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Abstract— We present a fast, yet accurate k-nearest neighbor
search algorithm for high-dimensional sampling-based motion
planners. Our technique is built on top of Locality Sensitive
Hashing (LSH), but is extended to support arbitrary distance
metrics used for motion planning problems and adapt irregular
distributions of samples generated in the configuration space. To
enable such novel characteristics our method embeds samples
generated in the configuration space into a simple l2 norm space
by using pivot points. We then implicitly define Voronoi regions
and use local LSHs with varying quantization factors for those
Voronoi regions. We have applied our method and other prior
techniques to high-dimensional motion planning problems. Our
method is able to show performance improvement by a factor
of up to three times even with higher accuracy over prior,
approximate nearest neighbor search techniques.

I. INTRODUCTION

In the context of sampling-based motion planning, the

problem of nearest neighbor search is a very important

part of most motion planners. In the Probabilistic Roadmap

Method (PRM) [1], nearest neighbor search is performed

after generating a set of valid robot configurations in order

to form a well-connected roadmap. In the context of Rapidly-

exploring Random Tree (RRT) [2], nearest neighbor search is

used to expand the tree, enabling the planner to quickly find a

collision-free path between the start and goal configurations.

In this paper we focus on solving the problem of finding

k-nearest neighbors given a dataset of samples generated for

sampling-based motion planning. k-nearest neighbor search

in the context of the PRM motion planner is a computa-

tionally expensive task, because given n valid samples in

configuration space, we need to perform nearest neighbor

search for all these samples along with n queries from the

same dataset of configurations. A naive approach of a linear

scan algorithm gives a O(n2) time complexity, which is

impractical for a large number of samples. Furthermore it

is well-known that for points residing in high-dimensional

spaces, i.e. high degrees of freedom, the nearest neighbor

search problem suffers from the curse of dimensionality [3],

reducing many nearest neighbor search data structures (e.g.,

kd-trees) to perform worse than a simple linear scan algo-

rithm.

Locality Sensitive Hashing (LSH) [4] has been proposed

to efficiently provide approximate nearest neighbors for high-

dimensional points given the binary Hamming space {0, 1}d.

This technique uses a hashing function that projects high-

dimensional points onto randomly generated vectors drawn

from a specific distribution. This LSH technique is extended

to different metrics including l2, i.e. the Euclidean distance
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metric [5]. The LSH technique was recently applied to near-

est neighbor search used in motion planners [6]. Although

this technique showed meaningful improvements, we have

found that it is rather limited in a few metrics and may not

handle samples with irregular distributions well.

In this paper we propose a novel, Voronoi-based LSH

(VLSH), that supports approximate nearest neighbor search

for high-dimesional samples generated in the configura-

tion space, C-space, with an arbitrary distance metric. Our

method first embeds samples generated in the C-space into

a simple Euclidean space by using pivot points. During this

embedding process we cluster samples based implicitly on

the concept of Voroni regions constructed by those pivot

points. This process enables the use of a localized LSH for

each Voronoi region. VLSH has the following characteristics:

• High-dimensionality. Our method supports approxi-

mate k-nearest neighbor search efficiently for sampling-

based motion planning. The algorithm works especially

well for high dimensional spaces by utilizing well-

established LSHs.

• Distance metrics. Our method can support a diverse set

of distance metrics used in motion planning, because of

our embedding process.

• Adaptivity. VLSH can adapt to irregular distributions

of samples in the C-space, since we use local LSHs for

Voronoi regions with different quantization factors.

We have implemented our method and other prior ap-

proximate nearest neighbor search techniques, and applied

them to connect a roadmap among samples generated by a

PRM-based motion planner. Our method shows performance

improvement by a factor of a range of 1.4 to 3.7 times

over prior techniques. Furthermore our technique shows even

higher accuracy over them. These results are mainly caused

by both using localized LSHs adapted to different regions

and handling different distance metrics.

II. RELATED WORK

In this section we briefly discuss prior work on nearest

neighbor search, embedding motion planning spaces to a

normed space, and LSH techniques.

A. Nearest Neighbor Search (NNS)

Motion planning has been well studied and a good survey

is available [7]. The most well-known sampling based motion

planners are RRT [2] and PRM [1]. These planners heavily

use NNS.

There are many techniques for solving the NNS problem.

One way is to use spatial subdivision data structures like kd-

trees [8]. kd-trees are mostly used for low-dimensional search



problems, because for high dimensions (e.g., larger than 10),

the algorithm suffers from the curse of dimensionality [3],

reducing the algorithm to running worse than a simple linear

scan.

Some of prior techniques [9] focus on culling of sample

points by using the triangle inequality [10]. In this approach

a set of reference points are selected from the dataset, and

distances to these reference points are calculated. At query

time with a query q and search radius r, a point u is culled

whenever d(pi, u)−d(pi, q) > r given a distance function d

and reference point pi. The advantage of using the triangle

inequality for culling is that only a distance function is

needed along with the triangle inequality for the culling

process. This is especially useful for samples that have

complex representations (e.g. documents consisting of a set

of words instead of real numbers). A disadvantage of using

the triangle inequality for culling is that as the dimensionality

of data increases, the culling efficiency reduces [9].

Another tree-based approach is Geometric Near Access

Tree (GNAT) [11], which is used in well-known motion

planning libraries such as OOPSMP [12] and OMPL [13].

A GNAT picks a set of split nodes (e.g., 10 split nodes)

from the original dataset, each of which forms a tree branch.

Each point is then associated with its closest split node. This

process is recursively applied for all the points associated

with a split node, until each split node has a smaller number

of points than a threshold. At query time, the triangle

inequality is used for culling away tree branches to accelerate

NNS computation.

Recently GPU based acceleration techniques have been

proposed to speed up the NNS computation [14] based on

a brute-force NNS algorithm. Pan et. al. [15] also proposed

a GPU-friendly bounding volume hierarchy based k-NNS

algorithm.

B. Embedding to a Simple Euclidean Space

In the context of motion planning many different distance

metrics [16] exist. Examples of complex distance metrics

include computing the swept volume between robot config-

urations [17] and a distance between the centers of mass

of two configurations. The goal of a distance metric is to

determine configuration similarity through a distance. As

a result, a nearest neighbor search algorithm with a bad

distance metric may return far away configurations, leading

to unnecessary collision checks and thus affecting the overall

motion planning process.

In the field of computer science, embedding complex

spaces into simpler normed spaces is a well-studied topic,

and a good introduction is given in [18]. The main purpose

of this process is to reduce the computational overhead

of computing distance with a small error caused by the

embedding process.

Plaku and Kavraki [19] showed that one can embed points

with a complex motion planning distance metric to the

simpler l2 distance metric. This saves computation time for

the NNS phase with a small distance error. The embedding

is based on Bourgain’s theorem [20], which states that any

distance metric can be embedded into the l2 distance metric

with a distortion of O(log(n)) for a dataset of size n. The

algorithm for this embedding process chooses a set of n

pivot points from the dataset. All points in the dataset then

compute their distance to the pivot points using the original

motion planning distance metric. This forms a new vector

space, and distance between points can be approximated

with the l2 distance metric. This embedding is used in the

proposed technique in order to reduce the computational

overhead of NNS.

C. Locality Sensitive Hashing (LSH)

LSH [4] is a fast hashing technique for NNS designed for

high dimensional spaces. LSH relies on hashing functions

that map nearby points to the same hash-bucket. In query

time the query is hashed to a hash-bucket and data points

located at the bucket are potential neighbors to the query. The

technique was extended to the l2 distance metric [5]. Also,

Pan and Manocha [6] designed a GPU-based LSH technique

and applied it for motion planning problems. However, their

method is limited to support the Euclidean and a non-scaled

non-Euclidean distance metric [16].

III. PRELIMINARIES

In this section we briefly give backgrounds on basic

concepts that our work is built on top of, followed by

motivating our approach.

A. Background on Motion Planning

The problem of motion planning consists of finding a

collision free path from a start configuration of a robot

(or several robots), to a goal configuration. A robot can

be represented by an n-dimensional vector: (x1, x2, ..., xn),
called a configuration, where xi represents positions, angles,

etc. of joints of robots.

All possible n-dimensional vectors of the robot’s con-

figuration form a vector space called the C-space. All the

collision-free configurations of a robot are within a subset

of the C-space and called Cfree. A sampling-based motion

planner generates samples in the C-space and performs

collision detection in order to find a valid configuration in

Cfree. Valid samples are then stored as a graph and a search

is performed, in order to find a solution path. Examples of

well-known sampling-based motion planners are RRT [2]

and PRM [1].

B. Background on NNS

In the context of motion planning, NNS is performed

with robot configurations. k-nearest neighbors (k-NNs) for

a query configuration q are candidate configurations for

determining whether a valid path exists between q and those

k nearest neighbors.

Formally, given a sample set of configurations X ⊆ C of

the C-space, C, a distance metric d computing a distance

between two configurations should satisfy the following
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Fig. 1. This figure illustrates an overview of the LSH technique. Given a
random projection vector a0 and quantization factor w, points are projected
onto the vector, and hashed to hash-buckets using a hash function h(·)
depending on a0 and w. More details about LSH technique are given in
Sec. III-C

properties [21]:

d : X ×X → R, (1)

d(x, y) ≥ 0, ∀x, y ∈ C, (2)

d(x, y) = d(y, x), ∀x, y ∈ C, (3)

d(x, x) = 0, ∀x ∈ C, (4)

d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ C. (5)

These properties staring from Eq. 2 are commonly called

non-negativity, symmetry, reflexivity, and triangle in-equality,

respectively.

k-NN search can be then defined in the following way:

Given X and a query q, we want to find a set S ⊆ X where

|S| = k, s.t: ∀s ∈ S, ∀u ∈ X \ S, we have that d(q, s) ≤
d(q, u). In this paper we focus on its relaxed problem,

approximate k-nearest neighbor search (Ak-NNS). Without

loss of generality, we consider approximate neighbors, s′,

that an Ak-NNS algorithm returns. Given an approximation

factor ǫ ≥ 1, s′ satisfies that d(q, s′) ≤ ǫ · d(q, s), given true

nearest neighbors s.

C. Background on LSH

We provide a more in-depth explanation and discussion

for LSH, since our technique is based on LSH [5]. The LSH

technique relies on the fact that a set of random projections

of data can approximate the l2 distance metric well [22]. The

main idea of LSH is to hash potentially close points to the

same hash-bucket (Fig. 1). Each hash function used in LSH,

hi(x), is as follows:

hi(x) = ⌊
ai · x+ bi

w
⌋, i ∈ [1,M ], (6)

where x is the d-dimensional vector, ai is a d-dimensional

random vector, each of whose component is drawn from a

normal distributionN (0, 1), bi is a scalar value in the interval

[0, w], and w is the quantization factor that determines the

quantization width for the projection. The floor function

is used to map points in the same quantization segment

together. Fig. 1 illustrates these projection and quantization

procedures. We then use M different hash functions to create
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Fig. 2. This figure illustrates a 2D workspace with a point robot, where the
dark grey objects are obstacles. It illustrates hashing of data points (black
dots) with two different projections with the fixed quantization factor w.
When we have irregular distributions for points, hash-buckets of the standard
LSH technique can have a drastically varying number of points that lead to
inferior performance.

a hash table, gj(x), as the following:

gj(x) =< h1(x), h2(x), ..., hM (x) > . (7)

We use such M dimensional hash-vector, to increase a

probability that close points are hashed to the same hash

bucket. We can also use L independent hash tables to further

increase the chance of finding the true neighbors:

H(x) =< g1(x), g2(x), ..., gL(x) > . (8)

At query time given a query q, H(q) is computed, and

data points located at corresponding buckets are retrieved as

candidates for nearest neighbors to the query q.

D. Motivations

LSH techniques are very fast and accurate with a high

number of hash tables. Nonetheless, there are a couple of

issues that hinder efficient and effective approximate NNS

for motion planning problems.

First, these algorithms are mainly designed for the l2
distance metric and other generic metrics including lp norms.

As a result, a diverse set of distance metrics used in motion

planning [16] is not supported well. A recent work [6]

extended the standard LSH to support rotational degrees of

freedoms (dof), but did not aim to support arbitrary distance

metrics.

Second, LSH techniques are fundamentally data-

independent, since they do not adapt their quantization

factors or other parameters depending on data points to be

hashed. As a result, these techniques may not be the optimal

NNS techniques, since most data points generated in most

motion planners tend to have irregular distribution (Fig. 2).

Especially when we have narrow passages on environments

under motion planning, it is highly likely to have drastic

variation on the sampling density. As a result, a naive

application of LSH techniques may require an excessive

amount of memory with fine quantization factors or produce

low accuracy for identifying nearest neighbors with a high

quantization factor.

IV. VLSH

To support high-dimensional points efficiently and support

arbitrary metrics, VLSH consists of two phases: a distance

embedding phase and a localized LSH invocation phase.



Algorithm 1 VLSH algorithms.

Require: X̂ ⊂ X(⊆ C), k: the number of used pivots, X ′:

the new vector space for embedded points.

1: function EMBED(X̂)

2: p1 ← randomly choose an element in X̂

3: for i← 2 to k do

4: pi ← maximize mini−1

j=1
dMP (pi, pj)

5: end for

6: for u ∈ X do

7: u′ ← (dMP (u, p1), dMP (u, p2), ..., dMP (u, pk))
8: end for

9: return (X ′, {p1, p2, ..., pk})
10: end function

11:

12: function LOCAL LSH(X , X̂ , k, X ′, α, β)

13: (X ′, {p1, p2, ..., pk})← Embed(X̂)
14: for i← 1 to k do

15: vr′(pi)← {u
′|∀u′ ∈ X ′s.t. argminj(u

′

j) = i}
16: end for

17: for i← 1 to k do

18: evr′(pi) = vr(pi) ∪ top subset(vr′
2
(pi), α)

19: σi ← std. dev. of dist. in evr′(pi) to pi
20: end for

21: for i← 1 to k do

22: wi ← σi · β
23: Construct LSHi(evr

′(pi), wi)
24: end for

25: return LSH1, LSH2, ... ,LSHk

26: end function

27:

28: function QUERY VLSH(q)

29: q′ ← Embed(q)
30: i← argminj(q

′

j)
31: return results of LSHi(q

′)
32: end function

A. Embedding

The purpose of this phase is to transform coordinates of

data points from a complex motion planning space into a

simpler l2 distance metric space. The main reasons why we

conduct such transformation is that the computation overhead

of NNS algorithms can be reduced [19], and we can use a

LSH optimized for l2 distance metric.

The embedding process is performed by first choosing a

set of pivot points, P ⊂ X , from the valid sample set X . A

criterion for choosing pivot points is that they should serve as

a good approximation of samples of X . Considering all the

samples of X can take a prohibitive computing cost, and thus

we select pivot points from a subset, X̂ , an approximation

of the original sample set X . To construct X̂ , we randomly

select samples from X . In practice we set |X̂| to be 10% of

|X|.
Let p1, p2, ..., pk denote the chosen pivots. The first

pivot p1 is chosen from X̂ uniformly at random, and

pi, 2 ≤ i ≤ k, are chosen from X̂ in order to maximize

dMP (p0,v)

dMP (p1,v)

dMP (p2,v)

u’= (d(p0,u), d(p1,u), d(p2,u))

v’= (d(p0,v), d(p1,v), d(p2,v))

dMP(u, v) ≈ d
l
2
(u’, v’)

p2

dMP (p0,u)

dMP(p1,u)

dMP (p2,u)

p0
u

v

p1

embed

u
embed

v

Fig. 3. This figure illustrates our embedding process for two sample points,
u and v, given three pivots, p1, p2, and p3.

mini−1

j=1
dMP (pi, pj), where dMP (·) is a motion planning

distance metric. This pivot selection strategy avoids choosing

a pivot point that is close to already chosen pivots, in order

to increase the information gain of having additional pivots

and thus increase the accuracy of NNS for embedded points

constructed after the embedding process.

Given a point u ∈ C, its embedded point u′ ∈ R
k with

the chosen pivots P is defined as follows:

u′ = (dMP (u, p1), dMP (u, p2), ..., dMP (u, pk)). (9)

This embedding procedure is performed for all the points

generated by a motion planner. Let us denote this new vector

space of embedded points X ′ ⊂ R
k. We then approximate

dMP (·) in X as l2 distance between embedded points located

in this new vector space X ′. Fig. 3 illustrates our embedding

process with a simple example. A pseudocode of our embed-

ding process is shown as Embed (·) in Algorithm 1.

Note that our embedding process can lower down the

accuracy of NNS, since we perform our NNS with the

LSH coupled with l2 distance metric, instead of the original

motion planning metric dMP . Nonetheless, the distortion

factor is not significant according to the Bourgain’s theo-

rem [20], and we have observed that the accuracy loss of

our embedding process is very minor in practice, while the

embedding process greatly accelerates the runtime computa-

tion. Furthermore we use a localized LSH for each Voronoi

region, which is discussed in the next section, in order to

improve the accuracy of our method.

B. Invoking a Localized LSH

Given a query point q we would like to identify a set of

nearest neighbor candidates for the query point q. In this

section we explain how to define such set of points based on

our localized LSHs.

Given pivot points {p1, p2, ..., pk} for embedding, we

associate sample points of X ′ based on the concept of
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Fig. 4. The left figure shows disconnected roadmaps when we use only
points contained in Voronoi regions vr′(pi), while the right figure shows a
well-connected roadmap by using the extended Voronoi regions evr′(pi).
Green edges in the right figure are additionally connected by using evr′(p2)
of a pivot p2.

Voronoi regions. Specifically we define vr′(pi) to contain

embedded samples located within the Voronoi region of a

pivot point pi in the embedded space, as the following:

vr′(pi) = {u
′|∀u′ ∈ X ′s.t. argminj(u

′

j) = i}, (10)

where u′

j denotes the j-th component of the vector u′,

argminj(u
′

j) denotes the u′’s smallest vector component.

In another view, we associate all the points in X ′ with their

closest pivot points. As a result, given an embedded query

point q′ from the original query point q, we can identify

its closest pivot point, say pi and use the points contained

in its Voronoi region, vr′(pi), in the embedded space, as

nearest neighbor candidates for q. To realize this process,

we construct a localized LSH for the embedded points in

vr′(pi) of each pivot point pi.

We could simply build a localized LSH for only points

contained in each vr′(pi). This simple approach, however,

has a serious problem: when two points are located very

closely in the original space, but their closest pivot points are

different, those two points can belong to different Voronoi

regions and thus cannot be identified as nearest neighbor can-

didates between them. This results in disconnected roadmaps

for PRM methods, as shown in Fig. 4-a).

To address this problem, we construct an extended Voronoi

region, evr′(pi), for each pivot point such that it can contain

even nearby points from other neighboring Voronoi regions

along the boundary of the Voronoi region of pi. To realize

this idea, we also compute points whose second-closest pivot

is pi and store them in a new set, called vr′
2
(pi). We can

consider all the points in vr′
2
(pi) in addition to vr′(pi), but

we found that a subset of vr′
2
(pi) is sufficient for NNS

with a reasonable amount of the memory overhead and high

accuracy. As a result, we construct the extended Voronoi

region evr′(pi) as the following:

evr′(pi) = vr′(pi) ∪ top subset((vr′
2
(pi), α), (11)

where vr′
2
(pi) contains embedded points whose second

smallest component is from pi and top subset(S, α) returns

points from the set S within α percentile in terms of its

distance to pi. In practice 0.6 to 0.9 for α gives a good trade-

off in terms of high accuracy and low memory overhead.

Fig. 4-b) shows an illustration of extended Voronoi regions.

Once we construct the extended Voronoi region evr′(pi)
for a pivot point pi, we build a localized LSH with points

contained in each extended Voronoi region. Our VLSH is

then defined as the following:

V LSH = LSHk
i=1

(evr′(pi), wi),

where wi is a local quantization factor for the localized LSH

specialized to the i-th extended Voronoi region evr′(pi).
Each wi can be computed locally based on points contained

in evr′(pi). Specifically, it is computed based on the standard

deviation, σi, of distances between points of evr′(pi) and the

pivot point pi in the embedded space. We then set wi to be

σiβ, where β is a user-specified constant and is used to fine

tune the accuracy and memory overhead of the used LSH.

The pseudocode of constructing localized LSHs is shown as

Local LSH (·) in Algorithm 1.

C. Query-time Algorithm

Given a query point q, the corresponding embedded point

q′ is computed, and the closest pivot pi is determined by

scanning vector components of the embedded point q′. We

then use the localized LSH associated with evr′(pi), and

return candidate nearest neighbors located in hash-buckets

corresponding to q′. Its pseudocode, called Query VLSH (q),

is shown in Algorithm 1.

V. TEST CONFIGURATIONS

In our experiments we compare VLSH against LSH and

GNAT. The implementation of LSH is based on details

discussed in the paper by Datar and Indyk [5]. All algorithms

are written in C++. The implementation of GNAT is from

OOPSMP, the open-source motion planning library [12]. We

conduct all the experiments in a Windows XP 64-bit machine

with an Intel i7 3.3 GHz CPU.

A. Benchmarks

For our experiments we use three benchmark scenes:

bug trap and wiper scenes (Fig. 5). The wiper benchmark

consists of a wiper as a robot with a windscreen as an

obstacle. The dimension of the configuration space of this

benchmark is six including 3D positional and rotation parts.

It is also relevant to test the behavior of the algorithms

for high-dimensional C-spaces, because LSH and VLSH

are designed for high-dimensional search problems. We test

different methods with the bug trap benchmark with multiple

robots to see their behaviors in high-dimensional points.

Plaku and Kavraki [19] showed that in the context of motion

planning, that the critical dimension of C-space is between

15 and 30. So testing our algorithm in this interval and on

higher dimensions is relevant.

We therefore have two different versions of the bug trap

benchmark in those interval for the dimensionality: one using

four robots to create 24 dimensions, another one using six

robots to create 36 dimensions. For this benchmark the bug

trap is the obstacle, and sticks serve as robots.

A distance metric used for both benchmarks are the non-

scaled Euclidean [16], which computes the distance for each



Fig. 5. The wiper benchmark (the leftmost) is of six dimensions, and
the bug trap benchmarks have higher dimensions: 24 with four sticks (the
middle) and 36 with six sticks (the rightmost).

robot’s translational parts and rotational parts separately and

add them together without any scaling.

We use a PRM planner to generate samples and find

collision-free paths. To test the accuracy and runtime per-

formance of different NNS algorithms, we query all the

generated samples from the PRM planner and find their k

nearest neighbors.

B. Parameter Settings

In all experiments we use the same values for the pa-

rameters that LSH and our VLSH share. Specifically, these

parameters include the number of hash-tables L (10 for the

wiper and 3 for the bug trap) and the hash-vector size M

(10 for the wiper and 15 for the bug trap); we vary them for

different benchmarks to see behaviors of tested methods in

a wider setting.

For the quantization factor w, LSH uses 4.0 for both

the wiper benchmark and the bug trap benchmark. This

parameter value is the giving the best performance among

a set of tested parameters. In VLSH we use two specialized

parameters α and β (Sec. IV-B), and we set α = 0.8,

β = 14.0 for the wiper benchmark, α = 0.6, β = 20.0 for

the four robots bug trap benchmark and α = 0.7, β = 22.0
for the six robot bug trap. The chosen parameters show the

best performance among a set of tested parameters. We use

10 pivot points, which work well in the tested benchmarks.

GNAT has its own parameters including the min degree,

main degree, and max degree for its tree related to the

number of branches, and a maximum number of points in

a leaf node. Parameter values used are 2, 10, 10, and 20,

respectively, which are default parameter values in OOPSMP.

We also found that these parameter values work well for our

benchmarks.

For all the tested NNS methods, we set to find 15 nearest

neighbors, i.e. k = 15, which is the default value used in

PRM of OOPSMP. In addition, GNAT and LSH use the

embedding process explained in Sec. IV-A. For GNAT this

embedding reduces its computational overhead, but for LSH

this embedding is mandatory in order to make it support non-

Euclidean distance metrics. It also reduces its computational

cost. GNAT and LSH with the embedding process are

denoted as GNAT (Em) and LSH (Em), respectively.

C. Quality and Performance Evaluation

In order to evaluate the quality of search results of different

methods, we compute the fractional distance error (fde),

which is used as an evaluation protocol in prior work [19].

fde captures a difference between the ground truth’s summed

distance from the query point and summed distance of

results reported by approximate nearest neighbor methods.

Let dNN
sum(q) denote the sum of distances of the true k

nearest neighbors for a query q, and dANN
sum (q) denotes the

corresponding distance, but with a ANN algorithm. fde is

then defined as the following:

fde(q) = 1−
dNN
sum(q)

dANN
sum (q)

. (12)

fde is in a range of [0, 1], and has a lower value, as results

of approximate techniques close to those of the ground truth

results; we can easily compute the ground truth results by

exhaustively searching all the sample points with the original

motion planning metric. We report the average fde value of

all the tested queries.

In addition to the search quality evaluation we also mea-

sure the runtime cost. Since the construction time of data

structures is negligible, we add the construction time of

different methods with query time spent on querying all the

sample points in the dataset.

VI. RESULTS AND ANALYSIS

Fig. 6 shows search quality and runtime cost of different

methods in our three tested benchmarks. Overall our method

shows the best search quality while requiring the minimum

runtime cost. For the wiper benchmark VLSH is up to 2.5

times faster than GNAT with embedding, while showing

a smaller distance error. Furthermore, VLSH is up to 1.8

times faster running time than LSH with embedding, while

showing a smaller distance error. It is clear that VLSH shows

better results than LSH (Em) and GNAT (Em) even for this

low-dimensional benchmark.

For the bug trap benchmark with four robots, we see

that VLSH against GNAT (Em) gives up to 3.3 times faster

running time with a smaller distance error. For VLSH against

LSH (Em) there is up to 1.7 times faster running time with

a smaller distance error. We can see a similar trend among

the tested methods even with six robots; VLSH shows up to

4.0 times and 1.4 times faster than GNAT (Em) and LSH

(Em) respectively, while showing smaller distance errors.

Timing breakdown between VLSH and LSH (Em). Table

I shows the timing breakdown for the wiper benchmarks

between VLSH and LSH (Em). The other benchmarks are

omitted due to limited space, but their trends are similar

to the one reported here. We see that for all the tested

benchmark, VLSH has a higher overhead in the hashing

phase, where it has to compute Voronoi regions. The over-

head is around two times, but this overhead gives us large

improvements on the query time, which is the bottleneck of

nearest neighbor search algorithms.

Comparison with GNAT without embedding. We have also

tested GNAT without any embedding on our benchmarks and

compared it to our method. GNAT without any embedding

returns no distance error for all benchmarks, but gives

inferior running times. For the wiper benchmark VLSH runs



Wiper

Dataset size 10000 15000 20000 25000

Phase LSH (Em) VLSH LSH (Em) VLSH LSH (Em) VLSH LSH (Em) VLSH

Embedding 0.16 0.24 0.32 0.40

Hashing 0.09 0.19 0.12 0.30 0.16 0.38 0.20 0.48

Query 1.15 0.71 2.72 1.50 3.76 1.93 6.38 3.10

TABLE I

THIS TABLE SHOWS THE TIMING BREAKDOWN OF THE DIFFERENT PHASES FOR VLSH AND LSH WITH EMBEDDING.
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Fig. 6. These graphs show the runtime cost and accuracy of different techniques in the three tested benchmarks.

up to 9.7 times faster over GNT without any embedding. For

the high dimensional bug trap benchmark the difference is

even larger. For the four robot bug trap benchmark VLSH is

up to 137 times faster than GNAT and up to 208 times faster

for the six robot bug trap benchmark. This clearly shows that

the embedding process can greatly reduce the computational

overhead of NNS in high dimensional spaces.

Comparison with a GPU-friendly LSH [6]. Pan et al. [6]

proposed a GPU-friendly LSH technique. While its GPU ac-

celeration techniques can be applied to our method, this GPU

technique also proposed a way to handle rotational degrees-

of-freedoms (dof ) that are represented in Euler angles. In

addition, this method supports non-Euclidean metrics, but

does not handle cases when distances of translational parts

and rotational parts are scaled. For example, in a 3D en-

vironment where a robot is mostly restricted to moving in

a 2D plane, scaling the direction orthogonal to the plane

should be better for exploring its C-space. Our method

supports those scaled Euclidean distance and other types of

more complicated metrics listed by Amato et al. [16], while

handling quaternions.

Memory overhead of VLSH. Because VLSH duplicate

some points from nearby Voronoi regions, there is some

memory overhead compared to LSH. In terms of memory

usage, the only difference between VLSH and LSH is the

hashing phase. The memory usage in VLSH is affected by

the parameter α and in our experiment we observed that our

method uses on average 1+α time more memory than LSH.



In our experiments α ranges from 0.6 to 0.8 giving 1.6 to

1.8 times more memory overhead. Nonetheless, the overall

memory requirement is not a serious constraint, since all the

data structures of our method for the tested benchmarks take

tens of MB.

VII. CONCLUSION

In this paper we have proposed novel, VLSH technique

for high-dimensional motion planning problems. Our method

consists of two steps. We first embed high-dimensional

points into low-dimensional spaces based on pivots, and

perform l2 distance metric in the embedding space. We

then localize a LSH that contains nearest neighbors given a

query point. Based on these two steps, we can support high-

dimensional spaces efficiently even with arbitrary distance

metrics. Furthermore we can achieve high search accuracy

over prior techniques.

Interesting future research directions lie ahead. Like many

LSH techniques, our VLSH method has different parameters

including the number of hash-tables L, hash-vector size

M , and quantization factors wi, plus our own parameters

α and β. This makes it harder to configure VLSH to run

optimally for a particular dataset. We would like to design a

technique that identifies optimal values for these parameters,

as a prior work took a similar approach for the common

LSH [23]. Motion planners such as RRT incrementally build

their internal data distribution in order to quickly find a valid

path. This means that a NNS algorithm has to adapt its

data structures for dynamically changing datasets. Currently

our work is tested only for static datasets generated by

PRM techniques. Our technique can be applied to dynamic

datasets, but it may not show the optimal performance when

the density of underlying point datasets changes drastically.

We would like to extend and optimize our work better for

such dynamic models. Finally, we would like to parallelize

our method especially with a GPU for real-time motion

planning. Since our technique is based on the LSH approach,

we believe that our technique can be easily parallelized and

show high performance, as shown in a prior work [6].
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