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Abstract

We propose an efficient and robust image-space denoising method for noisy images generated by Monte Carlo

ray tracing methods. Our method is based on two new concepts: virtual flash images and homogeneous pixels.

Inspired by recent developments in flash photography, virtual flash images emulate photographs taken with a

flash, to capture various features of rendered images without taking additional samples. Using a virtual flash

image as an edge-stopping function, our method can preserve image features that were not captured well only

by existing edge-stopping functions such as normals and depth values. While denoising each pixel, we consider

only homogeneous pixels – pixels that are statistically equivalent to each other. This makes it possible to define a

stochastic error bound of our method, and this bound goes to zero as the number of ray samples goes to infinity,

irrespective of denoising parameters. To highlight the benefits of our method, we apply our method to two Monte

Carlo ray tracing methods, photon mapping and path tracing, with various input scenes. We demonstrate that

using virtual flash images and homogeneous pixels with a standard denoising method outperforms state-of-the-art

image-space denoising methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Raytracing

1. Introduction

Achieving the realistic rendering of various models under

complex illumination has been one of the main goals in

computer graphics. Although many different rendering algo-

rithms exist, Monte Carlo ray tracing methods such as path

tracing [Kaj86] and photon mapping [Jen01] have been the

most popular algorithms for producing high quality images

under various scene configurations. One problem, however,

is that Monte Carlo ray tracing algorithms tend to require

a large number of ray samples in order to generate visually

pleasing results. If there are not enough samples, rendered

images can have a significant amount of noise (e.g., Fig. 1-

(b)). Therefore, reducing noise in Monte Carlo ray tracing

methods has been actively investigated in the field of com-

puter graphics.

A popular approach to noise reduction is to directly work on

the rendered images. However, it is commonly considered

that this image-based approach can often result in exces-

sive blurring or insufficient denoising. This is because distin-

guishing image features from noise in noisy images is fun-

damentally difficult. Moreover, the image-based approach

tends to have many user-defined parameters that signifi-

cantly affect the quality of denoising. Thus, existing image-

based denoising methods often require tedious parameter

tuning in order to obtain visually pleasing denoised images

with a particular scene configuration. This has significantly

limited the applicability of these methods in practical appli-

cations.

In this paper, we present a novel concept for image denoising

methods, virtual flash images, which serve as edge-stopping

functions to discern image features from noise. A virtual

flash image is created using a subset of the original light

paths (e.g., direct illumination) with an additional point light

that emulates a camera flash.

The key advantage of using the virtual flash image is that

it contains various image features that cannot be captured

solely from geometric information such as depth values and

normals (i.e., G-buffers). For example, reflective and refrac-

tive features of a transparent shower booth (the first row of

Fig. 1) are well captured by the virtual flash image. This

submitted to COMPUTER GRAPHICS Forum (11/2012).
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Figure 1: Results of our denoising method with 64 ray samples per pixel. Our method takes input images (column (b)) and

significantly reduces noise level while keeping salient image features (columns (a) and (d)). The key idea is the use of virtual

flash images (column (c)), which capture various image features without additional samples. Our method achieves not only

visually better results, but also numerically more accurate results than the prior image-space denoising methods (column (e)).

The numbers at the lower right corners the root mean square (RMS) errors computed from the reference solutions.

concept is motivated by recent advances in flash photogra-

phy [PSA∗04, ED04], but we present necessary modifica-

tions to the original idea in order to make it useful for our

denoising method.

In order to further improve the robustness of the denoising

process, we introduce homogeneous pixels, which we define

pixels that are statistically equivalent to each other. We con-

sider only these homogeneous pixels during the denoising

process. This concept makes it possible to define a stochas-

tic error bound of our denoising method, irrespective of de-

noising parameters. Furthermore, the stochastic bound re-

duces by the order of np
−1/2, where np is the number of ray

samples for a pixel. This makes our denoising robust from

tweaking denoising parameters for various rendering effects

and different ray sample numbers. Our method can reduce

RMS errors by a factor of more than one order of magnitude

compared to generating more ray samples without using the

denoising process.

We have applied our denoising methods to the results of

path tracing and photon mapping on a variety of realistic

and challenging scene configurations. Compared to exist-

ing image-based denoising techniques, our method achieves

more significant noise reduction while better preserving

various image features. Fig. 1 highlights the results of

our method. The supplementary video also shows that our

method can be naturally extended to denoise animations

without noticeable flickering.

2. Related Work

2.1. Noise Reduction for Rendering

Reducing noise in images generated by Monte Carlo ray

tracing methods has been one of the main challenges in ren-

dering. Existing techniques have investigated noise reduc-

tion at two different stages of the Monte Carlo ray tracing

process: sampling and reconstruction. In this section we re-

view previous work only on the reconstruction stage, since

our work focuses on the reconstruction process and is or-

thogonal to sampling methods.

Image-space methods: Rushmeier and Ward [RW94] pro-

posed an energy preserving non-linear filter to spread energy

of outlier samples of a pixel into its neighboring pixels. Mc-

Cool [McC99] and Xu et al. [XP05] applied the anisotropic

diffusion and bilateral filtering respectively for reducing

noise in Monte Carlo ray tracing methods. These tech-

niques require rather careful parameter setting for achiev-

ing high-quality denoising results. Recently, Overbeck et

al. [ODR09] proposed a wavelet-based reconstruction tech-

nique. The wavelet-based reconstruction technique works

quite well with their proposed wavelet-based sampling. Un-

fortunately, their approach, like other wavelet-based meth-

ods, can produce image artifacts such as edge ringing.

Geometric features have been widely used for denoising im-

ages rendered with global illumination methods [McC99,

LSK∗07, DSHL10, BEM11]. However, edges introduced by

non-geometric features (e.g., reflection and refraction) can

be overly smoothed since these edges are not well captured

by geometric features.
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(a) Input noisy image (b) Direct illumination (c) Direct illumination + ambient (d) Virtual flash image

Figure 2: An input noisy image (generated with 16 ray samples) for the shower booth scene, where indirect illuminations are

dominant. The virtual flash image (d) captures more high-frequency features compared to images with the direct illumination

(b) and the additional ambient term (c).

Sen and Darabi [SD12] used functional relations among

Monte Carlo ray samples for computing a filtering weight

of each ray sample. This technique has a potential to cre-

ate high-quality denoised results and can be combined with

homogeneous pixels in order to determine filtering weights

that better preserve various image features. Our virtual flash

images can also be integrated as a new feature vector in their

method.

DeCoro et al. [DWR10] and Pajot et al. [PBP11] proposed a

rejection method for removing outliers introduced by Monte

Carlo ray tracing. This method can be combined as a pre-

processing to our method, especially when a small number

of ray samples are used.

Object-space methods: This class of methods reconstructs

an image from samples in an object or high dimensional

sampling space. One of the well-known examples is irradi-

ance caching [WRC88]. Another recent example is multi-

dimensional adaptive sampling [HJW∗08]. Such techniques

may generate better results than simpler image-based meth-

ods that we reviewed above, since samples in an object space

(or high dimensional sampling space) tend to have more in-

formation than their counterparts in the image space. How-

ever, adapting these techniques to an existing rendering sys-

tem may require major modifications to various parts of the

rendering system.

2.2. Noise Reduction for Photographs

In the field of image processing, commonly used techniques

adopt an edge-preserving filter for denoising photographs.

Well-known filters include anisotropic diffusion [PM90] and

bilateral filtering [TM98]. Wavelet-based methods denoise

images by thresholding the wavelet coefficients [DJ95].

Wavelet-based methods, however, can produce distracting

image artifacts such as low-frequency noise and edge ring-

ing caused by underlying wavelet basis. Unfortunately, di-

rect applications of such techniques to denoise rendered im-

ages have shown sub-optimal results, since they do not uti-

lize various information available during the rendering pro-

cess.

Image enhancement by flash photography: Eisemann and

Durand [ED04] and Petschnigg et al. [PSA∗04] designed an

effective denoising method for photographs taken in dark en-

vironments, by utilizing additional photographs taken with a

camera flash. They extended bilateral filtering into a cross

(or joint) bilateral filtering that considers pairs of flash and

non-flash images. The key observation of these methods

is that the flash image is relatively sharp and less noisy

compared to its corresponding non-flash image. Therefore,

they could use the flash image as an estimator of the high-

frequency content of the non-flash image. Inspired by these

techniques, virtual flash images are designed for denoising

rendered images while preserving various image features

generated by Monte Carlo ray tracing methods.

3. Our Method

Our goal is to denoise images generated by various Monte

Carlo ray tracing algorithms. Since rendered images can

have image features buried under noise, naïve applications

of filtering techniques proposed in the image processing field

may not provide satisfactory results. For example, Xu and

Pattanaik [XP05] pointed out that a naïve usage of bilateral

filtering to noisy rendered images works poorly. In order to

address this issue, we propose to use a virtual flash image

that serves as an estimator of image features in the input

noisy image. Examples of virtual flash images are shown in

Fig. 1.

3.1. Generating Virtual Flash Images

We aim to discern all the image features from noise in the in-

put image without taking additional ray samples. To achieve

this goal, a virtual flash image is constructed by summing

two different components: 1) a part of the illumination from

the original light sources, and 2) additional illumination

from a virtual flash point light located at the viewing po-

sition.
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To create the virtual flash image, we reuse subsets of light

paths (and their shading results) that are generated by the

original rendering method with the original light sources.

Among the light paths of the original light sources, we keep

all the ray paths that interact with specular and glossy mate-

rials to compute the virtual flash image. On the other hand,

for ray paths interacting with diffuse materials, we keep only

the ray paths that have at most one diffuse bounce from the

viewpoint (e.g., direct illumination). This is because shading

for multiple diffuse bounces causes significant noise in the

computed illumination values. This limited set of ray paths

can capture most high-frequency image features (e.g., tex-

tures, shadow boundaries with or without reflections and re-

fractions) in the virtual flash image. However, since we ig-

nore some ray paths, some features (e.g., caustics in Fig. 2-

(a)) cannot be captured in the virtual flash image. We explain

how to robustly detect such missing features during our de-

noising process in a later section.

The additional virtual flash light source is crucial for cap-

turing image features in regions where the original lights do

not cast direct illumination, as shown in Fig. 2. The conven-

tional method for approximating indirect illumination uses

an approximate ambient term [RPG99], but this approach

can only capture a limited set of high-frequency features

(e.g., textures) introduced by primary rays. The virtual flash

light ensures the virtual flash images capture a larger vari-

ety of high-frequency features (e.g., edges on specular sur-

faces) through existing shading codes compared to the con-

ventional method (Fig. 2). Additionally, the virtual flash im-

ages with considering the additional virtual flash light can

be constructed quickly because they do not require any addi-

tional ray samples. Specifically, we do not perform any visi-

bility tests nor create shadows from the virtual flash light, to

avoid adding shadows that do not exist in the input image.

We set the intensity of the virtual flash light such that it can

compensate the loss of indirect illumination in the virtual

flash image; this can be done quite efficiently by comparing

the original image and the virtual flash image rendered with-

out the virtual flash light. We found that this simple heuristic

works very well. Furthermore, we found that a wide range

of values that deviate from the intensity computed by the

heuristic also work well, and robustly produce almost iden-

tical denoising results, as shown in Fig. 3.

Existing image-based denoising methods [McC99,DSHL10,

BEM11, SD12] use geometric features (e.g., normals and

depths stored in the G-buffer) as edge-stopping functions.

Albedo (e.g., colors) can also be considered for preserving

texture edges. Unfortunately, reflected and refracted edges

of transparent objects (shown in Fig. 4) cannot be preserved

because they are not simply created by the geometries and

albedo of transparent objects. In addition, the correct esti-

mation of the geometric information of blurred regions gen-

erated by defocus or motion blur effects is not trivial; aver-
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Figure 3: The first row shows virtual flash images, as we

change the intensity of the virtual flash light from 2 to 6 times

over the intensity of the original light in the toaster scene.

The denoised results with different virtual flash images are

shown in the second row. The virtual flash light intensity,

4.7 times to the original light, generated by our method pro-

duces the lowest RMS error.

(a) Input noisy i. (b) Virtual flash i. (c) W/ virtual flash i.

(d) W/o virtual flash i. (e) A-Trous filter (f) Reference

Figure 4: Our denoising results w/ and w/o considering

the virtual flash image within our non-local means filtering.

Considering the virtual flash image, we can preserve fine de-

tails that are captured in the virtual flash image. A-Trous

filter [DSHL10], which is based on geometric information,

fails to preserve both refracted and reflected edges on the

glass. The input and reference image are generated with 64

and 2,500 ray samples per pixel.

aging depths and normals across edges may give incorrect

geometric values as pointed out by Bauszat et al. [BEM11].

The key concept of using virtual flash images is that, al-

though limited, we combine geometric features and albedo

of surfaces intersected by multiple rays into a single image

through actual shading. This seemingly simple concept adds

a powerful capability of capturing discontinuities with non-

diffuse objects such as a glass shown in Fig. 1.
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3.2. Denoising using a Virtual Flash Image

Given a Monte Carlo ray tracing method that generates an

input noisy image N, we denoise the input image to obtain

an output image D. Using a virtual flash image F and non-

local means filtering [BCM05] (i.e., a patch-based bilateral

filtering), the output Dp of pixel p is computed as follows:

Dp =
1

k(p) ∑
p′∈H(Ωp)

gs(|p′− p|)gr

(∣

∣u(Fp′)−u(Fp)
∣

∣

)

Np′ ,

(1)

where k(p) is a normalization term, the function u(Fp) de-

notes a patch of pixels around p in the virtual flash image,

and Ωp is defined as the pixels in a square denoising window

centered on pixel p. gs and gr are spatial and range Gaussian

filters that have standard deviations of σs and σr, respec-

tively. These two filters serve as edge-stopping functions; the

range filter computes weights based on the intensity differ-

ence of pixels, whereas the spatial filter sets weights based

on the spatial distance of pixels. Note that our range filter

computes weights using the virtual flash image F , which has

much reduced noise compared to the input image N.

The patch of a pixel p, u(Fp), in our denoising framework

(Eq. 1) is defined as an m by m window whose center is lo-

cated at pixel p. In order to compute the distance between

the two patches u(Fp) and u(Fp′) in the range filter, we

compute a weighted Euclidean distance among all the corre-

sponding pixels in the two patches, as suggested by Buades

et al. [BCM05].

By considering a virtual flash image within our denoising

framework, we can preserve most image features during the

denoising process; denoising results with and without con-

sidering our virtual flash image are demonstrated in Fig. 4.

However, there are some other features (e.g., caustics, color

bleeding) that are not captured well by the virtual flash im-

age. Such features can be undesirably removed, especially

when we use a large denoising window. It is, however, a

challenging problem to set the optimal denoising window

size that simultaneously preserves image features and re-

duces noise [XP05]. Therefore, existing image-based de-

noising methods simply leave the user to find such a win-

dow size by trial and error, which can easily lead to over-

blurred or under-smoothed images [KB06]. Instead of Ωp,

we propose to use H(Ωp), a set of homogeneous pixels, for

preserving those edges (e.g., caustics) that the virtual flash

image does not include.

3.3. Robust Denoising with Homogeneous Pixels

Instead of seeking the optimal denoising window size, we

propose a simple, yet effective, approach to suppress exces-

sive blurring. Our approach is to identify homogeneous pix-

els, pixels that are considered statistically equivalent based

on confidence intervals of the true means of pixels.

Given a pixel p, we define np, x̄p, and sp, to indicate the

ray sample count for the pixel, the sample mean, and the

standard deviation computed with the observed ray samples

for that pixel, respectively. We use µp to indicate the true

mean of samples for the pixel p. We adopt a large denoising

window with a large spatial Gaussian in order to increase

the probability of identifying pixels that are correlated with

p, and thus achieving better denoising quality. The key is to

use only homogeneous pixels (H(Ωp) in Eq. 1), from all of

those in Ωp to smooth out pixel p.

We define homogeneous pixels H(Ωp) as a set of pixels

whose sample means are within a confidence interval of the

unknown true mean µp. We use the t-distribution to construct

the confidence interval for the unknown true mean µp with a

confidence level of 1−α [Hay07].

As a result, the homogeneous pixels H(Ωp) of a given pixel

p are defined as:
{

p
′|p′ ∈ Ωp, x̄p −

tα/2,np−1sp
√

np
≤ x̄p′ ≤ x̄p +

tα/2,np−1sp
√

np

}

.

(2)

In the above equation, tα/2,n−1 is a critical point in a two-

sided t-interval, which is defined as P(X ≥ tα/2,n−1) = α/2

where X is a random variable drawn from the t-distribution

with n− 1 degrees of freedom. In practice, the use of a pre-

computed lookup table for the critical point is recommended

for efficient computation [Hay07]. The size of the table is

negligible, as the definition of the critical point only depends

on the number of samples and the user-specified value α.

This definition of homogeneous pixels is closely related to

testing the null hypothesis H0 : µp = µp0 against the alter-

native hypothesis HA : µp 6= µp0, where µp0 denotes a spec-

ified value that we want to test. For the specified value, we

use the neighboring sample mean x̄p′ . The null hypothesis

is then accepted if |t| ≤ tα/2,np−1, where the test statistic

t = (x̄p− x̄p′)/(sp/
√

np). The acceptance of the null hypoth-

esis indicates that the tested value x̄p′ (i.e., µp0) is a plausible

value of the unknown mean µp.

We found that the commonly adopted confidence level of

99% (i.e., 1−α = 0.99) works very well in practice. An ex-

ample of homogeneous pixels and their weights is shown in

Fig. 5. Note that the virtual flash image does not have any

information about the caustics; this example is a zoomed-

in inset of the leftmost caustics shown in the wedding-band

scene (the last row of Fig. 10). Owing to homogeneous pix-

els, our method successfully preserves such features.

To define the homogeneous pixels, we assume that a se-

quence of independent identically distributed (i.e., iid) ran-

dom samples for pixel p is generated from Monte Carlo ray

tracing. We compute a sample mean x̄p of all the samples for

the pixel p. The central limit theorem [Hay07] indicates that

the distribution of sample means is closely approximated by

a normal distribution, regardless of the actual distribution of

individual ray samples. The accuracy of the approximation

improves as the number of ray samples per pixel increases.
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(a) Input noisy i. (b) Virtual flash i. (c) Ours with Ωp

(d) H(Ωp) (e) Weight (f) Ours with H(Ωp)

Figure 5: Homogeneous pixels H(Ωp) (white pixels) given

a pixel p centered at the denoising window (black square

box), and their weights in high-frequency caustics of the

wedding-band scene (the last row of Fig. 10). The images (c)

and (f) are denoised results without and with only consider-

ing homogeneous pixels respectively within our method. The

virtual flash image (b) does not contain any information for

caustics, and thus the caustics are blurred without consider-

ing homogeneous pixels (c).

The confidence intervals of the unknown true means are

also approximate. However, empirical studies [TJ97,HJJ10]

show that confidence intervals in Monte Carlo ray tracing

are reasonably well approximated by a relatively small num-

ber of ray samples (e.g., np = 20). We also found that the

coverage probability of the approximate confidence intervals

(Table 1) becomes very close to the confidence level as the

number of ray samples increases. As a result, we also as-

sume that the true mean µp for a pixel p is in the interval

(x̄p −
tα/2,np−1sp√

np
, x̄p +

tα/2,np−1sp√
np

) with a probability of 1−α.

The concept of homogeneous pixels is not entirely novel,

because it is based on well-known statistics (e.g., normal

theory). For example, the anisotropic method [McC99] as-

sumes that the sample mean in each pixel is a normally dis-

tributed random variable in a color space, and the distance

between distributions in adjacent pixels is defined in a sta-

tistical manner. In contrast, however, our method uses only

homogeneous pixels, rather than all the neighboring pixels,

for denoising. Kervrann and Boulanger [KB06] proposed the

use of confidence intervals in image processing for selecting

neighboring, statistically equivalent, patches. Nonetheless,

in the next section we present new stochastic error bounds

using sampling information obtained through Monte Carlo

ray tracing.

Ray Samples 4 16 32 64 128

1−α = 0.95 0.855 0.901 0.921 0.938 0.942

1−α = 0.98 0.899 0.929 0.945 0.960 0.964

1−α = 0.99 0.921 0.943 0.956 0.968 0.972

Table 1: Coverage probability of confidence intervals for

unknown means µp in the toaster benchmark. This result

shows a slightly underestimated coverage compared to a

confidence level of 1−α, especially with low ray samples

(e.g., 4), but the coverage probability becomes very close to

the confidence level afterwards.

3.4. Stochastic Error Bounds

One way of defining the quality of any denoising method

is to measure the difference between the denoised value Dp

and its reference value µp that is generated by a Monte Carlo

ray tracing method at a pixel p. In particular we measure

the positive distance, i.e. denoising error, between those two

values, |Dp −µp|.

The assumption to define homogeneous pixels is that given

iid random samples generated by MC ray tracing, the un-

known true mean is within its confidence interval with a

probability. The error of the original image rendered by

unbiased Monte Carlo ray tracing reduces in the order of

n
−1/2
p , but a denoising method can introduce a systematic

error (i.e., bias). For example, a denoising method with a

fixed parameter is not consistent, as demonstrated by Sen

and Darabi [SD12]. We show that our denoising method

considering only homogeneous pixels is consistent, and its

stochastic error bound reduces in the order of n
−1/2
p .

Theorem 3.1 The denoising error of our method given a

pixel p is stochastically bounded with a probability that is

greater than or equal to 1−α as the following:

P
(

|Dp −µp| ≤ 2tα/2,np−1spnp
−1/2

)

≥ 1−α.

We prove this theorem by taking advantage of our definition

of the homogeneous pixels. The detailed proof for the theo-

rem is in Appendix A.

According to the theorem, the error introduced by our de-

noising method is stochastically bounded, and its stochastic

bound reduces as the order of n
−1/2
p , as we increase the num-

ber of ray sample np for the pixel p.

Note that this property is satisfied irrespective of denois-

ing parameters (e.g., denoising window size) used in our

method. This is a notable advantage compared to prior work,

as this property lessens the difficulty of choosing denoising

parameters and makes our method more practical. Further-

more, it allows our denoising method to have a large denois-

ing window, which increases the probability of finding simi-
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(a) Input noisy image (b) Denoising with Ωp, σs = 1

(c) Denoising with Ωp, σs = 5 (d) Denoising with H(Ωp), σs =
5

Figure 6: Denoising results with a small denoising window

size (b), a large one (c), and homogeneous pixels (d). The im-

age (b) preserves high-frequency caustics (shown in the red

box), but shows low-frequency noise on the floor (shown in

the blue box). On the other hand, the image (c) shows smooth

results on the floor, but blurs the caustics. Our method con-

sidering homogeneous pixels shows smooth results on the

floor, and preserves high-frequency caustics even though we

use the large denoising window.

lar pixels without introducing blurring artifacts as illustrated

in Fig. 6.

3.5. Two-Step Denoising Process

In order to robustly denoise input noisy images, we use two-

step denoising process, which performs our denoising two

times. In the first step, we perform our denoising with a small

denoising window size (e.g., 7 by 7) and the 99.8% confi-

dence level, mainly for reducing the variance of the input

noisy image. In the second step, we re-apply our denoising

with a big denoising window size (e.g., 31 by 31) and the

99% confidence level.

If we perform the second step alone, the denoised image has

a small bias. However, we found that some pixels are not

smoothed out in the denoised images (Fig. 7), because of

the short confidence interval. This freckle-like result hap-

pens when input images have a high level of noise with low

ray samples. More specifically, this occurs when two pix-

els have different sample means with small variances, even

though they are supposed to have similar distributions of ray

samples. If we relax the confidence interval (i.e., wide con-

fidence interval), we can avoid this freckle-like results in the

denoised image, but introduce a bigger bias.

(a) Input (b) 1st-step (c) 2nd-step (d) Both steps

Figure 7: Denoised images performed with the first-step

only, the second-step only, and both steps of our two-step

denoising process. The input image is generated with 64 ray

samples per pixel.

(a) Ours (b) Inset (c) Virtual flash i.

(d) Without patch (e) With patch (f) Reference

Figure 8: An inset (b) of an input noisy image (generated

with 64 ray samples) in the toaster scene, with its virtual

flash image (c). Denoised results with and without patch-

wise weight computation are shown in (e) and (d), respec-

tively. Note that the denoised result with non-local means

filtering is very similar to the reference image (f) generated

with 10,000 ray samples per pixel.

4. Results

We have implemented two Monte Carlo ray tracing methods,

photon mapping and path tracing in a CPU-based ray tracer,

and applied our method to images generated by these two

methods. We use 1280 by 960 image resolutions. We do not

perform anti-aliasing for all the images shown in this paper,

to highlight noise contained in images; our method can be

naturally combined with anti-aliasing and shows better re-

sults by using it together. We perform various tests on a PC

with Intel Core i7 at 3.3 GHz and 4GB of memory. We have

also implemented a GPU version of our denoising method

on an NVIDIA GeForce GTX 580.

For all the tests, the denoising window size for Ωp is set as

31 by 31 pixels, and σs of the spatial filter used in Eq. 1

is set as one third of the width (and height) of the denois-

ing window size. We adjust σr for the range filter, to be

linearly proportional to the standard deviation of the mean

of ray samples considered in the virtual flash image, as it
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has been known that σr should be chosen depending on the

noise level of an input image to achieve a high denoising

quality [ZA08].

Benchmarks: We have tested five benchmark scenes that

have different characteristics: 1) outdoor, 2) bathroom, 3)

shower booth, 4) toaster, 5) wedding-band benchmarks. The

outdoor scene is shown in Fig. 15, and other scenes are

shown in Fig. 10 from the top to the bottom in the order

same to what they are mentioned here.

The outdoor scene (4.7 M triangles and 90 MB JPEG tex-

tures) has high geometric complexity on the two plants and

high texture complexity on most parts of the scene. The bath-

room (470 K triangles) has many specular objects such as

mirrors and detailed textures on most parts of the scene. In

both the bathroom and outdoor scenes, indirect illuminations

are dominant. The shower booth scene (470 K triangles) con-

tains glossy objects (e.g., metals and a trash can), and the

scene has a glass window that causes strong caustics. The

toaster scene (11 K triangles) is rendered with depth-of-field.

The wedding-band scene shows high-frequency caustics. We

compute the input images by path tracing for the outdoor and

toaster scenes, whereas all the other images are generated by

photon mapping.

Our denoising method robustly handles different materials

such as diffuse, specular, and transparent materials (e.g.,

sinks of the bathroom, mirrors, and the shower booth).

Our method also preserve complex geometric features (e.g.,

plants in the outdoor scene) and texture features (e.g., brick

wall in the outdoor scene), whereas existing methods tend to

fail (Fig. 10). The denoised images by our method preserve

caustics in the shower booth and the wedding-band scenes.

Furthermore, our method can handle other complex illumi-

nation effects such as the depth-of-field in the toaster scene.

As shown in the third row of Fig. 10, the depth-of-field effect

causes noise in the virtual flash image, but the level of noise

in the virtual flash image is much reduced compared to that

of the input image, as it ignores diffuse interreflections. As

a result, denoising with the virtual flash image brings higher

improvement out than denoising with the original noisy im-

age.

RMS comparisons: We measure the RMS error,

( 1
|D| ∑p∈D |Dp − µp|2)1/2, between the reference and

denoised images, where |D| is the number of pixels of the

denoised image D. We also measure the RMS error between

the reference and input noisy images with different ray

samples in the outdoor scene.

The bilateral filter proposed by Xu et al. [XP05] does not re-

duce the RMS error from 512 ray samples per pixel because

it uses a fixed denoising parameter. However, the RMS er-

ror of our method continues to decrease (Fig. 9), as we have

more ray samples. This result is achieved without changing

any denoising parameters. The wavelet-based image denois-
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Figure 9: RMS comparisons of denoised results from 4 to

2 K ray samples per pixel over the reference image (gener-

ated with 32 K samples per pixel) in the outdoor scene.

ing method [ODR09] and anisotropic filtering [McC99] also

reduce the RMS error, as we have more samples. This is

because these methods control the level of denoising (i.e.,

blurring) according to variance of the sample mean of each

pixel. Nonetheless, the RMS error of our denoised image

shows the best results among all the tested methods from 4

to 2 K ray samples per pixel. This demonstrates that our de-

noising method can be robustly applied to rendered images

that are generated with various numbers of samples without

tweaking denoising parameters.

Computational overhead: To construct virtual flash im-

ages, we reuse ray sample information generated by the

Monte Carlo ray tracing. Thus, creating virtual flash images

takes a minor portion (usually less than 2%) of the origi-

nal rendering time (e.g., 284 ms and 1.8 s in the outdoor

scene with 4 and 16 samples per pixel while it takes 23 s and

92 s for creating input images respectively). Our denoising

method has a time complexity of O(|N||P|σs), where |N| is

the number of pixels in the input noisy image N and |P| is

the number of pixels in a patch. Given the denoising win-

dow size with the tested image resolution, we use a CPU im-

plementation using the OpenMP [DM98] library that used

8 threads for the computation. Computation takes an aver-

age of 18.4 s for a 5 by 5 patch size; we found that a bigger

patch size does not yield better results. Because our method

can be easily parallelized on GPU, a GPU implementation

of our denoising method takes only 1.5 s on average. This

computation time for our denoising process is small com-

pared to the time spent on rendering scenes; for example, it

takes 65 s and 282 s to generate an input noisy image with

only four samples per pixel for the bathroom and shower

booth scenes, respectively. We expect that our denoising pro-

cess would be capable of performing interactively by adopt-

ing recent acceleration techniques for non-local means fil-

tering [ABD10]. Moreover, our CPU implementation can be
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0.0245 0.0083 0.0146 0.0142 0.0101 0.0107

0.0205 0.0059 0.0083 0.0111 0.0085 0.0102

(a) Ours (b) Noisy i. (c) Virtual flash (d) Ours (e) [McC99] (f) [ODR09] (g) [XP05] (h) [DSHL10] (i) Reference

Figure 10: The column (a) shows denoised images by our method, followed by zoomed-in insets of the input noisy images (b),

our virtual flash images (c), results of our method (d), anisotropic method [McC99] (e), wavelet-based denoising [ODR09]

(f), a variant of bilateral filtering [XP05] (g), A-Trous filtering [DSHL10] (h), and reference (i). The input noisy images are

generated with 64 ray samples per pixel from the first to the third row, and with 16 ray samples per pixel in the forth row. The

reference image in the second row are generated with 2,500 ray samples per pixel, and other reference images are generated

with 10,000 ray samples per pixel. RMS errors are shown in images.

further improved by up to a factor of four when vectorization

for SIMD architectures is applied.

Equal-error comparisons: In the toaster scene, our method

reduces the RMS error of the input image generated with 8

ray samples per pixel from 0.0714 to 0.0170. On the other

hand, when we increase ray samples from 8 to 128 per pixel,

the RMS error of Monte Carlo path tracing is reduced to

0.0182, a higher than the RMS error of the denoised im-

age with 8 ray samples. In this case, our method achieves

more than 16 times performance improvement given the

same RMS error, compared to generating more ray samples.

A similar improvement is achieved for the outdoor scene

(Fig. 9). Our method spends additional 3.2 s to the time

(8.4 s) taken to generate the input image with 8 ray sam-

ples per pixel, while generating 128 ray samples per pixel

takes 128 s. As a result, our method achieves over 11 times

improvement in terms of the wall-clock time given the same

RMS error.

Denoising animations: Our denoising method can be easily

extended to denoising animations to reduce temporal arti-

facts such as flickering. For denoising an animation, we treat

a stack of animation frames as a 3D volumetric data, and

simply extend the 2D square denoising window and patches

into 3D cubic denoising window and patches for the 3D

volumetric data. When iid random samples are generated

by Monte Carlo ray tracing, the stochastic error bound of

our method with homogeneous pixels is still valid even for

animations. If underlying Monte Carlo ray tracing methods

employ adaptive sampling with considering correlations be-

tween frames, the stochastic error bound does not be main-

tained, because samples generated by adaptive sampling are

not iid random samples.

Our denoising method takes linearly proportional time to the

number of images that we need to consider for denoising a

2D image. In practice, just considering 5 images before and

after an image for denoising works well, without leaving no-

ticeable flickering artifacts; refer to the accompanying video

for the results.

5. Discussion

We have compared our method to existing image-

space denoising methods including the anisotropic fil-

tering [McC99], the bilateral filtering method proposed

by Xu et al. [XP05], the wavelet-based image denoising

method [ODR09], and the geometry-aware A-Trous fil-

ter [DSHL10]. Our implementations for the prior methods

follow the original guidelines shown in the original pa-

pers; we use all the edge-stopping functions (e.g., depth

and color edge maps) proposed for anisotropic filtering. We

have tested various settings and used a setting that works
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(a) Input noisy i. (b) [McC99] (c) Color edge

map for (b)

(d) [XP05] (e) Range func-

tion of (d)

(f) Virtual flash i. (g) Our method

Figure 11: Denoising results and edge stopping functions used in the anisotropic method proposed by McCool [McC99], the

bilateral method proposed by Xu et al. [XP05], and our method. The input noisy images (a) of the bathroom (the first row) and

shower booth scene (the second row) are generated by photon mapping with 64 ray samples per pixel. Normal and depth maps

used in the anisotropic method are omitted in this figure.

best across all the scenes. We have observed that finding

proper denoising parameters for these image-space denois-

ing methods is nontrivial except for ours and the wavelet-

based method.

Fig. 10, 12 and 15 show comparison results; Fig. 10 and 15

show comparison results with low ray samples (e.g., 16 to

64), while Fig. 12 with high sample counts (e.g., 1 K).

The anisotropic filtering method [McC99] computes vari-

ous edge maps and attempts to preserve them; edge maps

employed in this method are shown in Fig. 11. Nonethe-

less, as we perform iterations to filter out residual noise,

those edges are affected more, leading to over-blurred im-

ages. The bilateral filtering method by Xu et al. [XP05]

uses the blurred image as its range function, mainly to re-

duce high-frequency noise. As a result, their approach pro-

duces blurry denoised images, because the blurred image

cannot have high-frequency edge information. The wavelet-

based method [ODR09] unfortunately suffers from ringing

artifacts that wavelet-based methods commonly introduce.

The A-Trous filter [DSHL10] can preserve the edges intro-

duced by geometric discontinuities, but it fails to preserve

the edges generated by complex illuminations such as refrac-

tion, reflection, caustics, and defocus effects. Overall, exist-

ing methods show excessive blurring in some regions while

still leave low-frequency noise in other regions. On the other

hand, our method shows much higher quality denoising re-

sults across a wide range of noise levels and different char-

acteristics of image features.

Non-local means filtering: Our method is based on non-

local means filtering, which has been known to be better than

bilateral filtering for denoising photographs [BCM05]. Be-

cause non-local means filtering computes filtering weights

based on patches, it can be more robust against noise than

(cross) bilateral filtering that adopts the pixel-wise weight

computation (see Fig. 8). Even though the noise in virtual

flash images is much reduced compared to that of the input

noise images, the virtual flash images can still have a high

variance for some scenes, especially when scenes have com-

plex illumination configurations. One example includes the

glossy metal trash can, as shown in Fig. 13. Even in this case,

non-local means filtering shows better denoising results than

(cross) bilateral filtering.

Limitations: We use approximate confidence intervals to

preserve those edges that a virtual flash image does not con-

tain. The approximate intervals are based on the variances

of ray samples generated from Monte Carlo ray tracing, and

thus the approximation quality depends on the number of ray

samples, according to the central limit theorem. As a result,

the computed interval may not be accurate, especially with

relatively small numbers of ray samples. For example, the in-

tervals computed from a small ray count (e.g., 4) can be too

wide and fail to preserve high-frequency edges, as demon-

strated in the first row of Fig. 14. Furthermore, the intervals

can be too narrow and thus fail to smooth out noise, as illus-

trated by the second row of Fig. 14; note that our denoised

result exhibits noisy pixels. Also, in the highly noisy region

(the third row of Fig. 14), an insufficient number of homoge-

neous pixels may be selected because our method does not

make use of neighboring pixels outside the confidence inter-

vals. This binary decision makes the stochastic error bounds

possible, but can lead to the generation of under-smoothing

artifacts. In addition, the virtual flash image can only cap-

ture limited subsets of all possible high-frequency edges.

Global illumination effects in complex scene configurations,

such as glossy-dominant scenes or scenes with participating



Preprint

(a) Input noisy i. (b) Ours (c) [McC99]

0.0165 0.0101 0.0130

(d) [XP05] (e) [ODR09] (f) Reference

0.0240 0.0142

Figure 12: Denoising results with 1K ray samples in a

zoomed-in region of the outdoor scene. RMS errors are

shown in images.

(a) Input noisy i. (b) Virtual f. i. (c) Ours (d) Anisotropic

Figure 13: Two denoised images for the glossy metal can in

the shower booth scene by our method and the anisotropic

method [McC99].

media, may not be preserved well, especially with low ray

samples. The virtual flash image with considering the virtual

flash light may include new illumination effects (e.g., specu-

lar highlights), which may leave some noise, especially with

low ray samples.

6. Conclusion and Future Work

We have presented an efficient and robust image denois-

ing method for noisy images generated by Monte Carlo ray

tracing. Our method achieves high-quality denoising results

based on the novel concept of virtual flash images. These

were motivated by the flash/non-flash image enhancement in

computational photography, and we have presented the nec-

essary modifications for denoising rendered images. Virtual

flash images provide a novel way to capture image features

based on actual shaded results. We have also introduced the

idea of using homogeneous pixels during the denoising pro-

cess. Considering only homogeneous pixels makes our de-

noising method robust to inappropriate parameter values and

provides a provable stochastic error bound. This alleviates

the excessive trial and error adjustment of user-defined pa-

rameters. We have demonstrated that our method works well

(a) Input image (b) Ours (c) Reference

Figure 14: Failure cases of our method with four (first and

second row) and sixteen ray samples per pixel (third row).

Our method fails to preserve high-frequency edges in caus-

tics of the shower booth scene (first row), and leaves noisy

pixels in the toaster scene (second row). Our method also

shows under-smoothing artifacts in the highly noisy bathtub

of the bathroom scene (third row).

on a wider range of scene configurations than existing meth-

ods.

There are different directions for future work on virtual flash

images and homogeneous pixels. One direction would be

to extend virtual flash images for the rendering of partici-

pating media. This is a challenging problem, because even

the computation of single scattering, which roughly corre-

sponds to direct illumination in virtual flash images, requires

many samples. In addition, we would like to further reduce

the variance of virtual flash images through the rejection of

unnecessary ray paths generated from glossy materials. For

example, it would be more desirable to reject some ray paths

generated from glossy materials that may not lead to high-

frequency edges. In order to handle participating media and

general glossy materials efficiently, we need to find an ap-

propriate subset of light paths that is inexpensive to compute

but captures almost all high-frequency features. We would

also like to refine the estimation of confidence intervals. For

example, combining confidence intervals with a functional

relationship between samples [SD12] would be an interest-

ing research direction. It is also interesting to investigate how

virtual flash images and homogeneous pixels can improve

other image-based denoising methods.
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(a) Input noisy image (b) [McC99] (c) [ODR09]

0.0623 0.0366 0.0395

(d) [XP05] (e) Our method (f) Reference

0.0339 0.0230

Figure 15: An input noisy image (generated with 64 ray samples) and its denoising results in the outdoor scene. The reference

image is generated with 10 K ray samples per pixel. RMS errors are shown in images.
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Appendix A: Stochastic Error Bounding

We first introduce the t-procedure, employed for defining ho-

mogeneous pixels:

P(x̄p −L/2 ≤ µp ≤ x̄p +L/2) = 1−α, (3)

The equation says that the true mean µp at pixel p is in the

confidence interval, (x̄p −L/2, x̄p +L/2), with a probability

of 1 − α; for the sake of simplicity, we use the term L to

indicate the length of the confidence interval
2tα/2,np−1sp√

np
.

The Dp is a weight sum of values of homogeneous pixels

in our denoising method, and can be represented in a simple

equation as the following:

Dp = ∑
p′∈H(Ωp)

wp′ x̄p′ , (4)

where x̄p′ and wp′ correspond to the sample mean of pixel

p′ and its weight, respectively.

Because we select only homogeneous pixels p′ ∈ H(Ωp) for

denoising according to Eq. (2) in the main paper, the sam-

ple means x̄p′ of the homogeneous pixels is in the following

range:

x̄p −L/2 ≤ x̄p′ ≤ x̄p +L/2. (5)

By substituting Eq. (5) into Eq. (4), we have the following

inequality:

∑
p′∈H(Ωp)

wp′(x̄p −L/2) ≤ Dp ≤ ∑
p′∈H(Ωp)

wp′(x̄p +L/2),

where wp′ and x̄p +L are zero or positive real numbers.

Because the term x̄p±L/2 in the above equation is irrelevant

to p′ and thus a constant, we reach the following inequality:

(x̄p −L/2) ∑
p′∈H(Ωp)

wp′ ≤ Dp ≤ (x̄p +L/2) ∑
p′∈H(Ωp)

wp′ .

The sum of all the weights is one because of the normaliza-

tion term in non-local means filtering (Eq. (1) in the main

paper). As a result, we have the following inequality:

x̄p −L/2 ≤ Dp ≤ x̄p +L/2. (6)

By subtracting µp from Dp based on Eq. (3) and Eq (6), we

reach the following inequality:

P(−L ≤ Dp −µp ≤ L) ≥ 1−α. (7)

Note that because we take a conservative value L, in this
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inequality, the probability should be higher than or equal to

1−α.

The above inequality can be rewritten

P

(

|Dp −µp| ≤
2tα/2,np−1sp

√
np

)

≥ 1−α. (8)

�
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