated model given the PoE value. This LOD cut se-
lection method takes only a minor CPU time (e.g., less
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Figure 8: This figure shows our runtime rendering ar-
chitecture.

than 1 ms) even for the exhibition crowd scene (Fig. 1)
that consists of 1 K articulated models and 83 M trian-
gles.

5.2 Rendering Algorithm

We use an image-based conservative culling algo-
rithm [YSMO3] that is based on the frame-to-frame
coherence and hardware-accelerated occlusion queries,
in order to achieve an efficient performance of culling.
We briefly explain how we enable such image-based
culling based on our VDR-AM representation for
articulated models.

Before we perform the culling, we decompose active
clusters of the hierarchy into two disjoint sets: poten-
tially visible set (PVS) and potential occludee set. Clus-
ters in the PVS are treated to be visible and are used to
create an occlusion map for visibility tests of clusters.
We use PVS; to denote the PVS at frame i. The over-
all architecture of our rendering algorithm is shown in
Fig. 8.

Occlusion map generation. At frame i, we start with
PVS;_1, the PVS at the previous frame i — 1. As Step 1
of our algorithm, we first update, i.e. simplify or refine,
clusters of PVS;_; to meet the error bound with our
LOD selection method (Sec. 5.1) that considers the cur-
rent view information. We set those clusters as PV S;.
We then render clusters of PVS; into color and depth
buffers. The depth buffer information computed with
PVS; serves as an occlusion map for visibility tests in
the next rendering step.

Visibility tests. All the clusters of the LOD cut that are
not in the PV'S; are used for the potential occludee set.
We also update all the clusters in the occludee set. In
Step 2 of our rendering algorithm, we check the visi-
bility of clusters of the occludee set by using hardware
accelerated occlusion queries. For clusters that passed
the standard view-frustum culling, we use the bound-
ing volumes of those clusters with the occlusion queries
against the occlusion map. These bounding volumes
serve as a conservative proxy to the geometry contained
in corresponding clusters. We call those clusters of the
occludee set that are identified as visible clusters with
occlusion queries newly visible clusters. Fig. 9 shows
an example of culling results in one of our benchmark
scenes.

Rendering newly visible clusters. As the final step
of our algorithm, we render newly visible clusters, to



Figure 9: The left figure shows the image created at a
first person view. The right image shows a third per-
son view with occlusion results. The black lines show
the view frustum of the first person view. The pink,
blue, and yellow boxes are visible, occlusion culled,
and view-frustum culled clusters.

create the final image. Also, these newly visible clus-
ters are added to the PVS;. We use the PVS; for the
next frame. Note that by taking advantage of temporal
coherence, we only update and reset the PVS every n
frames.

Instancing and static models. It is common to use
instancing to create large-scale crowd scenes. We
also store various data of cluster hierarchies such that
we can efficiently utilize the GPU-based instancing.
More specifically, we adopt the pseudo-instancing
method [ZelO4] for our VDR representation. In
addition, our VDR-AM representation can be easily
applied to handling static models. In this case our
method considers only base meshes of static models.
As a result, our rendering method can be applied to
handling both static and articulated models.

6 RESULTS

To show benefits of our representation, we have im-
plemented our construction and runtime rendering al-
gorithms on a 3.00 GHz Intel quad-core PC with a
GeForce 8800 GTX GPU that has 768 MB. We store all
the transformation matrices of bones of various articu-
lated models with all the poses in a 1 D texture buffer,
which is easily accessible in the GLSL vertex shader
that implements our runtime skinning method. For all
the performance tests, we use the HD image resolution
of 1280 by 720. In this image resolution, we use the
PoE value of 0.5, in order to avoid visual artifacts to
viewers. Since the used PoE causes only sub-pixel er-
rors in the screen space, we do not perform any expen-
sive geomorphing [Hop97].

Benchmark scenes. We have tested our method with
three different crowd scenes that consist of human and
animal articulated characters. Our first benchmark rep-
resents an office evacuation scenario (Fig. 6). This of-
fice scene consists of 200 instanced virtual human char-
acters and 16.4 M triangles. Our second benchmark
represents an exhibition scenario (Fig. 1). This exhi-
bition scene consists of 1 K instanced characters and
83 M triangles. The third scene is a stampede scenario

(Fig. 2) consisting of 5 K instanced animal characters
and 242 M triangles. In the first and second crowd
scenes, we use 20 different virtual human characters
that have 35 bones and 73 K to 110 K triangles for their
base meshes. Also, they are animated by using a walk-
ing animation pattern that consists of 35 different poses.
In the third crowd scene, we use horse, elephant and
camel models that consist of 17 K, 85 K, and 44 K tri-
angles respectively. They have 30 to 40 bones and are
animated in a running pattern with 15 to 80 poses.

Pose selection parameter setting. In our pose selec-
tion method, the parameter d trades-off between the
simplification quality and performance of our overall
construction method. If we set d to be too high, we
would choose too small number of representative poses,
causing faster construction, but leading to a worse sim-
plification quality. On the other hand, if we set d to be
too low, we would get the reverse effects: slower con-
struction, but higher simplification quality. Given this
trade-off space, we found that the range of 10% to 30%
of the diagonal size of the bounding box of the model
for d strikes a good balance in our tested benchmarks.

In this setting, for a walking animation that consists of
35 poses, our method selects 8 different poses. For a
snake crawling animation with 81 poses, our method
selects 13 poses. As a result, our method achieves 3 to
5 times performance improvement for our construction
method. Also, in terms of the simplification quality,
we found that the RMS distance between the original
mesh and the simplified mesh computed only from con-
sidering computed representative poses is within 1% to
2% difference to the RMS distance between the origi-
nal mesh and the simplified mesh computed from con-
sidering all the poses; we use the metro tool [CRS98] to
measure the RMS distance. Fig. 5 shows eight chosen
poses out of 35 poses of the walking animation. Note
that more poses are chosen during a period that the hu-
man character switches his pivoting leg.

Hierarchy Construction Comparisons. In order to
show the benefits of our error-aware clustering method,
we additionally implemented a naive clustering method
that uses an octree. More specifically, we construct
clusters by recursively partitioning the base mesh until
the sub-mesh contained in each node of the octree has
s triangles. This naive method considers only the base
mesh computed from a pose and does not consider any
simplification errors. Once we compute clusters from
the octree, the hierarchy construction and simplification
that we have applied to to our error-aware clustering
method are performed in the same manner to the naive,
octree-based clustering method.

Compared to this naive method, our error-aware clus-
tering method shows only 4% slower clustering perfor-
mance at preprocessing, but shows 50% higher runtime
rendering performances, by rendering 50% fewer trian-
gles given the same error bound in our tested bench-
marks. Since we cluster vertices that have similar sim-
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Figure 10: These figures show fps graphs of dif-
ferent methods: our VDR method, VDR, our VDR
method integrated with occlusion culling, VDR+OC,
and NoLOD that uses the original resolutions and view-
frustum culling.

plification errors, we can allow more drastic simplifica-
tion if possible, over the naive octree-based clustering
method. Fig. 7-(c) shows our simplification results on
different portions of a walking character.

Construction time and memory requirement. We
set each cluster to have less than 100 triangles. In
this setting, our method creates 1.8 K leaf clusters and
takes 19 min in CPU to compute our representation
for the biggest virtual character that has 110 K trian-
gles. Also, our representation requires 72 bytes per
each triangle for an articulated model. Since the orig-
inal mesh requires 30 bytes per each triangle, our rep-
resentation requires 140% more space over the original
mesh. Since our representation stores simplified trian-
gles, whose number is similar to the number of origi-
nal unsimplified triangles, our representation requires at
least 100% more space over the original mesh. There-
fore, the memory overhead 140% of our representation
is not significantly high.

Comparison configurations. We measure the perfor-
mance of three different methods: 1) a base rendering
system, NoLOD, that uses the original resolutions and
performs only view-frustum culling, 2) our VDR ren-
dering system, VDR, that performs the VDR on the
base system, and 3) our VDR system integrated with
occlusion culling, VDR+OC. We measure the frames
per second (fps) of these methods with pre-defined
paths, which are shown in the accompanying video.
The fps graphs of these methods with our benchmark
scenes are shown in Fig. 10.

FPS #. Rendered Tri. (M)
Benchmark  NoLOD| VDR [VDR+OCNoLOD|VDR[VDR+OC|
Office Fig. 6 | 10.27 43.29) 49.21 |12.46 2.29| 2.06
Exhibition Fig. 1| 7.73 29.15| 46.08 |24.66 [3.14| 1.94
Stampede Fig. 2| 0.55 [16.38] 16.23 [148.09|4.77| 4.70

Table 1: This table shows the frames per second (fps)
and the number of rendered triangles on average while
rendering scenes. NoLOD, VDR, and OC repre-
sent rendering with the original resolutions, our view-
dependent rendering method, and our occlusion culling
technique respectively.

Figure 11: This figure shows adaptively varying resolu-
tions computed from our VDR-AM representation. We
render each vertex of the model with colors computed
from the well-known heat color map; the red color indi-
cates the highest resolution, while the blue color refers
to the lowest resolution.

6.1 Rendering Performance

On average, VDR+OC achieves interactive perfor-
mances, 49 fps and 46 fps in the office and exhibition
crowd scenes respectively (Table 1). In the exhibition
scene, compared to the base rendering system, we
achieve 4 times performance improvement by enabling
the VDR, and achieve 6 times performance improve-
ment by enabling VDR and occlusion culling together.
We also observe a similar performance gain with the
office scene. These performance improvements are
mainly caused by reducing the number of triangles
that we have to process for the skinning and rendering
operations. More specifically, the base rendering
system renders 458 K clusters that contain 24.66 M
triangles for the exhibition scene. On the other hand,
VDR renders 12 K clusters with 3.14 M triangles and
VDR+OC renders 8 K clusters with 1.94 M triangles.

In the stampede scene our method achieves interactive
performance, 16 fps, even though the original model
consists of more than 200 M triangles. Also, it
demonstrates high performance improvement (up to
30 times) by enabling VDR over the base rendering
method. Nonetheless we show a minor, but lower
performance by enabling occlusion culling over VDR.
This is mainly because we do not have much depth
complexity in the tested view point.

6.2 Discussions

To highlight the benefit of our method, we show varying
resolutions of our view-dependent representation for a



snake articulated model that consists of 28 K triangles
and 81 poses for its crawling animation (Fig. 11). We
use the heat color map to show how the resolution of the
model varies given the first person view. As a portion of
the model is farther away from the viewer, it gets lower
resolution as indicated by showing colors close to the
blue one. At the given view our method requires only
18 K triangles for rendering the snake model.

Relationships with LODs. Many view-dependent rep-
resentations have been proposed, as discussed in Sec. 2.
These techniques have not been widely applied to ar-
ticulated models. This may be mainly because that
many prior view-dependent techniques have high com-
putational overheads. Nonetheless, our technique re-
duces the computational overhead by providing view-
dependent resolution at a granularity of clusters con-
sisting of around 100 triangles, not each triangle of the
mesh. Note that this kind of approach is inspired by ef-
ficient LOD rendering techniques such as HLODs (Hi-
erarchical levels of detail) [EMBO01] designed for large-
scale static models.

Breakdown of each rendering component. We also
measure how much percentage each component of our
method takes over the total rendering time. The CPU-
based selection of the LOD cut given a viewing configu-
ration takes less than 1.5 ms. The GPU-based skinning,
rendering, and occlusion culling components take 14%,
82%, and 4% over the total rendering time on average
across all the tested benchmarks.

Limitations. Even though our method shows perfor-
mance improvements over the base rendering method,
there is no guarantee that our VDR integrated with oc-
clusion culling always improves the performance of
various crowd scenes. This is mainly because perform-
ing VDR and occlusion culling has overheads. Also,
our method may show visual artifacts with PoE values
bigger than 1, while we were able to achieve interactive
performance without noticeable artifacts by using 0.5
PoE for our tested models. Geomorphing can amelio-
rate popping artifacts by providing smooth transitions
between different LODs.

7 CONCLUSION

We have proposed view-dependent representation for
articulated models, VDR-AM, and presented how we
can use it for an interactive view-dependent rendering
method integrated with occlusion culling in large-scale
crowd scenes. VDR-AM consists of a cluster hierarchy
that serves both as a multi-resolution representation for
VDR and a bounding volume hierarchy for occlusion
culling. We also presented an error-aware cluster con-
struction method to allow drastic simplifications on por-
tions of meshes of articulated models. We were able to
achieve 16 to 49 fps on average for large-scale crowd
scenes that consist of thousands of articulated models
and hundreds of millions of triangles without notice-
able visual artifacts.

There are many avenues for future work. In addition to
addressing current limitations of our method, we would
like to first handle larger crowd scenes by designing
a more drastic simplification method (e.g., volumetric
simplification methods) as well as to simplify skeletal
and behavioral models of characters [RCBS10]. One
can combine our method with image-based representa-
tions [DHOOO05, KDC'08]; use our method in a near
field and use impostors allowing more drastic simplifi-
cations in a far field. Also, we used deformation levels
to estimate simplification errors. We would like to ex-
tend this concept to identify vertices that have similar
rotational sequences [JTOS], to more accurately cluster
vertices that have similar simplification errors. In ad-
dition, it would be interesting to conduct a user study
measuring perceptual errors of our method. Finally, we
would like to apply our VDR-AM to other geometric
applications such as collision detection. Since our rep-
resentation is based on a polygonal representation, we
believe that it can be easily applied to collision detec-
tion in a similar spirit to the collision detection method
designed for dynamic simplification [YSLMO04].
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