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Abstract —We present a novel, Linear Programming (LP) based scheduling algorithm that exploits heterogeneous multi-core
architectures such as CPUs and GPUs to accelerate a wide variety of proximity queries. To represent complicated performance
relationships between heterogeneous architectures and different computations of proximity queries, we propose a simple,
yet accurate model that measures the expected running time of these computations. Based on this model, we formulate an
optimization problem that minimizes the largest time spent on computing resources, and propose a novel, iterative LP-based
scheduling algorithm. Since our method is general, we are able to apply our method into various proximity queries used in ve
different applications that have different characteristics. Our method achieves an order of magnitude performance improvement
by using four different GPUs and two hexa-core CPUs over using a hexa-core CPU only. Unlike prior scheduling methods, our
method continually improves the performance, as we add more computing resources. Also, our method achieves much higher
performance improvement compared with prior methods as heterogeneity of computing resources is increased. Moreover, for
one of tested applications, our method achieves even higher performance than a prior parallel method optimized manually for
the application. We also show that our method provides results that are close (e.g., 75%) to the performance provided by a
conservative upper bound of the ideal throughput. These results demonstrate the ef ciency and robustness of our algorithm that
have not been achieved by prior methods. In addition, we integrate one of our contributions with a work stealing method. Our
version of the work stealing method achieves 18% performance improvement on average over the original work stealing method.
This result shows wide applicability of our approach.

Index Terms —Heterogeneous system, proximity query, scheduling, collision detection, ray tracing, motion planning.
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1 INTRODUCTION power, instead of continuing to increase the clock frequency
of a single core [4]. Currently commodity CPUs have
PROXIMITY computation is one of the most fundamentalp to four or eight cores and GPUs have hundreds of
geometric operations, and has been studied in theres [5]. Another computing trend is that various het-
last two decades for various applications including gamestogeneous multi-core architectures such as Sony's Cell,
physically-based simulations, ray tracing-based renderingtel Sandy Bridge, and AMD Fusion chips are available.
motion planning in robotics, etc. Some of the most commadrhe main common ground of these heterogeneous multi-
proximity queries include collision detection [1]. Collisioncore architectures is to combine CPU-like and GPU-like
detection aims to identify inter-collisions occurring betweegores in a single chip. Such heterogeneity has been growing
different objects or intra-collisions between different partsven more in the cloud computing environment, which
of a single object. Many different types of collision compuis currently a wide-spreading trend in (high-performance
tation have been proposed, and their examples include dismputing) IT industry. Even though a cloud service can
crete or continuous collision detection (CCD), ray-trianglstart with homogeneous computing nodes, the capacities of
intersection tests used for ray tracing, etc. computing nodes vary a lot over time due to upgrade and re-
Hjl%cement [6]. However, prior acceleration techniques such

There have been numerous attempts to accelerate in leration hierarchies do not consider utilizin
gueries. One of the most general approaches is adoptﬁ'ﬁS using acceferation nierarchies do not consider u 9

an acceleration hierarchy such as kd-trees [2] or boundii h parallel architectures and heterogeneous computing

vlume earcies (8VH) 1) B Even though g JSCT. SHee we e nerasiah seong e bt o
method is general and improves the performance of variolgs puting sy IS g 9 : portan
lize them for various applications, including proximity

proximity queries by several orders of magnitude, there av%eries in an ef cient and robust manner
ever growing demands for further improving the perforg ' '

mance of proximity queries, since the model complexitiﬁgain contributions: We present a novel, Linear Program
are also ever growing. For example, proximity queries. ) P ' 9

employed in interactive applications such as games sholi{9 (LP.) based sc_hedulmg_algonthm that minimizes the
{hning time of a given proximity query, while exploiting

provide real-time performance. However, it may not me terogeneous multi-core architectures such as CPUs and
such requirement, especially for large-scale models th 9 : .
Us. We rst factor out two main common job types of

consist of hundreds of thousands of triangles. : L ) .

various proximity queries: hierarchy traversal and leaf-level
Recently, the number of cores on a single chip has cotemputation. We then describe a general, hybrid parallel
tinued to increase in order to achieve a higher computifigamework, where our scheduler distributes the common



(a) Cloth benchmark (b) N-body benchmark (c) Fracturing benchmark

(d) Motion planning (e) Path tracing

Fig. 1: This gure shows ve different benchmarks, whose proximity queries are parallelized by using CPUs and GPUs
within our hybrid parallel framework. Different computations of these queries are automatically distributed by our LP-
based scheduler without any parameter tuning. Compared to using a hexa-core CPU with six CPU threads, our method
achieves one order of magnitude performance improvement by using two hexa-core CPUs and four different GPUs.

proximity computations to the heterogeneous computingeous computing systems. For various proximity quires,
resources (Sec. 3). In order to represent the performarmre method robustly provides performance improvement
relationship between jobs and computing resources, wéth additional computing resources. To the best of our

model the expected running time of those computatioksowledge, such results have been not acquired by prior
on the computing resource, by considering setup costssheduling algorithms designed for parallel proximity com-

data transfer overheads, and the amount of jobs. We thautations. We wish that our work takes a step towards better
formulate our scheduling problem, minimizing the largeattilization of current and future heterogeneous computing
time spent among computing resources, as an optimizatieystems for proximity computations.

problem and present an iterative LP-based scheduling algo-

rithm (Sec. 4), which shows high-quality scheduling results

with a small computational overhead. We further reduce tife RELATED WORK

overhead of our scheduling method by employing a hieraFE-

chical scheduling technique, to handle a larger number O]ecently, general programming and execution models for
. ; heterogeneous architectures have been proposed [7], [8]
independent computing resources.

and these models can be adopted in many different appli-

We have applied our hybrid parallel framework angatior)s. Hoyvevgr, designing ef cient workloa_td balanc_ing
scheduling algorithm to a wide variety of applicationglgorithms is still left to users. We briey discuss prior
(Sec. 5). In the tested benchmarks (Fig. 1), we use variolygrk on schedul'mg 'and parallellzgtlgn techmques designed
combinations of a quad-core CPU, two hexa-core CPUSr general applications and proximity queries.

and four different types of GPUs. In various machine

con gurations, our method achieves up to an order 1 Scheduling for Unrelated Parallel Systems
magnitude performance improvement over using a multi-
core CPU only. While other tested prior scheduling methodg:heduling concerns allocating jobs to resources for achiev-
show even lower performance as we add more computifgy 5 particular goal, and has been extensively studied [9].
resources, our method continually improves the perfofye are interested in nding the optimal job distribution
mance of proximity queries. Moreover, we show that o4hat maximizes the throughput of entire parallel system.
method achieves throughput that are close (e.g., 75%)1tfjs is known as minimizing theakespanAt high level, a

a conservative upper bound of the ideal throughput. Whra|iel system can be classi ed as identical, related, or un-
addition, we employ our expected running time model @ |ated Unrelatedparallel system consists of heterogeneous
optimize a work stealing method, that is a general workloggymputing resources that have different characteristics and
balancing approach used in parallel computing systemgys performance varieRelatedor identical systems, on
The work stealing method optimized by our expectefhe other hand, are composed of resources that are similar
running time model achieves performance improvemegt the exactly same in terms of characteristics (and per-
(18% on average) over the basic one, while eliminatingrmance), respectively. Our scheduling method aims for
one of the manually tuned parameters that strongly affeglost general parallel systems, such as unrelated parallel
its performance (Sec. 5.5). machines (i.e. heterogeneous computing systems).

Our method is a practical, optimization-based scheduling theoretical communities, minimizing the makespan for
algorithm that aims proximity computation in heterogeunrelated parallel machines is formulated as an integer



programming (IP). Since solving IP is NP-hard, manerformance models for GPUs [20], [21] and heterogeneous
approximate approaches with quality bounds have been pfiamework [22], [23] recently have been proposed. These
posed [10]. These approximate methods achieve polynomaathitectural performance models can be very useful to
time complexity by using a linear programming (LP), whiclaccurately predict the computational time of jobs in a broad
relaxes the integer constraint on the IP [11], [10], [12ket of GPUs.

Lenstra et al. [10] proved that no LP-based ponnomi:ilrI1

. . this paper we use a simple performance model of jobs
algorithms guarantee an approximate bound of 50% or Ieosgcurred in different proximity queries. Our performance
to the optimal solution, unlesB = NP . This theoretical P y q i P

result applies to our problem too model can be efciently computed with observed perfor-
' mance data and can be effectively incorporated within our

In addition to theoretical results, many heuristic-basdcP-based scheduling method.

scheduling methods have been proposed for unrelated paral-

lel machines. Nahapetian et al. [13] designed a polynomial o ] ]

time, approximate scheduling algorithm. This method clu€-3 Parallel Proximity Queries and Scheduling

ters job allocations with similar makespan into arepresent'@]-any scheduling methods have been also proposed for

tive job allocation given an initial set of tasks. It thenre nes _ . S .

the clustered result with additional tasks; this work does n\é?rgu?zzgoglr?:g jc;obr;lpil:]ttztlgroscs Sn ;r?(;a!(:lsigftznglsc" c-llla?c?
formulate the scheduling proplem with the LP. AI'Azzo%ach idle CPU thread in a round robin fashion. Lauterbach
et al. [14] proposed approximated LP-based scheduli

. : i . . . al. [25] check the workload balance among cores on a
algorithms. Since gathering various information from a

the resources incurs a signi cant overhead, they considergclj:u and perform workload balancing (i.e. distributing jobs

. . s o venly) when the level of workload balance is low.
information (e.g., the minimum completion time) from only
a subset of resources in their heterogeneous system. THesdy a few works have proposed utilizing heterogeneous
techniques considered the scheduling problem in simulateudllti-core architectures. Budge et al. [26] designed an
environments or speci c applications (e.g., an encryptioput-of-core data management method for ray tracing on
algorithm). Moreover, they focused on studying theoreticllybrid resources including CPUs and GPUs. They prioritize
or experimental quality bounds rather than a practicdifferent jobs in ray tracing and assign them into either
performance on working heterogeneous computing systerasCPU or a GPU, by checking which processor the jobs
L _ prefer and where the required data is stored. Kim et al. [17]
Work stealing is a well-known workload balancing algoEllecompose continuous collision detection into two different

rithm in parallel computing systems [15], [16]. Kim elagk t d Ilv dedicate all the tasks of h iob
al. [17] showed that the work stealing method achieve( [S)e ixffir?: ofr?r?gl?P{J oer ggj &l the tasks of each Jo

a near-linear performance improvement up to eight CP
cores for continuous collision detection. Hermann et al. [18] is unclear, however, how well these techniques can be
employed a work stealing approach to parallelize the tin&pplied to a wide variety of proximity queries, since they
integration step of physics simulation with multi-GPUsgise manually specied rules for a speci c application, or
and multi-CPUs. They compute an initial task distributiorely on application-dependent heuristics. Furthermore, their
depending on a task graph to minimize inef cient interapproaches do not rely on optimization frameworks to
device communication caused by the work stealing. In cag@ximally utilize available computing resources. Departing
of proximity queries, however, it is hard to compute thom these prior scheduling methods, our method takes
task graph, since tasks are sporadically generated durth@eneral and robust approach in order to minimize the
processing prior tasks. To further improve the ef ciencynakespan of a wide variety of proximity queries with
of work stealing methods, various knowledge about ajpybrid resources. We compare our method with these prior
plications or computations can be utilized [18], [19]. Wenethods in Sec. 5.

compare our scheduling method with a basic work steal-

ing approach (Sec. 5) and improve the ef ciency of th
working stealing method based on one of our contributio
(Sec. 5.5).

fé OVERVIEW

We give a background on hierarchy-based proximity com-
putation and then describe our hybrid parallel framework.

2.2 Performance Models

) _ ) ) ~ 3.1 Hierarchy-based Proximity Computation
For high quality scheduling results, scheduling algorithms

commonly rely on performance models that predict ho®Rroximity queries are commonly accelerated by using an
much computational time a resource takes to nish taskacceleration hierarchy (e.g., BVHs or kd-trees) constructed
Literatures in the eld of the scheduling theory ofterfrom a mesh. For simplicity, we assume that we use BVHs
assume that there is a mathematical performance model égrthe acceleration hierarchy for various proximity queries
their scheduling problems [8]. Few works gave attention fa this paper; kd-trees or other acceleration hierarchies can
modeling overheads such as data communication costs [18}. used with our method as well.



_ —-Hexa-core-- GTX285 __ 3 — Tesla 2075-GTX480—=GTX58C
Hierarchy traversal .7 Leaf-level compution -~
for CCD 2oet" 5 [forCCD =’

o
|

-
o - -
o2 - = P
e —= -1 T e
.

.o
“;"%é 2 008 e am = = = =

\\HHH\HH\HHHHHHHHHHHHHH07‘T LI \=\\ LI T T 1 T 1

0 10 20 30 40 0 5 10 15
The number of jobs (X 1024) The number of jobs (X 2048)

o

Processing time (mgs)
(&)1
1Y
"
\)
\
\

Fig. 3: This gure shows observed processing time of two
different job types on ve different computing resources as
a function of the number of jobs.

Fig. 2: Overview of our hybrid parallel framework

To perform proximity queries, we traverse a BVH starting

from the root node of the BVH. For each intermediate node, ibuted iobs | he | ing iob h h
we perform computations based on the bounding vquncfléStrl uted jobs into the incoming job queues. Then, eac

(BV) associated with the node. Depending on the resﬁﬁ?mpming resource fetches jobs from its incoming job

of the computations, we traverse the left node, the rigﬂf‘eue and starts to process the fetched jobs. If a computing

node. or both of the nodes in a recursive manner. Once VasOUrce generates additional jobs while processing them, it
reack; leaf nodes, we also perform other computations ba?é%ices new jobs intq its outgoing job queue, a hierarchical
on geometric primitives (e.g., triangles) associated with tﬁ@versal job dynamlcally greates multlple'Jobs of the 'Ieaf-
leaf nodes. These two different types of computatidiies- level computatlon d_eper_1d|ng on geor_netrl_c con gurations.
archical traversalandleaf-level computationare common Once there is no job in the incoming job queue of a

jobs that can be found in many hierarchy-based proximi mputing resource, it noti es the scheduler. At each time
computations the scheduler gets such a noti cation, it collects available

jobs from all the outgoing job queues of the computing
These two components have different characteristics framsources and distributes them into incoming job queues.
a computational point of view. Thiierarchical traversal The main goal of our scheduler is to compute a job
component generates many computational branches aistribution that minimizes the makespan. More low-level
thus requires random memory access on the mesh and ifhplementation details about our hybrid parallel framework
BVH. Moreover, its workload can vary a lot depending o@re available in Appendix A as a supplementary material.
the geometric con guration between BVs of intermediate
nodes. On the contrary, tHeaf-level computatiorfollows
mostly a xed work ow and its memory access patterr? LP-BASED SCHEDULING
is almost regular. Because of these different characteristics, , . . . .
we differentiate computations of various proximity querieﬁ] this section, we descnl_oe our for_mulatlons of the problem
into these two types of jobs. This job differentiation isand present our scheduling algorithm.
also critical for modeling an accurate performance modsotations: We de ne ajob to be an atomic unit that
and nding an optimal workload distribution algorithm inour scheduling method handles. To denote each computing
heterogeneous computing systems (Sec. 4). resource (e.g., CPU or GPU), we uRe, wherei is the
resource IDR is a set of alR; and we us¢Rj to denote the

) number of available resources. To indicate the type of each
3.2 Our Hybrid Parallel Framework job (e.g., hierarchical traversal and leaf-level computation),
we usel; , wherej is the job type IDJ is a set of all; and

Fig. 2 shows our overall hybrid parallel framework for.‘Jj refers to the number of different job types. We uge

various proximity queries. Our hybrid parallel frameworl{o denote the number of jobs that have a particular job type

consists of four main components: 1) initial job genery e we usen; to denote the number of jobs df

ator, 2) computing resources, 3) scheduler, and 4) d%ﬂﬁiocated toR;. We also use the terrmakesparto denote

communication interface. Before performing a proximit){ : : .
. he largest running time spent among all the computing
guery, we rst share basic data structures (e.g., meshes

and their BVHs) among different computing resources, {gsources.

reduce the data transfer time during the process of the

proximity query. Then thenitial job generatorcomputes 4.1 Expected Running Time of Jobs

a set of initial jobs and feeds it into the scheduler. The

schedulerdistributes initial jobs intacomputing resources Since many factors on both computing resources and com-
(e.g., CPUs or GPUs). The scheduler runs asynchronouplytations of proximity queries in uence the performance,
in a separate, dedicated CPU thread, while computiitgis hard to consider all the factors separately when we
resources process their jobs. Data transfer among the schagkide a job distribution. To abstract such complex perfor-
uler and computing resources is performed throughddta mance relationship and to model our scheduling problem
communication interfacéEach computing resource has twas a mathematical optimization problem, we propose to
separate queues, incoming and outgoing job queues,fasnulate an expected running time of processing jobs on
the data communication interface. The scheduler placagarticular computing resource.



unit Hexa-core CPU GTX285 Tesla2075 GTX480 GTX580 Ttrans
(nanoseconds Tsetup Tproc Tsetup Toroc Tsetup Tproc Tsetup Tproc Tsetup Toroc C$ G G$ G
Traversal 11.068 | 0.219 | 260.521 | 0.190 | 242.177| 0.137 | 135.622 | 0.096 | 124.978 | 0.085 0.003 0.006
Leaf-level 2.766 0.098 | 81.855 | 0.030 136.26 | 0.0127 43.04 0.010 | 42.017 | 0.009 0.002 0.003

TABLE 1: This table shows constants of our linear formulation computed for continuous collision detection.

To formulate the expected running time of jobs, we mea&onstantsTsetp (), Tproc (), @and Tgans () Of Eq. (1), we
sure how much time it takes to process jobs on differemeasure the running time of performing jobs in each com-
computing resources. As shown in Fig. 3, an overall tremquliting resource and the transfer time between computing
is that the processing time of jobs on each computingsources, as we vary the number of jobs. We then t our
resource linearly increases as the number of jobs increadesar formulation with the observed data, and compute
However, the performance difference among computirige three constants for each job type on each computing
resources varies depending on characteristics of each jelsource by using sample jobs. This process is performed
type. For hierarchical traversal a GPU shows much highat a pre-processing stage and takes a minor time (e.g., a few
performance than a multi-core CPU, while a multi-coreeconds). Computed constants for our linear formulation in
CPU shows a little lower or similar performance with ane of our tested machines are in Table 1.
GPU for leaf-level computation. To ef ciently utilize het- . N .
i ; Qur formulation of the expected running time shows linear
erogeneous computing resources, we need to consider these |~ . .
. ) ; : correlations, which range from 0.81 to 0.98 (0.91 on aver-
relationship between job types and computing resources. . T . .
. . S . age) with the observed data. This high correlation validates
Another interesting observation is that a certain amount oF /. . T .
. . . ) Qur linear formulation for the expected running time of jobs.
setup cost, especially higher for GPUs, is required to launc

a module (or kernel for GPU) that processes at least a single
job on computing resources. 4.2 Constrained Optimization

To fully utilize the available computing power, it is alsSOrhere are many different ways of distributing jobs into

important to minimize communication overheads betweeg i ple computing resources. Our goal is to nd a job
computing resources. For example, two identical computiR@siribution that minimizes the makespan.
resources show different processing throughput for a same

job depending on which computing resource generates ¢ run our scheduler when no more jobs are left in
job since another one needs to wait for data transfer. fig¢ incoming job queue of a computing resource. When
order to accommodate such data transfer overhead, the scheduler attempts to distribute unassigned jobs, some
differentiate the types of jobs depending on which compuomputing resources may be busy with processing already
ing resource those jobs were created at, even though ti#gpigned jobs. Therefore, our scheduler considers how

perform the same procedure (e.g., the hierarchical traverg#ich time each computing resource would spend more to
created from a CPU or a GPU). nish all jobs allocated to the resource. We usgs; (i)

to denote such time for each computing resourge We
We re ect these observations in our formulation of th%stimateTrest (i) as the difference between the expected
expected running time of jobs. More speci cally, give@  rynning time of the jobs oRR; computed based on Eq. (1)
jobs with a job typeJ; that are created at a computinggng the time spent on processing the job so far; if we

resourceRy, the expected timeT (k ! i;jin j; ), of com-  gready have spent more time than its expected running time
pleting those jobs on a computing resouRReis de ned to process the jobs, we re-compute the expected running
as the following: o time of the computing resource with remaining jobs.
<0 if nj is 0 We formulate the problem of minimizing the makespan for
Tkk! Ging)= . Tsewp (5] )+ Toroc (i55) N performing a proximity query, as the following constrained
" +Tyans (k! i;j) nj; otherwise. optimization:
1
@ Minimize L;

Tsetup (i3] ) represents the minimum time, i.setup cost subject to Trest (i) + jJ_iT(i;j; ny) L8i2R (2
required to launch a module that processes the job dype =

on the computing resourd®;. Ty (i3] ) is the expected i=1 Mij j 9]
processing time for a single job af on theR;, while nj 2 Z* (zero or positive integers): (4)
Twans (K ! i;j) is the transfer time of the data about

This optimization formulation leads to nd values ofj

that minimizeL under the three constraints, from Eq. (2)
(o} Eqg. (4). The rst constraint (Eq. (2)) de nek as the
makespan. The second constraint of Eq. (3) makes sure
that there is neither missing nor redundant jobs. Finally,
the third constraint (Eqg. (4)) ensures that the result values
Measuring constants: In order to accurately measureof n; are restricted to zero or positive integer numbers.

a single job ofJ; from Ry to R;. In the rest of this
paper, we simply usé&(i;j;n j ) instead ofT(k ! i;j;n )
since we differentiate the types of jobs depending on t
producer resources and the job tyfjeinherently contains
the information.



4.3 Scheduling Algorithm ing resources in the initial assignment step, we iteratively
improve assignment solutions in re nement steps. Since
Our optimization formulation falls into the category Olye relax the piece-wise condition of setup costs in the
minimizing the makespan, which is known as NP-hard. Tgjtial assignment, we consider its negative effects and re-
design an efcient scheduling algorithm, we rst removeyssign jobs to reduce such negative effects. To perform this
the integer constraint (Eq. (4)) for the valueswgf. Instead,  strategy, we de ne gob-to-resource ratiqn;; =n; ) for each
we allow a oating value forn; and choose an integerjob type. Given a job type, this ratio describes the portion
value that is closest to the oating value. We found that thigf jops that are being processed on the resofceThe
relaxation affects very little (less than 1%) to the qualityatio can be an approximate indicator of the bene t obtained
of scheduling results, since we have hundreds of thousmusing R; to process jobs of;, since the overhead of
of jobs on average across all the tested benchmarks. Wiz setup cost is constant and the overhead is relatively

this relaxation and if we do not consider setup costs, WRcreased as the number of jobs are increased.
can solve the optimization problem in a polynomial time

by using linear programming (LP) [27]. When we consideYve treat a cpmputing resource that_has thF_J smallt_ast job-to-
setup costs, our optimization formulation becomes a pied&source ratio to be most under-utilized given a job type.
wise linear function. Ifn; =0, the setup cosTsewp (i;] ) If there are multiple candidates, we choose the one thgt
should be zero. Otherwise, the setup cost can have a nBas @ larger setup cost than the others. We thus re-assign
zero value. Thus, our formulation becomes a piece-wise IgPS Of the job type assigned to the computing resource
problem, which has been known as NP-hard as well [28{0 other computing resources. To implement this heuristic
_ _ o ) within our LP-based scheduler, we Sty (i3] ) as zero
Instead of checking all the possible cas@&i(’!) of dis- andTproc (i;j ) asl for theR; that has the smallest job-to-
tribution of job types into computing resources, we presefisource foj; . Note that even thougR; does not get any
an iterative LP solver that checks onRjjJj distribution jobs given the job typd; , it can get more jobs of other job
cases. Our scheduling algorithm has the following two mafgpes. As a result, it can better utilize different capacities
steps: 1) initial assignment and 2) re nement steps. of heterogeneous computing resources.

Initial assignment step: Assume that we always have setugye perform the re nement step until one of the following
costs in the expected running time formulation (Eq. (1)}pree conditions are met: 1) the LP solver cannot nd a
By running the LP solver, we compute a job distributiogo|ytion, 2) we cannot further reduce the value, the

that gives a smallest, given the assumption. However,makespan, or 3) the LP-solver takes more time than the
we observe that the initial assignment can have latgersmgjlest value off,e (i), the expected running time for
than optimal solution because of the relaxation to the piecgsmpleting tasks that are under processing in each resource
wise condition of setup costs. This can result in inef cienymong all the resources, to prevent a long idle time of
utilization of computing resources. computing resources (i.time-out conditiop Through this

As a simple example, assume that we have only two j(i)t@rative re nement steps, we can achieve better assignment
types (1;J,) and the same number of jobs for both jokgesults that are close to the optimal solution. A detailed
types, i.e.n; = n, = 100. Also, we have two computingWOfk' ow of our iterative LP solver on an example of
resourcesR1; R,) that have identical capacities and showcheduling problem is available in Appendix B as a sup-
the same performance for both job types, Tgoc (i; 1) = plementary material.

Toroc (i; 2) = 0:01s, but setup costs are different: Note that this is an application-independent heuristic, which
Ry Teewp (1;1) =25;  Teewp (1;2) = 0s can _be use(_j in_various different proximity queries. In
R,: T 21)=0s. T 2:2) = 2s: addition to this heuristic, we can also have query-dependent
2+ Tsetup 1< ’ setup 1 ' heuristics for a particular proximity query.
In the initial assignment step, the LP solver assumes that
all the computing resources have setup costs for all the job )
types irrespective of the number of jobs. The LP solvef4 Analysis
therefore, considers that the setup cost is same (i.e. t P . .
. L the worst case, our iterative solver can perform up to
seconds) for both computing resources, and distributes the. .. ..\ . : ) : . : !
. ; %RJ]JJ) iterations, since it can assign all the jobs into
same number of jobs to both computing resources regard:

less of job types. As a result, the example parallel systeﬁnly one computing resource. In practice, however, our

consisting ofR; andRj takes more than two seconds, sinc "B based iterative scheduling algorithm takes only a few

. Rerations. WhenRj andjJj are 6 and 12 respectively, our
each computing resource already takes two seconds for |ts . " . !
. : methods runs 7.5 iterations on average in our experiments.
setup cost. However, if we allocate all the jobslefto Ry

and all the jobs ofl; to Ry, both computing resources doEach iteration of our LP-based scheduling method takes

not incur setup costs and thus we can complete all the jo%nly 0.3 ms on average. Also, the expected running time

. 1€reduced up to 59% (19% on average) by the re nement
in one second.

step over the initial solution of the initial assignment step.
Re nement step with an application-independent Table 2 shows the benet of our iterative solver. As we
heuristic: To address the under-utilization issue of computvill see later our method achieves higher improvement



With hierarchical Without hierarchical Res| Machine 1 Machine 2 Machine 3
# of Res. [R)) | 3 4 5 6 13 | 14 | 15 | 16 1 Quad-core CPU Hexa-core CPU Hexa-core CPU
# of job types | 6 8 10 | 12 26 | 28 | 30 | 32 2 || GeForce GTX285|| Hexa-core CPU Hexa-core CPU
#ofiterations | 431 551 6.6 | 7.5 | 29.9] 35.0 355 385 3 || GeForce GTX480|| GeForce GTX285|| GeForce GTX480
Timellter. (ms) | 0.16] 0.20] 0.25 0.30|| 0.93] 0.99] 1.04| 1.40 4 Tesla 2075 GeForce GTX480
AVQ. L1in =Lint | 0.94] 0.90] 0.91] 0.81]] 0.96] 0.92] 0.90| 0.88 5 GeForce GTX480| GeForce GTX480
Min. Lin =Lint | 0.53| 0.60| 0.62] 0.41]| 0.65| 0.63] 0.71] 0.74 6 GeForce GTX580]| GeForce GTX480
. . unit (FPS)| Cloth | N-bod Fract. | Path tracin Motion
TABLE 2: This table shows the average number of |te.rC'Quad(_CpU 9.75 3.80y 3.60 0.004 J 0.25
tions in the re nement step and the average time of an itgf-Hexa-CPU| 10.32 | 3.96 3.59 0.005 0.39
ation. We also compare the quality of the iteratively re ne ‘I?Tlxgggs gé-gé 151“1;; 1842??9 8-828 8%
. . s el . esla. . . . . .
solution (makes.pgrt,fm ) _\Nlth the initial solu.t|on Cinit .) GTxas0 T 5876 T 2939 1 2143 0015 059
computed from initial assignment step. In this analysis, fOr GTx580 [ 64.64 | 32.41 | 23.63 0.020 0.71

each con guration ofjRj, we run our algorithm for ve ] . .
hundred of randomly generated job sets with the constar;liéBLE 3'. The upper table shqws three different machine
in Table 1. We add four different GPUs to two hexa-corg>" gL.Jratlons. we use for various tests. The quad-core
CPUs one by one afRj is increased. To focus more on, PU is Intel i7 (3.2GHz) chip and each hexa-core CPU

showing bene ts of our iterative solver, we turn off the time’> Intel Xeon (2.93GHz) chip. The bottom table shows

out condition in the re nement step in this experiment. the throughput_of each computing resource for the tested
benchmarks (Fig. 1).

from the initial solution through re nement iterations, as . .
gn r . one computing resource for our LP-based scheduling; we
a heterogeneous level of computing resources increase

Fneasure the expected running time of different job types
We have also studied the quality of our scheduler byith the big computing resource and use that information
comparing its quality over the optimal result computefPr our LP-based scheduling. Once tasks are allocated to the
with the exhaustive method. In the exhaustive method, @&€ big resource, we run a simple scheduling (e.g., work
check all the possible?(Rii?1) assignments of job types intoStealing) method. We found that this two-level hierarchical
computing resources and nd the job distribution that give§cheduling method improves the performance of proximity
the smallest expected running time. We run the exhaustittgeries in tested benchmarks 38% on average over running
method 0n|y for the con guration q]RJ = 3 because of the without the hierarchical Scheduling in Machine 2 (Table 3)
high computational overhead. We found that our scheduler
has a minor computational overhead (e.g. less than 1 ms)
and compute a job distribution that achieves a near-optimdl RESULTS AND DISCUSSIONS
expected running time, which is on average within 6% _ )
from the optimal expected running time computed with thé/¢ have implemented our hybrid parallel framework and
exhaustive method that takes 30 sec. scheduling algorithm Qurs(Exp.+LP) in three different
machine con gurations (Table 3). As we discussed in the
Hierarchical scheduling: Even though the computationalhierarchical scheduling method (Sec. 4.4), we treat the
overhead of our LP solver is low with a small number oidentical computing units in a device as a single computing
computing resources, it increases WiEf(jRj%jJj*) theo- resource. We then use simple work stealing method [17]
retically in the worst case [29]. However, we found thakithin a multi-core CPU, and even distribution method [25]
it increases almost linearly as a function of the numbeyithin a GPU for tasks allocated to the single computing
of resources in practice. Nonetheless, the overhead of @ggource. In the case of using two hexa-core CPUs and four
scheduling algorithm becomes a non-negligible cost BPUs together, we have six different computing resources
interactive applications when we employ many resourcqge. jRj = 6). Initially, we have two different job types
since the number of iterations is also increased linear(hierarchy traversal and leaf-level computation) for all the
For example, if we do not terminate the re nement stefested proximity queries. We differentiate these two job
by the time-out condition, the overhead becomes 29 m@es depending on which computing resource generates
on average, when we have sixteen computing resoureggh type of jobs (Sec. 4.1). Therefoj&j becomes 12.

(Machine 2 in Table 3) for a collision detection application. o ) .
We use the axis-aligned bounding box as bounding volumes

Interestingly, we found that simple workload balancingBVs) for BVHs because of its simplicity and fast update
methods designed for identical parallel systems comparalplgrformance. We construct a BVH for each benchmark
work well or even better than our LP-based method fon pre-computation time in a top-down manner [1]. For
identical cores in a device. It is due to simplicity ofdynamic scenes, we simply ret BVs at the beginning of
the methods and low inter-core communication cost undevery new frame [32]. The hierarchy re t operation takes a
shared memory systems. Multiple cores in a multi-cominor portion (e.g., about 1%) of the whole proximity query
CPU is a typical example. Based on this observation, veemputation. Therefore, we just use the fastest computing
group computing units in a device (e.g., cores in a singtesource in the machine to update BVHSs rather than paral-
multi-core CPU) as a big computing resource and treat it bdizing the operation. We have implemented CPU and GPU



versions of hierarchical traversals and leaf-level computiaf-level computation are a triangle-triangle overlap test for
tions based on prior CPU and GPU implementations [283he rst four benchmarks and a ray-triangle intersection test
[17]. We use the OpenMP library [33] and CUDA [5] tofor the path tracing benchmark. These leaf-level jobs are
implement CPU- and GPU-based parallel proximity querietynamically generated, when we reach leaf nodes during
respectively. Also, we use the LINDO ERsolver for our the hierarchical traversal. For collision queries, a pair of
LP-based scheduling algorithm. nodes of BVHs is an atomic unit for the hierarchical

Ejrlaversal job. For a pair of two nodes we start with

ing methods designed for proximity queries. The rst On%erformlng a bounding volume (BV) overlap test between

(Lau1Q is a scheduling algorithm proposed by Lauterbad em and traverse hle.rarch|es recursively depending on the
gverlap test result until we reach leaf nodes. In the motion
et al. [25]. When the level of workload balance amon

computing resources is low, this scheduling method diglannmg benchmark, we need to check whether a randomly

: . : . : enerated con guration sample is in a free space or not.
tributes available jobs into computing resources eveniy . o . T .
) . Phis operation is essentially the same as collision detection,
in terms of the number of jobs. The second method is

the block-based round-robin methaB(09, proposed by and thus we use s.|m|Iar traversal jobs to coII_|S|0n detectlpn.
) . For the path tracing benchmark, an atomic traversal job
Tang et al. [24]. Also, we have implemented a work steali

n .
(W9 algorithm [17] as the third method. WS once a &ngsts of aray and Fhe root of a BVH. We .perform' ray-
BV intersection tests in a recursive way until reaching a

computing resource becomes idle, it steals a portion (e'%af node. In all the tested benchmarks, each leaf node has
half) of the remaining jobs from a busy computing resourcé : ’

(victim). To further optimize the implementation of/S a single primitive (e.g., a triangle). If we have multiple

R . . . 0[%rimitive:s at a leaf node, a pair of leaf nodes generates
we allocate initial jobs according to the relative capacity . : . .
mdultlple atomic leaf-level jobs. Since our framework and

d|ﬁerent .computmg resources compqted by our expeCtgcheduling algorithm are independent to the number of
running time formulation. Also, we guide each resource 0 . ) .
. . generated jobs, our methods are also compatible with other
steal preferred jobs rst (e.g., hierarchy traversal for multlt-ypes of hierarchies that have multiple primitives at leaf
core CPUs, leaf-level computation for GPUs). FH@n09 nodes
andWSmethods, we found that the block size and stealing '
granularity are strongly related with the performance. Waitial jobs: To generate initial jobs for our scheduling
have tested various block sizes (e.g., from 1K jobs to 20iethods, we identify jobs that are independent and thus can
jobs) for Tan09 and stealing granularity (e.g., 30-70% obe parallelized naively. These initial jobs can be constructed
remaining jobs of the victim) foWWS Then, we reported in an application-dependent manner. In the motion planning
the best result among them for each benchmark on eamid path tracing benchmarks, independent rays and samples
resource combination. Note that while the best results afe set as initial jobs. For all the other benchmarks, we tra-
these techniques are manually acquired, we do not perfomtrse the BVH of each benchmark in a breadth- rst manner
any manual tuning for our method. and set independent collision detection pairs as initial jobs,

Benchmarks: We have applied our hybrid parallel frame-2> suggested by prior parallel methods [17], [25]. This step

work and its scheduling algorithm into the followingtakes less than 1 ms in the tested benchmarks.
ve benchmarks that have different characteristics and

use different proximity queries. Three of our benchmar
are well-known standard benchmatkgloth simulation

(92 K triangles, Fig. 1(a)), N-body simulation (146 K ig. 4 and Fig. 5 show the performance of various prox-

:r!ang:es, l'::.'g- 11(b))’ Fandthfractutr)lng hS|mu|I(at|on (252f mity queries that are parallelized with different scheduling
riangles, Fig. 1(c)). For these benchmarks, we per ngethods in two machine con gurations (Machine 1 and

continuous collision detection and nd all the inter- an in Table 3). We use the line plot instead of bar graph

intra-collisions. Our fourth benchmark is a roadmap-bas%J order to highlight the performance trend as we add
motion planning problem (137 K triangles, Fig. 1(d)) [34]more computing resources. For the graph, we measure

where we attempt to get a sofa out of a living room. We usperocessing throughput (i.e. frames per second). In order

discrete collision detection for the benchmark. HowevetrO see how the performance of each query behaves with
this query does not need to identify all the contacts, and th\L}

terminates right awav when we nd a sinal lision. Wi Zrious combinations of computing resources, we measure
€ ates nght away when we a single coliision. Ve, capacity of each computing resource (Table 3), and

generate 50 K randqm samples n Its con gura_m_on SPaC&smbinations of these computing resources in various ways.
Our nal benchmark is a path tracing where a living room

(436 K triangles, Fig. 1(e)) is ray traced with incoheren®n average, our scheduling method shows higher improve-
rays generated by a Monte Carlo path tracer [35]. For timeent over all the other prior methods. A more interesting
benchmark, we generate 80 million rays in total. result is that as we add more computing resources, our
LP-based method continually improves the performance
across all the tested benchmarks. This demonstrates the
1. LINDO systems (http://www.lindo.com) robustness of our method. Compared to the result achieved
2. UNC dynamic benchmarks (http://gamma.cs.unc.edu/DYNAMICB)oY using only a hexa-core CPU, our method achieves up

For comparison, we have implemented three prior sched

k .
5?1 Results and Analysis

Work granularity: Atomic scheduling granularities for
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Fig. 4: This gure shows the throughput, frames per second, Path tracing

of our hybrid parallel framework, as we add a CPU and 0.04 >
two GPUs, in the tested benchmark& € a quad-core g2 |
CPU, IG = GTX285 (i.e. low-performance GPUhG =

GTX480 (i.e. high-performance GPU)) O ¢ 7 ¢ T acie ace 2k 2cHG

2
15 Motion planning — !

to 19 times improvement by using two hexa-core CPU and!
four different GPUs (Fig. 5). 0.5

0
On the other hand, all the other methods often show even

lower performance for additional computing resources, esig. 5: This gure shows the throughput, frames per second,

pecially when we add lower capacity computing resourcesf ours and prior scheduling algorithms, as we add more

For exampleL.aulOshows signi cantly lower performance computing resources. (1C = a hexa-core CPU, 1G =

(42%), when we use an additional quad-core CRL) ( GTX285, 2G = 1G+Tesla2075, 3G = 2G+GTX480, 4G =

to GTX285 and GTX 4801G+hG) system for the frac- 3G+GTX580)

turing benchmark (Fig. 4). In this cas€, has relatively

lower capacity than other GPUs. Howevkegul0does not

consider the relative capacity difference and assigns jo§f heterogeneous computing systems. In our continuous

evenly, which leads to a lower performance. Surprisinglgollision detection benchmarks, the work stealing method

Tan09 an ef cient version of the round-robin schedulingaunches 11 times more data transfer operations on average

that naturally considers different capacities of computingan our LP-based algorithm when we use six computing

resources, also shows lower a performance, when we a@dources. Interestingly, for the path tracing benchmatg,

IG to C+hG in the motion planning benchmark (Fig. 4).shows comparable performance withurs(Exp.+LP) It is

This lower performance is mainly caused by their lack qfue to the fact that the communication cost is relatively

mechanism for considering different running times of jobgmaller than the large computation time of proximity query

for the benchmark. NonethelesSurs(Exp.+LP)achieves
tter performance ov&¥S even though we manually cal-

1C 2C  2C+1G  2C+2G  2C+3G  2C+4G

The WS shows a relatively stable performance compar
with other two prior approaches. However, it _a_lso 9e1S iBrate the stealing granularity &¥Sfor each combination
lower performange (6%) W.hen we use an add|t|dﬁalto of resource con guration and benchmark.

C+hG for the motion planning benchmark (Fig. 4). On av-

erage, our LP-based algorithm shows 22% and 36% higtealability: In Fig. 5, all the scheduling methods gen-
performance thaiVSin Fig. 4 and Fig. 5 respectively. Weerally achieve higher throughputs with more computing
found that sincaVSdoes not consider the relative capacityesources, since we intentionally add more powerful re-
of heterogeneous computing resources, stealing operatisnsirces. Nonetheles©Qurs(Exp.+LP) shows the highest
occur more frequently than in homogeneous computingroughput among all the other prior scheduling methods in
systems. In addition, communication cost in distributelddeterogeneous computing systems. Also, the performance
memory systems is much higher than in shared memaygp between ours and prior methods becomes larger as
systems. Such a large number of stealing operations ahd computing system has higher heterogeneity. Note that
high data communication overhead lower the utilizatioheterogeneity is increased as we employ more computing



Idle ratio Cloth | N-body | Fract. | Path | Motion

125 G -
100 | = Ours with hierarchical 2C+1G | 0.133 | 0.187 | 0.134 | 0.001 | 0.019
75 = Ours without hierarchica With | 2C+2G | 0.161 | 0.177 0.092 | 0.010 | 0.165
50 | WS with hi hical Hier. | 2C+3G | 0.205 | 0.166 | 0.213 | 0.007 | 0.144
25 | CWS with hierarchica 2C+4G | 0.227 | 0.206 | 0.181 | 0.021| 0.202
OWS without hierarchical 2C+1G | 0.084 | 0.055 | 0.048 | 0.059 | 0.145
2C+1G 2C+2G 2C+3G 2C+4G, , WIO | 2C+2G | 0222 | 0111 | 0133 | 0.059 | 0.114
N-body 40 -Fracturing Hier. | 2C+3G | 0.350 | 0.294 | 0.263 | 0.077 | 0.201
50 |—Bench. 38 +-Bench. 2C+4G | 0433 | 0.286 | 0.305 | 0.128 | 0.224
25 i . .
o4 10 ¢ TABLE 4: This table shows the average portions of
2C+1G 2C+2G 2C+3G 2C+4G,  2C+1G 2C+2G 2C+3G 2C+4i idle time of computing resources in our LP-based method
0.06 . . X ) . )
Path with/without hierarchical scheduling at Machine 2.
0.04 -tracing 1
0.02 -
8 based scheduling takes 1.1 ms for each iteration without

0 -
2C+1G 2C+2G 2C+3G 2C+4G 2C+1G 2C+2G 2C+3G 2C+4( | . : L
hierarchical schedulingRj=16). It reduces to 0.3 ms when

Fig. 6: This gure shows frames per second of our LPye yse hierarchical schedulingR{=6) and the average
based scheduling and work stealing method with/withogbrtion of idle time of computing resources is decreased by
hierarchical scheduling on Machine 2. 11% (Table 4). Secondly, hierarchical scheduling reduces
the data transfer overhead. In our tested benchmarks, the
_ _ _number of data transfer operations is decreased by 30%
resources, since added computing resources have differgfih our hierarchical scheduling method. Interestingly the
capacity from those of prior computing resources. On thgerarchical approach also improves the ef ciency WS
other hand, our LP-based method adapts well to higy 2994 on average. Nonetheless, our LP-based scheduling

heterogeneity, since it naturally considers the capacity difpmbined with hierarchical scheduling shows a even higher
ference of computing resources. performance.

Bene ts of LP-based scheduling: To measure bene ts
caused only by our LP-based scheduling formulation, we o

implemented a simple scheduling method based on the &2 Optimality
pected running time of jobs. This simple algorithm assigns . L
jobs according to the relative capacity of different compu n order to look into the optimality of our method, we

ing resources, while considering our expected running tirﬁgmpute an upper bound of ihe ideal scheduling result

of jobs. For example, iRy is two times faster thafR, n tgrms of real (not expegte_d) r”“r?i”‘%’ .time that we can
given a particular job typd; in terms of their expected achieve for the tested pro>.<|m|ty queries; it goes beyond the
running time, we then assign two times more jobsRip scope of our paper 'Fo derive the |d¢al scheduling result for
than R,. On average, our LP-based scheduling methSy" problem, where jobs are dynamically created depending

(Ours(Exp.+LP) shows 26% higher performance over th&" results of other jobs.
simple method for the tested benchmarks in Machine We compute an upper bound of the ideal throughput that
and 2. Since the simple method considers only the relatigan be achieved with multiple heterogeneous computing re-
performance of computing resources for each job type agdurces in the following manner. While running a proximity
does not look for more optimized job distributions amonguery we gather and dump all the generated jobs. Then with
all the job types, it shows lower performance than the LRl the gathered jobs, we compute the highest throughput
based algorithm. We also measure bene ts of considerimg considering all the possible job distributions in an off-
setup costs Tsewp ). When we ignore setup costs in oufline manner. For computing the highest throughput, we
LP-based scheduler, it shows up to 38% (9% on averaggnore all the dependencies among jobs and computational
performance degradation compared to considering the seterheads (e.g., data communication and scheduling time);
costs in the tested benchmarks. we have computed this upper bound only for the cloth and
. . - N-body benchmarks, since computing the upper bound for
E:rr:s ttss gff cr)]lﬁrar:icer::r?:lhi(s:gl]esdcur:glgﬁIilr:1Ig. rr?etshr;?jWSBth? a benchmark takes a few weeks with our tested machine.
. . ; . 9 - BY Niyote that it is infeasible for a scheduling method to achieve
corporating hierarchical scheduling, our method achlevgach upper bound, since it is impossible to exactly predict

o i : :
35% improvement on average over the one without us:{i@'ﬂch jobs will be generated at runtime and we assume that

hierarchical scheduling. This improvement is caused mai ere are no job dependencies to derive the upper bound
by two factors. Firstly, the hierarchical approach Iowergs a result, this upper bound is rather loose '

down the number of resources that we need to consider,
and reduces the computational overhead for schedulifidhe computed upper bounds are shown for the cloth
As the computational time for scheduling is decreasednd N-body benchmarks in Fig. 4. For both benchmarks,
the idle time of computing resources spent on waiting faur method shows throughputs that are within 75% of
jobs is reduced and thus we achieve a higher utilizatidhe performance provided by the upper bounds of ideal
of the computing system. For example,282+4G our LP- throughputs on average. On the other hdralj1Q Tan09
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----- Fig. 8: This gure compares the performance of our method
with HPCCD, which is optimized speci cally for the tested
application, continuous collision detection. The throughput,

0
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0 ‘ ‘ ‘ 0 ; ‘ ‘ . frames per second, includes hierarchy update time.
0.08 2C+1G 2C+2G 2C+3G 2C+4% 2C+1G 2C+2G 2C+3G 2C+4(
0.06 Path tracing /; 5 | Motion plannlngi
0.04 - — Ours(Exp.+LP) Nonetheless, our approach still achieves
0.02 ¥ 1 higher throughputs than the prior methods. On average
Ours(Exp.+LP)shows 39%, 54%, and 12% higher through-

2C+1G 2C+2G 2C+3G 2C+4G - 2C+1G 2C+2G 2C+3G 2C+4C s over the three prior methods, respectively in the tested
Fig. 7: This gure shows the performance of tested schedutenchmarks. This result demonstrates the generality and
ing approaches on a near-homogeneous computing systerhustness of our LP-based algorithm.

consisting of two hexa-core CPUs and four identical GPUs

(Machine 3 in Table 3). . o
5.4 Comparison to a Manually Optimized Method

Only a few works [26], [17] have been proposed to utilize
E?terogeneous multi-core architectures, such as CPUs and
PUs, in the eld of computer graphics. It is very hard
0 directly compare ours against them in a fair ground.
owever, these techniques are designed speci cally for
particular applications (e.g., continuous collision detection
To see where our method can be improved further, veg ray tracing). They also assign jobs into either CPUs or
have studied the under-utilization ratios of each computir@PUs according to manually de ned rules (i.e. application-
resource with our LP-based algorithm. Specically, welependent heuristics) that are only valid for a specic ap-
measure how much each computing resource stays in giieation. Unlike these prior works, our method formulates
idle status; a computing resource can be idle when waititige scheduling problem as an optimization problem based
for jobs from the scheduler. We found that the idle timen common components of various proximity queries, to
takes a small portion (13% on average) when we use cathieve wide applicability. Although we have not explored
LP-based algorithm with hierarchical scheduling (Table 4in this paper, we can also adopt application-dependent
We also measure how much time our scheduler running heuristics of these prior methods in the re nement step of
the CPU takes, compared to other working threads runniogr LP-based scheduling algorithm, to further improve the

on the same CPU. It takes about 7% of total runningerformance for a specic application.
time of those working threads. This also indicates that o
scheduling method has low computational overhead.

and WS show within only 45%, 54%, and 61% of the
ideal throughput on average, respectively. Note that no pri
methods discussed this kind of optimality, and our wor
is the rst to look into this issue and achieves such hig
throughput close to the ideal throughput.

V\r/e compared the performance of our method over the hy-
brid parallel continuous collision detection (HPCCD) [17].
HPCCD is designed speci cally for continuous collision
5.3 Near-Homogeneous Computing Systems detection, by manually assigning jobs to more suitable
computing resources (e.g., primitive tests for GPUs). For
Although our method is designed mainly for heterogeneoasfair comparison, we have used the same benchmarks
computing systems, we can apply our method for homand machine con gurations (i.e. a quad-core CPU and
geneous computing systems. To check usefulness of twp GTX285s) used in their paper. Our method-iterative
approach even in these systems, we compare ours &ml scheduling method without any modi cation to the
prior approaches in a near-homogeneous system consistipplication—shows similar or a slightly higher (e.g., 1.3
of two hexa-core CPUs and four identical GPUs. Fig. fimes higher) performance when we use a GPU with a
shows throughputs with different scheduling algorithms iquad-core CPU. However, when we add one more GPU, our
the near-homogeneous computing system for our test@dorithm achieves much higher (e.g., 2 times) performance
benchmarks. Prior approaches show better scalability in tthen HPCCD (Fig. 8). This is mainly because our LP-
near-homogeneous system over in heterogeneous comgatieduling method considers different capabilities of com-
ing con gurations.Tan09 LaulQ andWSmethods on the puting resources and achieves a better distribution result
near-homogeneous system show improved performancetbgn that computed by HPCCD's application-dependent
11%, 5%, and 10% over the heterogeneous computing heuristic. This result further demonstrates the ef ciency and
spectively, in terms of a relative throughput compared wittobustness of our algorithm, since we achieve even higher



performance than the method speci cally designed for trend scheduling algorithm into ve different applications.
application, even though ours is not optimized at all for the/ith two hexa-core CPUs and four different GPUs, we
application. were able to achieve an order of magnitude performance
improvement over using a hexa-core CPU. Furthermore,
) ) _ ) we have shown that our method robustly improves the
5.5 Work Stealing with Expected Running Time performance in all the tested benchmarks, as we add more

.computing resources. In addition, we improved a basic

In heterogeneous computing systems, the work stealin . . . .
. . . rk stealing method with our expected running time
method requires a large number of stealing operations an . :
del and it shows 18% higher performance on average

high communication overhead as we discussed in Sec. 5|r.T]LOthe tested benchmarks
It is therefore hard to achieve a high performance with work '

stealing methods in heterogeneous computing systems.

If each computing resource steals an appropriate amountof Limitations and Future Work
jobs from a victim, we can reduce the number of stealing
operations and improve the utilization of the heterogeneoligs evident that future architectures will have more com-
computing systems. We found that we can employ one p#iting resources. We have demonstrated the performance
our contributions, the expected running time formulationyith machines consisting of up to six different computing
to determine the suitable stealing granularity automaticalkgsources and discussed its optimality with up to three
In our version of work stealing method, we rst calculatgifferent computing resources. It is one of the most chal-
the relative capacity among computing resources badefiging problems to maintain a near-optimal throughput,
on our expected time model for each job type. We thegven though we have more than six computing resources.
normalize the relative capacities to a range betweenT0 address this challenge, it is critical to lower the under-
and 1. Finally, we assign different stealing granularities tétilization of computing resources and is required to design
computing resources by scaling a basic granularity (e.@ better communication method among the computing re-
half of remaining jobs in the victim) with the normalizedsources and the scheduler in terms of algorithmic and archi-
values. At run-time, each computing resource steals jotggtural aspects. We have designed our LP-based iterative
from a victim according the assigned stealing granularityscheduler to achieve a high-quality scheduling result with
a low computational overhead. Nonetheless, our iterative

We found that our method decreases th.e number ,Of d%@ver does not guarantee optimality of the solution and
transfer by 71% on average compared with the basic Wot%n lapse into a local minimum. Also, its overhead can be

stealing method when we use six computing resources. ﬁ‘&n—negligible depending on chosen benchmarks and ma-
i i 9 9 . . . o .
a result, our work stealing method achieves 11%, 20%, apflne ¢on gurations. A further investigation is required to

23% higher perfo_rmance on average in Machin(_e 1.2, anqinimize the overhead and robustly handle local minimum
(Table 3) respectively over the basic work stealing metho sues

Also, in the near-homogeneous computing system (Machine
3) it shows compatible performance (0.6% higher on a¥n addition, we plan to study more on hierarchical schedul-
erage) with our LP-based method. This result shows tiregg and would like to extend it to a multi-resolution
generality and a wider applicability of our expected runningcheduling method for large-scale heterogeneous comput-
time formulation. Nonetheless, in heterogeneous computiing systems like cloud computing. In this case, it is very
systems (Machine 1 and 2), our LP-based method achiewportant to group similar, not identical, parallel cores since
up to 45% (12% on average) higher performance than dinose systems consist of thousands of computing resources
version of work stealing method. that have different computational capacities. Another chal-
lenging problem is to have a more accurate modeling for
the expected running time of jobs. Although our linear
6 CONCLUSION formulation matches very well with the observed data,

. there are many other factors (e.g., geometric con gurations
We have presented a novel, LP-based scheduling meth y (€.0.9 g )

in order to maximally utilize more widelv available hetero. t give useful intuitions for workload prediction. We
! : y utiiiz widely aval conjecture that by considering those factors, we can have

geneous multi-core architectures. To achieve wide applic “better model for expecting the workload of jobs [36].

bility, we factored out common jobs of various proximityAlSO our method currently assumes that all the data (e.g.

queries and formulate an optimization problem that min\gfometry and BVH) is in each computing resource. For
mizes the largest time spent on computing resources. fge data sets that cannot t into a device memory, we

have des!gned anovel, iterative LP solver that ha§ a MNeLed to consider a better data management across different
computational overhead and computes a job d|str|but|%

: . o I?)mputing resources. Finally, we would like to extend our
that achieves pear-optlmal expec;ted running time. We'th thod to other general applications that have more variety
have further improved the efciency of our schedulin

method with hierarchical scheduling to handle a Iargerf jobs.

number of resources. To demonstrate the benets of oWe believe that maximally utilizing heterogeneous multi-
method, we have applied our hybrid parallel framewor&ore architectures is one of the most challenging problems.



We wish that our work makes a step towards it in thpo]
context of proximity computation.

[21]
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