
1

Scheduling in Heterogeneous Computing
Environments for Proximity Queries

Duksu Kim, Member, IEEE, Jinkyu Lee, Member, IEEE, Junghwan Lee, Member, IEEE, Insik Shin,
Member, IEEE, John Kim, Member, IEEE, Sung-Eui Yoon, Senior Member, IEEE

Abstract—We present a novel, Linear Programming (LP) based scheduling algorithm that exploits heterogeneous multi-core
architectures such as CPUs and GPUs to accelerate a wide variety of proximity queries. To represent complicated performance
relationships between heterogeneous architectures and different computations of proximity queries, we propose a simple,
yet accurate model that measures the expected running time of these computations. Based on this model, we formulate an
optimization problem that minimizes the largest time spent on computing resources, and propose a novel, iterative LP-based
scheduling algorithm. Since our method is general, we are able to apply our method into various proximity queries used in five
different applications that have different characteristics. Our method achieves an order of magnitude performance improvement
by using four different GPUs and two hexa-core CPUs over using a hexa-core CPU only. Unlike prior scheduling methods, our
method continually improves the performance, as we add more computing resources. Also, our method achieves much higher
performance improvement compared with prior methods as heterogeneity of computing resources is increased. Moreover, for
one of tested applications, our method achieves even higher performance than a prior parallel method optimized manually for
the application. We also show that our method provides results that are close (e.g., 75%) to the performance provided by a
conservative upper bound of the ideal throughput. These results demonstrate the efficiency and robustness of our algorithm that
have not been achieved by prior methods. In addition, we integrate one of our contributions with a work stealing method. Our
version of the work stealing method achieves 18% performance improvement on average over the original work stealing method.
This result shows wide applicability of our approach.

Index Terms—Heterogeneous system, proximity query, scheduling, collision detection, ray tracing, motion planning.

F

1 INTRODUCTION

P ROXIMITY computation is one of the most fundamental
geometric operations, and has been studied in the

last two decades for various applications including games,
physically-based simulations, ray tracing-based rendering,
motion planning in robotics, etc [1].

There have been numerous attempts to accelerate the
queries. One of the most general approaches is adopting
an acceleration hierarchy such as kd-trees [2] or bounding
volume hierarchies (BVHs) [1], [3]. Even though this
method is general and improves the performance of various
proximity queries by several orders of magnitude, there are
ever growing demands for further improving the perfor-
mance of proximity queries, since the model complexities
are also ever growing. For example, proximity queries
employed in interactive applications such as games should
provide real-time performance. However, it may not meet
such requirement, especially for large-scale models that
consist of hundreds of thousands of triangles.

Recently, the number of cores on a single chip has con-
tinued to increase in order to achieve a higher computing
power, instead of continuing to increase the clock frequency
of a single core [4]. Currently commodity CPUs have up
eight cores and GPUs have hundreds of cores [5]. Another
computing trend is that various heterogeneous multi-core
architectures such as Sony’s Cell, Intel Sandy Bridge,
and AMD Fusion chips are available. The main common
ground of these heterogeneous multi-core architectures is

to combine CPU-like and GPU-like cores in a single
chip. Such heterogeneity has been growing even more in
the cloud computing environment, which is currently a
wide-spreading trend in (high-performance computing) IT
industry [6]. However, prior acceleration techniques such
as using acceleration hierarchies do not consider utilizing
such parallel architectures and heterogeneous computing
systems. Since we are increasingly seeing more heteroge-
neous computing systems, it is getting more important to
utilize them for various applications, including proximity
queries, in an efficient and robust manner.

Main contributions: We present a novel, Linear Program-
ming (LP) based scheduling algorithm that minimizes the
running time of a given proximity query, while exploiting
heterogeneous multi-core architectures such as CPUs and
GPUs. We first factor out two common and major job
types of various proximity queries: hierarchy traversal
and leaf-level computation. We then describe a general,
hybrid parallel framework, where our scheduler distributes
the common proximity computations to the heterogeneous
computing resources (Sec. 3). In order to represent the
performance relationship between jobs and computing re-
sources, we model the expected running time of those
computations on the computing resource, by considering
setup costs, data transfer overheads, and the amount of jobs.
We then formulate our scheduling problem, minimizing
the largest time spent among computing resources, as an
optimization problem and present an iterative LP-based
scheduling algorithm (Sec. 4), which shows high-quality

(a) Cloth benchmark (b) N-body benchmark (c) Fracturing benchmark

(d) Motion planning (e) Path tracing

Fig. 1: This figure shows five different benchmarks, whose proximity queries are parallelized by using CPUs and GPUs
within our hybrid parallel framework. Different computations of these queries are automatically distributed by our LP-
based scheduler without any parameter tuning. Compared to using a hexa-core CPU with six CPU threads, our method
achieves one order of magnitude performance improvement by using two hexa-core CPUs and four different GPUs.

scheduling results with a small computational overhead. We
further reduce the overhead of our scheduling method by
employing a hierarchical scheduling technique, to handle a
larger number of independent computing resources.

We have applied our hybrid parallel framework and
scheduling algorithm to a wide variety of applications
(Sec. 5). In the tested benchmarks (Fig. 1), we use various
combinations of a quad-core CPU, two hexa-core CPUs,
and four different types of GPUs. In various machine
configurations, our method achieves up to an order of
magnitude performance improvement over using a multi-
core CPU only. While other tested prior scheduling methods
show even lower performance as we add more computing
resources, our method continually improves the perfor-
mance of proximity queries. Moreover, we show that our
method achieves throughput that are close (e.g., 75%) to
a conservative upper bound of the ideal throughput. In
addition, we employ our expected running time model to
optimize a work stealing method, that is a general workload
balancing approach used in parallel computing systems.
The work stealing method optimized by our expected run-
ning time model achieves performance improvement (18%
on average) over the basic one in the tested benchmarks,
while eliminating one of the manually tuned parameters
that strongly affect its performance (Sec. 5.5).

Our method is a practical, optimization-based scheduling
algorithm that aims proximity computation in heteroge-
neous computing systems. For various proximity quires,
our method robustly provides performance improvement
with additional computing resources. To the best of our
knowledge, such results have been not acquired by prior
scheduling algorithms designed for parallel proximity com-
putations. We wish that our work takes a step towards better
utilization of current and future heterogeneous computing
systems for proximity computations.

2 RELATED WORK

Recently, general programming and execution models for
heterogeneous architectures have been proposed [7], [8],
[9], [10] and these models can be adopted in many different
applications. However, designing efficient workload balanc-
ing algorithms is still left to users. We briefly discuss prior
work on scheduling and parallelization techniques designed
for general applications and proximity queries.

2.1 Scheduling for Unrelated Parallel Systems

Scheduling concerns allocating jobs to resources for achiev-
ing a particular goal, and has been extensively studied [11].
We are interested in finding the optimal job distribution that
maximizes the throughput of entire parallel system. This
is known as minimizing the makespan. At high level, a
parallel system can be classified as identical, related, or un-
related. Unrelated parallel system consists of heterogeneous
computing resources that have different characteristics and
thus performance varies. Related or identical systems, on
the other hand, are composed of resources that are similar
or the exactly same in terms of characteristics and per-
formance, respectively. Our scheduling method aims for
most general parallel systems, such as unrelated parallel
machines (i.e. heterogeneous computing systems).

In theoretical communities, minimizing the makespan for
unrelated parallel machines is formulated as an integer
programming (IP). Since solving IP is NP-hard, many
approximate approaches with quality bounds have been
proposed. These approximate methods achieve polynomial
time complexity by using a linear programming (LP), which
relaxes the integer constraint on the IP [12], [13], [14].
Lenstra et al. [13] proved that no LP-based polynomial
algorithms guarantee an approximate bound of 50% or less
to the optimal solution, unless P = NP . This theoretical
result applies to our problem too.

In addition to theoretical results, many heuristic-based
scheduling methods have been proposed for unrelated par-
allel machines [15], [16]. Al-Azzoni et al. [16] proposed
approximated LP-based scheduling algorithms. Since gath-
ering various information from all the resources incurs a
significant overhead in their heterogeneous system, they
considered information (e.g., the minimum completion
time) from only a subset of resources. These techniques
considered the scheduling problem in simulated environ-
ments or specific applications (e.g., an encryption algo-
rithm). Moreover, they focused on studying theoretical or
experimental quality bounds rather than a practical perfor-
mance on working heterogeneous computing systems.

Topcuoglu et al. [17] proposed an insertion-based task
scheduling method, Heterogeneous-Earliest-Finish-Time al-
gorithm (HEFT), that accounts for the execution time of
all tasks. Augonnet et al. [8] improved HEFT by consid-
ering the data transfer overhead. HEFT assigns tasks to
processors one-by-one as it minimize the earliest finished
time at each step. The algorithm provide high-quality
scheduling results even if the types of jobs are different
each other. However, the computational overhead increases
as the number of jobs increases and it is unclear how
much performance HEFT realizes for proximity query
computations. This is mainly because we usually have
hundreds of thousands of jobs at each scheduling time.
In comparison, our scheduling algorithm finds how to
distribute a set of jobs to multiple computing resources
by solving optimization problem and its computational cost
depends on the number of job types. Therefore, our method
is well suit to the proximity computations that have a small
number of job types.

Work stealing is a well-known workload balancing algo-
rithm in parallel computing systems [18], [19]. Kim et
al. [20] showed that the work stealing method achieved
a near-linear performance improvement up to eight CPU
cores for continuous collision detection. Hermann et al. [21]
employed a work stealing approach to parallelize the time
integration step of physics simulation with multi-GPUs
and multi-CPUs. They compute an initial task distribution
depending on a task graph to minimize inefficient inter-
device communication caused by the work stealing. In case
of proximity queries, however, it is hard to compute the
task graph, since tasks are sporadically generated during
processing prior tasks. To further improve the efficiency
of work stealing methods, various knowledge about appli-
cations or computations can be utilized [22], [21], [23].
Hermann et al. [21] employed a priority-guided stealing
approach and made GPUs steal time-consuming jobs first
and CPUs take opposite strategy since small jobs decreases
the efficiency of using GPUs. For fair comparison with
those prior work, we also apply the priority-guided stealing
approach to our basic work stealing implementation based
on knowledge of proximity computations (Sec. 5). We com-
pare our scheduling method with the basic work stealing
approach and improve the efficiency of the working stealing
method based on one of our contributions (Sec. 5.5).

2.2 Performance Models

For high quality scheduling results, scheduling algorithms
commonly rely on performance models that predict how
much computational time a resource takes to finish tasks.
Literatures in the field of the scheduling theory often
assume that there is a mathematical performance model for
their scheduling problems [8]. Few works gave attention to
modeling overheads such as data communication costs [15].
Performance models for GPUs [24], [25] and heterogeneous
framework [26], [27] recently have been proposed. These
architectural performance models can be very useful to
accurately predict the computational time of jobs in a broad
set of GPUs.

In this paper we use a simple performance model of jobs
occurred in different proximity queries (Sec. 4.1). Our per-
formance model can be efficiently computed with observed
performance data and can be effectively incorporated within
our LP-based scheduling method.

2.3 Parallel Proximity Queries and Scheduling

Many scheduling methods have been proposed for various
proximity computations on parallel systems. Tang et al. [28]
group jobs into blocks and assign a block to each idle CPU
thread in a round robin fashion. Lauterbach et al. [29] check
the workload balance among cores on a GPU and perform
workload balancing (i.e. distributing jobs evenly) when the
level of workload balance is low.

Only a few works have proposed utilizing heterogeneous
multi-core architectures for proximity queries. Budge et
al. [30] designed an out-of-core data management method
for ray tracing on hybrid resources including CPUs and
GPUs. They prioritize different jobs in ray tracing and
assign them into either a CPU or a GPU, by checking which
processor the jobs prefer and where the required data is
stored. Kim et al. [20] decompose continuous collision de-
tection into two different task types and manually dedicate
all the tasks of each job type into one of the CPU or GPU.

It is unclear, however, how well these techniques can be
applied to a wide variety of proximity queries, since they
use manually specified rules for a specific application, or
rely on application-dependent heuristics. Furthermore, their
approaches do not rely on optimization frameworks to
maximally utilize available computing resources. Departing
from these prior scheduling methods, our method takes
a general and robust approach in order to minimize the
makespan of a wide variety of proximity queries with
hybrid resources. We compare our method with these prior
methods in Sec. 5.

3 OVERVIEW

We give a background on hierarchy-based proximity com-
putation and then describe our hybrid parallel framework.

Fig. 2: Overview of our hybrid parallel framework

3.1 Hierarchy-based Proximity Computation

Proximity queries are commonly accelerated by using an
acceleration hierarchy (e.g., BVHs or kd-trees) constructed
from a mesh. For simplicity, we assume that we use BVHs
as the acceleration hierarchy for various proximity queries
in this paper; kd-trees or other acceleration hierarchies can
be used with our method as well.

To perform proximity queries, we traverse a BVH starting
from the root node of the BVH. For each intermediate node,
we perform computations based on the bounding volume
(BV) associated with the node. Depending on the result
of the computations, we traverse the left node, the right
node, or both of the nodes in a recursive manner. Once we
reach leaf nodes, we also perform other computations based
on geometric primitives (e.g., triangles) associated with the
leaf nodes. These two different types of computations, hier-
archical traversal and leaf-level computation, are common
jobs that can be found in many hierarchy-based proximity
computations.

These two components have different characteristics from
a computational point of view. The hierarchical traversal
component generates many computational branches and
thus requires random memory access on the mesh and the
BVH. Moreover, its workload can vary a lot depending on
the geometric configuration between BVs of intermediate
nodes. On the contrary, the leaf-level computation follows
mostly a fixed work flow and its memory access pattern
is almost regular. Because of these different characteristics,
we differentiate computations of various proximity queries
into these two types of jobs. This job differentiation is
also critical for modeling an accurate performance model
and finding an optimal workload distribution algorithm in
heterogeneous computing systems (Sec. 4).

3.2 Our Hybrid Parallel Framework

Fig. 2 shows our overall hybrid parallel framework for
various proximity queries. Our hybrid parallel framework
consists of four main components: 1) initial job gener-
ator, 2) computing resources, 3) scheduler, and 4) data
communication interface. Before performing a proximity
query, we first share basic data structures (e.g., meshes
and their BVHs) among different computing resources, to
reduce the data transfer time during the process of the
proximity query. Then the initial job generator computes

0

5

10

0 10 20 30 40P
ro

ce
ss

in
g

 t
im

e
(m

s)

The number of jobs (X 1024)

Hierarchy traversal

for CCD

Hexa-core GTX285

0

1

2

3

0 5 10 15
The number of jobs (X 2048)

Leaf-level compution

for CCD

Tesla 2075 GTX480 GTX580

Fig. 3: This figure shows observed processing time of two
different job types on five different computing resources as
a function of the number of jobs.

a set of initial jobs and feeds it into the scheduler. The
scheduler distributes initial jobs into computing resources
(e.g., CPUs or GPUs). The scheduler runs asynchronously
in a separate, dedicated CPU thread, while computing
resources process their jobs. Data transfer among the sched-
uler and computing resources is performed through the data
communication interface. Each computing resource has two
separate queues, incoming and outgoing job queues, as
the data communication interface. The scheduler places
distributed jobs into the incoming job queues. Then, each
computing resource fetches jobs from its incoming job
queue and starts to process the fetched jobs. If a computing
resource generates additional jobs while processing them, it
places new jobs into its outgoing job queue; a hierarchical
traversal job dynamically creates multiple jobs of the leaf-
level computation depending on geometric configurations.
Once there is no job in the incoming job queue of a
computing resource, it notifies the scheduler. At each time
the scheduler gets such a notification, it collects available
jobs from all the outgoing job queues of the computing
resources and distributes them into incoming job queues.
The main goal of our scheduler is to compute a job
distribution that minimizes the makespan. More low-level
implementation details about our hybrid parallel framework
are available in Appendix A as a supplementary material.

4 LP-BASED SCHEDULING

In this section, we describe our formulations of the problem
and present our scheduling algorithm.

Notations: We define a job to be an atomic unit that
our scheduling method handles. To denote each computing
resource (e.g., CPU or GPU), we use Ri, where i is the
resource ID. R is a set of all Ri and we use |R| to denote the
number of available resources. To indicate the type of each
job (e.g., hierarchical traversal and leaf-level computation),
we use Jj , where j is the job type ID. J is a set of all Jj and
|J | refers to the number of different job types. We use nj

to denote the number of jobs that have a particular job type
Jj , while we use nij to denote the number of jobs of Jj
allocated to Ri. We also use the term makespan to denote
the largest running time spent among all the computing
resources.

4.1 Expected Running Time of Jobs

Since many factors on both computing resources and com-
putations of proximity queries influence the performance,
it is hard to consider all the factors separately when we
decide a job distribution. To abstract such complex perfor-
mance relationship and to model our scheduling problem
as a mathematical optimization problem, we propose to
formulate an expected running time of processing jobs on
a particular computing resource.

To formulate the expected running time of jobs, we mea-
sure how much time it takes to process jobs on different
computing resources. As shown in Fig. 3, an overall trend
is that the processing time of jobs on each computing
resource linearly increases as the number of jobs increases.
However, the performance difference among computing
resources varies depending on characteristics of each job
type. For leaf-level computation a GPU shows much higher
performance than a multi-core CPU, while a multi-core
CPU shows a little lower or similar performance with a
GPU for hierarchical traversal. To efficiently utilize hetero-
geneous computing resources, we need to consider these
relationship between job types and computing resources.
Another interesting observation is that a certain amount of
setup cost, especially higher for GPUs, is required to launch
a module (or kernel for GPU) that processes at least a single
job on computing resources.

To fully utilize the available computing power, it is also
important to minimize communication overheads between
computing resources. For example, two identical computing
resources show different processing throughput for a same
job depending on which computing resource generates the
job since another one needs to wait for data transfer. In
order to accommodate such data transfer overhead, we
differentiate the types of jobs depending on which comput-
ing resource those jobs were created at, even though they
perform the same procedure (e.g., the hierarchical traversal
created from a CPU or a GPU).

We reflect these observations in our formulation of the
expected running time of jobs. More specifically, given nij

jobs with a job type Jj that are created at a computing
resource Rk, the expected time, T (k → i, j, nij), of com-
pleting those jobs on a computing resource Ri is defined
as the following:

T (k → i, j, nij) =

0, if nij is 0
Tsetup(i, j) + Tproc(i, j)× nij

+Ttrans(k → i, j)× nij , otherwise.
(1)

Tsetup(i, j) represents the minimum time, i.e. setup cost,
required to launch a module that processes the job type Jj
on the computing resource Ri. Tproc(i, j) is the expected
processing time for a single job of Jj on the Ri, while
Ttrans(k → i, j) is the transfer time of the data about
a single job of Jj from Rk to Ri. In the rest of this
paper, we simply use T (i, j, nij) instead of T (k → i, j, nij)

since we differentiate the types of jobs depending on the
producer resources and the job type Jj inherently contains
the information.

Measuring constants: In order to accurately measure
constants Tsetup(·), Tproc(·), and Ttrans(·) of Eq. (1),
we measure the running time of performing jobs in each
computing resource and the transfer time between com-
puting resources, as we vary the number of jobs. We
then fit our linear formulation with the observed data, and
compute the three constants for each job type on each
computing resource by using sample jobs. This process is
performed at a pre-processing stage and takes a minor time
(e.g., a few seconds). Computed constants for our linear
formulation in one of our tested machines are in Table 1.
The constants are measured for each proximity query, not
for each experiment.

Our formulation of the expected running time shows linear
correlations, which range from 0.81 to 0.98 (0.91 on aver-
age) with the observed data. This high correlation validates
our linear formulation for the expected running time of jobs.

4.2 Constrained Optimization

There are many different ways of distributing jobs into
available computing resources. Our goal is to find a job
distribution that minimizes the makespan.

We run our scheduler when no more jobs are left in
the incoming job queue of a computing resource. When
the scheduler attempts to distribute unassigned jobs, some
computing resources may be busy with processing already
assigned jobs. Therefore, our scheduler considers how
much time each computing resource would spend more to
finish all jobs allocated to the resource. We use Trest(i)
to denote such time for each computing resource Ri. We
estimate Trest(i) as the difference between the expected
running time of the jobs on Ri computed based on Eq. (1)
and the time spent on processing the job so far; if we
already have spent more time than its expected running time
to process the jobs, we re-compute the expected running
time of the computing resource with remaining jobs.

We formulate the problem of minimizing the makespan for
performing a proximity query, as the following constrained
optimization:

Minimize L,

subject to Trest(i) + Σ
|J|
j=1T (i, j, nij) ≤ L,∀i ∈ R (2)

Σ
|R|
i=1nij = nj ,∀j ∈ J (3)

nij ∈ Z+(zero or positive integers). (4)

This optimization formulation leads to find values of nij

that minimize L under the three constraints, from Eq. (2)
to Eq. (4). The first constraint (Eq. (2)) defines L as the
makespan. The second constraint of Eq. (3) makes sure
that there is neither missing nor redundant jobs. Finally,
the third constraint (Eq. (4)) ensures that the result values
of nij are restricted to zero or positive integer numbers.

unit Hexa-core CPU GTX285 Tesla2075 GTX480 GTX580 Ttrans

(µs) Tsetup Tproc Tsetup Tproc Tsetup Tproc Tsetup Tproc Tsetup Tproc C ↔ G G ↔ G
Traversal 11.068 0.219 260.521 0.190 242.177 0.137 135.622 0.096 124.978 0.085 0.003 0.006
Leaf-level 2.766 0.098 81.855 0.030 136.26 0.0127 43.04 0.010 42.017 0.009 0.002 0.003

TABLE 1: This table shows constants of our linear formulation computed for continuous collision detection.

4.3 Scheduling Algorithm

Our optimization formulation falls into the category of
minimizing the makespan, which is known as NP-hard. To
design an efficient scheduling algorithm, we first remove
the integer constraint (Eq. (4)) for the values of nij . Instead,
we allow a floating value for nij and choose an integer
value that is closest to the floating value. We found that this
relaxation affects very little (less than 1%) to the quality
of scheduling results, since we have hundreds of thousands
of jobs on average across all the tested benchmarks. With
this relaxation and if we do not consider setup costs, we
can solve the optimization problem in a polynomial time
by using linear programming (LP) [31]. When we consider
setup costs, our optimization formulation becomes a piece-
wise linear function. If nij = 0, the setup cost Tsetup(i, j)
should be zero. Otherwise, the setup cost can have a non-
zero value. Thus, our formulation becomes a piece-wise LP
problem, which has been known as NP-hard as well [32].

Instead of checking all the possible cases (2|R||J|) of dis-
tribution of job types into computing resources, we present
an iterative LP solver that checks only |R||J | distribution
cases. Our scheduling algorithm has the following two main
steps: 1) initial assignment and 2) refinement steps.

Initial assignment step: Assume that we always have setup
costs in the expected running time formulation (Eq. (1)).
By running the LP solver, we compute a job distribution
that gives a smallest L, given the assumption. However,
we observe that the initial assignment can have larger L
than optimal solution because of the relaxation to the piece-
wise condition of setup costs. This can result in inefficient
utilization of computing resources.

As a simple example, assume that we have only two job
types (J1, J2) and the same number of jobs for both job
types, i.e. n1 = n2 = 100. Also, we have two computing
resources (R1, R2) that have identical capacities and show
the same performance for both job types, i.e. Tproc(i, 1) =
Tproc(i, 2) = 0.01s, but setup costs are different:

R1 : Tsetup(1, 1) = 2s, Tsetup(1, 2) = 0s

R2 : Tsetup(2, 1) = 0s, Tsetup(2, 2) = 2s.

In the initial assignment step, the LP solver assumes that
all the computing resources have setup costs for all the job
types irrespective of the number of jobs. The LP solver,
therefore, considers that the setup cost is same (i.e. two
seconds) for both computing resources, and distributes the
same number of jobs to both computing resources regard-
less of job types. As a result, the example parallel system
consisting of R1 and R2 takes more than two seconds, since
each computing resource already takes two seconds for its

setup cost. However, if we allocate all the jobs of J2 to R1

and all the jobs of J1 to R2, both computing resources do
not incur setup costs and thus we can complete all the jobs
in one second.

Refinement step with an application-independent
heuristic: To address the under-utilization issue of comput-
ing resources in the initial assignment step, we iteratively
improve assignment solutions in refinement steps. Since
we relax the piece-wise condition of setup costs in the
initial assignment, we consider its negative effects and re-
assign jobs to reduce such negative effects. To perform this
strategy, we define a job-to-resource ratio (nij/nj) for each
job type. Given a job type, this ratio describes the portion of
jobs that are being processed on the resource Ri. The ratio
can be an approximate indicator of the benefit obtained by
using Ri to process jobs of Jj , since the overhead of the
setup cost is constant and thus amortized when the number
of jobs increases.

We treat a computing resource that has the smallest job-to-
resource ratio to be most under-utilized given a job type.
If there are multiple candidates, we choose the one that
has a larger setup cost than the others. We thus re-assign
jobs of the job type assigned to the computing resource
to other computing resources. To implement this heuristic
within our LP-based scheduler, we set Tsetup(i, j) as zero
and Tproc(i, j) as∞ for the Ri that has the smallest job-to-
resource for jj . Note that even though Ri does not get any
jobs given the job type Jj , it can get more jobs of other job
types. As a result, it can better utilize different capacities
of heterogeneous computing resources.

We perform the refinement step until one of the following
three conditions are met: 1) the LP solver cannot find a
solution, 2) we cannot further reduce the L value, the
makespan, or 3) the LP-solver takes more time than the
smallest value of Trest(i), the expected running time for
completing tasks that are under processing in each resource
among all the resources, to prevent a long idle time of
computing resources (i.e. time-out condition). Through this
iterative refinement steps, we can achieve better assignment
results that are close to the optimal solution. A detailed
work-flow of our iterative LP solver on an example of
scheduling problem is available in Appendix B as a sup-
plementary material.

Note that this is an application-independent heuristic, which
can be used in various different proximity queries. In
addition to this heuristic, we can also have query-dependent
heuristics for a particular proximity query.

With hierarchical Without hierarchical
of Res. (|R|) 3 4 5 6 13 14 15 16
of job types 6 8 10 12 26 28 30 32
of iterations 4.3 5.5 6.6 7.5 29.9 35.0 35.5 38.5
Time/Iter. (ms) 0.16 0.20 0.25 0.30 0.93 0.99 1.04 1.40

Avg. Lfin/Linit 0.94 0.90 0.91 0.81 0.96 0.92 0.90 0.88
Min. Lfin/Linit 0.53 0.60 0.62 0.41 0.65 0.63 0.71 0.74

TABLE 2: This table shows the average number of itera-
tions in the refinement step and the average time of an iter-
ation. We also compare the quality of the iteratively refined
solution (makespan, Lfin) with the initial solution (Linit)
computed from initial assignment step. In this analysis, for
each configuration of |R|, we run our algorithm for five
hundred of randomly generated job sets with the constants
in Table 1. We add four different GPUs to two hexa-core
CPUs one by one as |R| is increased. To focus more on
showing benefits of our iterative solver, we turn off the time-
out condition in the refinement step in this experiment.

4.4 Analysis

At the worst case, our iterative solver can perform up to
O(|R||J |) iterations, since it can assign all the jobs into
only one computing resource. In practice, however, our
LP-based iterative scheduling algorithm takes only a few
iterations. When |R| and |J | are 6 and 12 respectively, our
methods runs 7.5 iterations on average in our experiments.
Each iteration of our LP-based scheduling method takes
only 0.3 ms on average. Also, the expected running time
is reduced up to 59% (19% on average) by the refinement
step over the initial solution of the initial assignment step.
Table 2 shows the benefit of our iterative solver. As we
will see later our method achieves higher improvement
from the initial solution through refinement iterations, as
a heterogeneous level of computing resources increases.

We have also studied the quality of our scheduler by
comparing its quality over the optimal result computed
with the exhaustive method. In the exhaustive method, we
check all the possible (2|R||J|) assignments of job types into
computing resources and find the job distribution that gives
the smallest expected running time. We run the exhaustive
method only for the configuration of |R| = 3 because of the
high computational overhead. We found that our scheduler
has a minor computational overhead (e.g. less than 1 ms)
and compute a job distribution that achieves a near-optimal
expected running time, which is on average within 6%
from the optimal expected running time computed with the
exhaustive method that takes 30 sec.

Hierarchical scheduling: Even though the computational
overhead of our LP solver is low with a small number of
computing resources, it increases with O(|R|2|J |3) theo-
retically in the worst case [33]. However, we found that
it increases almost linearly as a function of the number
of resources in practice. Nonetheless, the overhead of our
scheduling algorithm becomes a non-negligible cost in
interactive applications when we employ many resources,
since the number of iterations is also increased linearly.

Res. Machine 1 Machine 2 Machine 3
1 Quad-core CPU Hexa-core CPU Hexa-core CPU
2 GeForce GTX285 Hexa-core CPU Hexa-core CPU
3 GeForce GTX480 GeForce GTX285 GeForce GTX480
4 Tesla 2075 GeForce GTX480
5 GeForce GTX480 GeForce GTX480
6 GeForce GTX580 GeForce GTX480

unit (FPS) Cloth N-body Fract. Path tracing Motion
Quad-CPU 9.75 3.80 3.60 0.004 0.25
Hexa-CPU 10.32 3.96 3.59 0.005 0.39
GTX285 21.91 11.17 8.23 0.006 0.12

Tesla2075 39.06 19.93 14.39 0.010 0.42
GTX480 58.76 29.39 21.43 0.015 0.59
GTX580 64.64 32.41 23.63 0.020 0.71

TABLE 3: The upper table shows three different machine
configurations we use for various tests. The quad-core
CPU is Intel i7 (3.2GHz) chip and each hexa-core CPU
is Intel Xeon (2.93GHz) chip. The bottom table shows
the throughput of each computing resource for the tested
benchmarks (Fig. 1).

For example, if we do not terminate the refinement step
by the time-out condition, the overhead becomes 29 ms
on average, when we have sixteen computing resources
(Machine 2 in Table 3) for a collision detection application.

Interestingly, we found that simple workload balancing
methods designed for identical parallel systems comparably
work well or even better than our LP-based method for
identical cores in a device. It is due to simplicity of
the methods and low inter-core communication cost under
shared memory systems. Multiple cores in a multi-core
CPU is a typical example. Based on this observation, we
group computing units in a device (e.g., cores in a single
multi-core CPU) as a big computing resource and treat it as
one computing resource for our LP-based scheduling; we
measure the expected running time of different job types
with the big computing resource and use that information
for our LP-based scheduling. Once tasks are allocated to the
one big resource, we run a simple scheduling (e.g., work
stealing) method. We found that this two-level hierarchical
scheduling method improves the performance of proximity
queries in tested benchmarks 38% on average over running
without the hierarchical scheduling in Machine 2 (Table 3).

5 RESULTS AND DISCUSSIONS

We have implemented our hybrid parallel framework and
scheduling algorithm (Ours(Exp.+LP)) in three different
machine configurations (Table 3). As we discussed in the
hierarchical scheduling method (Sec. 4.4), we treat the
identical computing units in a device as a single computing
resource. We then use simple work stealing method [20]
within a multi-core CPU, and even distribution method [29]
within a GPU for tasks allocated to the single computing
resource. In the case of using two hexa-core CPUs and four
GPUs together, we have six different computing resources
(i.e. |R| = 6). Initially, we have two different job types
(hierarchy traversal and leaf-level computation) for all the

tested proximity queries. We differentiate these two job
types depending on which computing resource generates
such type of jobs (Sec. 4.1). Therefore, |J | becomes 12.

We use the axis-aligned bounding box as bounding volumes
(BVs) for BVHs because of its simplicity and fast update
performance. We construct a BVH for each benchmark
in pre-computation time in a top-down manner [1]. For
dynamic scenes, we simply refit BVs at the beginning of
every new frame [34]. The hierarchy refit operation takes a
minor portion (e.g., about 1%) of the whole proximity query
computation. Therefore, we just use the fastest computing
resource in the machine to update BVHs rather than paral-
lelizing the operation. We have implemented CPU and GPU
versions of hierarchical traversals and leaf-level computa-
tions based on prior CPU and GPU implementations [29],
[20]. We use the OpenMP library [35] and CUDA [5] to
implement CPU- and GPU-based parallel proximity queries
respectively. Also, we use the LINDO LP1 solver for our
LP-based scheduling algorithm.

For comparison, we have implemented three prior schedul-
ing methods designed for proximity queries. The first one
(Lau10) is a scheduling algorithm proposed by Lauterbach
et al. [29]. When the level of workload balance among
computing resources is low, this scheduling method dis-
tributes available jobs into computing resources evenly
in terms of the number of jobs. The second method is
the block-based round-robin method (Tan09), proposed by
Tang et al. [28]. Also, we have implemented a work stealing
(WS) algorithm [20] as the third method. In WS, once
a computing resource becomes idle, it steals a portion
(e.g., half) of the remaining jobs from a busy computing
resource (victim). To further optimize the implementation
of WS, we allocate initial jobs according to the relative
capacity of different computing resources computed by our
expected running time formulation. We also employ the
priority based stealing strategy. We give high priority to
leaf-level jobs for GPUs and hierarchical traversal jobs for
Multi-core CPUs while accounting the characteristics of
jobs and computing resources (Sec. 4.1). For Tan09 and
WS methods, we found that the block size and stealing
granularity are strongly related with the performance. We
have tested various block sizes (e.g., from 1K jobs to 20K
jobs) for Tan09 and stealing granularity (e.g., 30-70% of
remaining jobs of the victim) for WS. Then, we reported
the best result among them for each benchmark on each
resource combination. Note that while the best results of
these techniques are manually acquired, we do not perform
any manual tuning for our method.

Benchmarks: We have applied our hybrid parallel frame-
work and its scheduling algorithm into the following
five benchmarks that have different characteristics and
use different proximity queries. Three of our benchmarks
are well-known standard benchmarks2: cloth simulation
(92 K triangles, Fig. 1(a)), N-body simulation (146 K

1. LINDO systems (http://www.lindo.com)
2. UNC dynamic benchmarks (http://gamma.cs.unc.edu/DYNAMICB)

triangles, Fig. 1(b)), and fracturing simulation (252 K
triangles, Fig. 1(c)). For these benchmarks, we perform
continuous collision detection and find all the inter- and
intra-collisions. Our fourth benchmark is a roadmap-based
motion planning problem (137 K triangles, Fig. 1(d)) [36],
where we attempt to get a sofa out of a living room. We use
discrete collision detection for the benchmark. However,
this query does not need to identify all the contacts, and thus
terminates right away when we find a single collision. We
generate 50 K random samples in its configuration space.
Our final benchmark is a path tracing where a living room
(436 K triangles, Fig. 1(e)) is ray traced with incoherent
rays generated by a Monte Carlo path tracer [37]. For the
benchmark, we generate 80 million rays in total.

Work granularity: Atomic scheduling granularities for
leaf-level computation are a triangle-triangle overlap test for
the first four benchmarks and a ray-triangle intersection test
for the path tracing benchmark. These leaf-level jobs are dy-
namically generated, when we reach leaf nodes during the
hierarchical traversal. For collision queries, a pair of nodes
of BVHs is an atomic unit for the hierarchical traversal job.
For a pair of two nodes, we perform a sub-tree traversal that
starts with performing a bounding volume (BV) overlap test
between the two nodes and traverse hierarchies recursively
depending on the overlap test result until we reach leaf
nodes. In the motion planning benchmark, we need to check
whether a randomly generated configuration sample is in a
free space or not. This operation is essentially the same as
collision detection, and thus we use similar traversal jobs
to collision detection. For the path tracing benchmark, an
atomic traversal job consists of a ray and the root of a
BVH. We perform ray-BV intersection tests in a recursive
way until reaching a leaf node. In all the tested benchmarks,
each leaf node has a single primitive (e.g., a triangle). If
we have multiple primitives at a leaf node, a pair of leaf
nodes generates multiple atomic leaf-level jobs. Since our
framework and scheduling algorithm are independent to the
number of generated jobs, our methods are also compatible
with other types of hierarchies that have multiple primitives
at leaf nodes.

Initial jobs: To generate initial jobs for our scheduling
methods, we identify jobs that are independent and thus can
be parallelized naively. These initial jobs can be constructed
in an application-dependent manner. In the motion planning
and path tracing benchmarks, independent rays and samples
are set as initial jobs. For all the other benchmarks, we tra-
verse the BVH of each benchmark in a breadth-first manner
and set independent collision detection pairs as initial jobs,
as suggested by prior parallel methods [20], [29]. This step
takes less than 1 ms in the tested benchmarks.

5.1 Results and Analysis

Fig. 4 and Fig. 5 show the performance of various prox-
imity queries that are parallelized with different scheduling
methods in two machine configurations (Machine 1 and

0

20

40

60

80

100

120

Upper bound of the idle

Ours(Exp.+LP)

Work stealing (WS)

Tan09

Lau100

20

40

60

80

100

120

C+lG C+hG lG+hG C+lG+hG

0

0.01

0.02

0.03

C+lG C+hG lG+hG C+lG+hG
0

0.2

0.4

0.6

0.8

1

1.2

C+lG lG+hG C+hG C+lG+hG

0

10

20

30

40

C+lG C+hG lG+hG C+lG+hG
0

10

20

30

40

50

60

C+lG C+hG lG+hG C+lG+hG

Motion

planning

N-body

benchmark

Path

tracing

Cloth

benchmark

Fracturing

benchmark

C+hG C+lG C+lG+hG lG+hG

C+hG C+lG C+lG+hG lG+hG C+hG C+lG C+lG+hG lG+hG

C+hG C+lG C+lG+hG lG+hG C+hG C+lG C+lG+hG lG+hG

Fig. 4: This figure shows the throughput, frames per second,
of our hybrid parallel framework, as we add a CPU and
two GPUs, in the tested benchmarks. (C = a quad-core
CPU, lG = GTX285 (i.e. low-performance GPU), hG =
GTX480 (i.e. high-performance GPU))

2 in Table 3). We use the line plot instead of bar graph
in order to highlight the performance trend as we add
more computing resources. For the graph, we measure
processing throughput (i.e. frames per second). In order
to see how the performance of each query behaves with
various combinations of computing resources, we measure
the capacity of each computing resource (Table 3), and
combinations of these computing resources in various ways.

On average, our scheduling method shows higher improve-
ment over all the other prior methods. A more interesting
result is that as we add more computing resources, our
LP-based method continually improves the performance
across all the tested benchmarks. This demonstrates the
robustness of our method. Compared to the result achieved
by using only a hexa-core CPU, our method achieves up
to 19 times improvement by using two hexa-core CPU and
four different GPUs (Fig. 5).

On the other hand, all the other methods often show even
lower performance for additional computing resources, es-
pecially when we add lower capacity computing resources.
For example, Lau10 shows significantly lower performance
(42%), when we use an additional quad-core CPU (C)
to GTX285 and GTX 480 (lG+hG) system for the frac-
turing benchmark (Fig. 4). In this case, C has relatively
lower capacity than other GPUs. However, Lau10 does not
consider the relative capacity difference and assigns jobs
evenly, which leads to a lower performance. Surprisingly,
Tan09, an efficient version of the round-robin scheduling
that naturally considers different capacities of computing
resources, also shows lower a performance, when we add
lG to C+hG in the motion planning benchmark (Fig. 4).

0
50

100
150

1
C

2
C

2
C

+
1
G

2
C

+
2
G

2
C

+
3
G

2
C

+
4
G

Ours(Exp.+LP) WS Tan09 Lau10

0

25

50

75

100

125

1C 2C 2C+1G 2C+2G 2C+3G 2C+4G

0

20

40

60

80

1C 2C 2C+1G 2C+2G 2C+3G 2C+4G

0

20

40

60

1C 2C 2C+1G 2C+2G 2C+3G 2C+4G

0

0.02

0.04

0.06

1C 2C 2C+1G 2C+2G 2C+3G 2C+4G

0

0.5

1

1.5

2

1C 2C 2C+1G 2C+2G 2C+3G 2C+4G

Cloth benchmark

N-body benchmark

Fracturing benchmark

Path tracing

Motion planning

Fig. 5: This figure shows the throughput, frames per second,
of ours and prior scheduling algorithms, as we add more
computing resources. (1C = a hexa-core CPU, 1G =
GTX285, 2G = 1G+Tesla2075, 3G = 2G+GTX480, 4G =
3G+GTX580)

This lower performance is mainly caused by their lack of
mechanism for considering different running times of jobs.

The WS shows a relatively stable performance compared
with other two prior approaches. However, it also gets a
lower performance (6%) when we use an additional lG to
C+hG for the motion planning benchmark (Fig. 4). On av-
erage, our LP-based algorithm shows 22% and 36% higher
performance than WS in Fig. 4 and Fig. 5 respectively. We
found that since WS does not consider the relative capacity
of heterogeneous computing resources, stealing operations
occur more frequently than in homogeneous computing
systems. In addition, communication cost in distributed
memory systems is much higher than in shared memory
systems [38]. Such a large number of stealing operations
and high data communication overhead lower the utilization
of heterogeneous computing systems. In our continuous
collision detection benchmarks, the work stealing method
launches 11 times more data transfer operations on average
than our LP-based algorithm when we use six computing
resources. Interestingly, for the path tracing benchmark, WS
shows comparable performance with Ours(Exp.+LP). It is

due to the fact that the communication cost is relatively
smaller than the large computation time of proximity query
for the benchmark. Nonetheless, Ours(Exp.+LP) achieves
better performance over WS, even though we manually cal-
ibrate the stealing granularity of WS for each combination
of resource configuration and benchmark.

Scalability: In Fig. 5, all the scheduling methods gen-
erally achieve higher throughputs with more computing
resources, since we intentionally add more powerful re-
sources. Nonetheless, Ours(Exp.+LP) shows the highest
throughput among all the other prior scheduling methods in
heterogeneous computing systems. Also, the performance
gap between ours and prior methods becomes larger as
the computing system has higher heterogeneity. Note that
heterogeneity is increased as we employ more computing
resources, since added computing resources have different
capacity from those of prior computing resources. On the
other hand, our LP-based method adapts well to high
heterogeneity, since it naturally considers the capacity dif-
ference of computing resources.

Benefits of LP-based scheduling: To measure benefits
caused only by our LP-based scheduling formulation, we
implemented a simple scheduling method based on the ex-
pected running time of jobs. This simple algorithm assigns
jobs according to the relative capacity of different comput-
ing resources, while considering our expected running time
of jobs. For example, if R1 is two times faster than R2

given a particular job type Ji in terms of their expected
running time, we then assign two times more jobs to R1

than R2. On average, our LP-based scheduling method
(Ours(Exp.+LP)) shows 26% higher performance over the
simple method for the tested benchmarks in Machine 1
and 2. Since the simple method considers only the relative
performance of computing resources for each job type and
does not look for more optimized job distributions among
all the job types, it shows lower performance than the LP-
based algorithm. We also measure benefits of considering
setup costs (Tsetup). When we ignore setup costs in our
LP-based scheduler, it shows up to 38% (9% on average)
performance degradation compared to considering the setup
costs in the tested benchmarks.

Benefits of hierarchical scheduling: Fig. 6 shows the
benefits of our hierarchical scheduling method. By in-
corporating hierarchical scheduling, our method achieves
35% improvement on average over the one without using
hierarchical scheduling. This improvement is caused mainly
by two factors. Firstly, the hierarchical approach lowers
down the number of resources that we need to consider,
and reduces the computational overhead for scheduling.
As the computational time for scheduling is decreased,
the idle time of computing resources spent on waiting for
jobs is reduced and thus we achieve a higher utilization
of the computing system. For example, at 2C+4G our LP-
based scheduling takes 1.1 ms for each iteration without
hierarchical scheduling (|R|=16). It reduces to 0.3 ms when
we use hierarchical scheduling (|R|=6) and the average

0
25
50
75

100
125

1234

Ours with hierarchical

Ours without hierarchical

WS with hierarchical

WS without hierarchical

0
10
20
30
40
50

2C+1G 2C+2G 2C+3G 2C+4G
0

25

50

75

2C+1G 2C+2G 2C+3G 2C+4G

N-body

Bench.

0

0.02

0.04

0.06

2C+1G 2C+2G 2C+3G 2C+4G

Path

tracing

0
25
50
75

100
125

2C+1G 2C+2G 2C+3G 2C+4G

FPS

Cloth

Bench.

Fracturing

Bench.

Motion

planning

0

1

2

2C+1G 2C+2G 2C+3G 2C+4G

Fig. 6: This figure shows frames per second of our LP-
based scheduling and work stealing method with/without
hierarchical scheduling on Machine 2.

portion of idle time of computing resources is decreased by
11% (Table 4). Secondly, hierarchical scheduling reduces
the data transfer overhead. In our tested benchmarks, the
number of data transfer operations is decreased by 30%
with our hierarchical scheduling method. Interestingly the
hierarchical approach also improves the efficiency of WS
by 29% on average. Nonetheless, our LP-based scheduling
combined with hierarchical scheduling shows a even higher
performance.

5.2 Optimality

In order to look into the optimality of our method, we
compute an upper bound of the ideal scheduling result
in terms of real (not expected) running time that we can
achieve for the tested proximity queries; it goes beyond the
scope of our paper to derive the ideal scheduling result for
our problem, where jobs are dynamically created depending
on results of other jobs.

We compute an upper bound of the ideal throughput that
can be achieved with multiple heterogeneous computing re-
sources in the following manner. While running a proximity
query we gather and dump all the generated jobs. Then with
all the gathered jobs, we compute the highest throughput
by considering all the possible job distributions in an off-
line manner. For computing the highest throughput, we
ignore all the dependencies among jobs and computational
overheads (e.g., data communication and scheduling time);
we have computed this upper bound only for the cloth and
N-body benchmarks, since computing the upper bound for
a benchmark takes a few weeks with our tested machine.
Note that it is infeasible for a scheduling method to achieve
such upper bound, since it is impossible to exactly predict
which jobs will be generated at runtime and we assume that
there are no job dependencies to derive the upper bound.
As a result, this upper bound is rather loose.

The computed upper bounds are shown for the cloth
and N-body benchmarks in Fig. 4. For both benchmarks,

Idle ratio Cloth N-body Fract. Path Motion
2C+1G 0.133 0.187 0.134 0.001 0.019

With 2C+2G 0.161 0.177 0.092 0.010 0.165
Hier. 2C+3G 0.205 0.166 0.213 0.007 0.144

2C+4G 0.227 0.206 0.181 0.021 0.202
2C+1G 0.084 0.055 0.048 0.059 0.145

W/O 2C+2G 0.222 0.111 0.133 0.059 0.114
Hier. 2C+3G 0.350 0.294 0.263 0.077 0.201

2C+4G 0.433 0.286 0.305 0.128 0.224

TABLE 4: This table shows the average portions of
idle time of computing resources in our LP-based method
with/without hierarchical scheduling at Machine 2.

our method shows throughputs that are within 75% of
the performance provided by the upper bounds of ideal
throughputs on average. On the other hand, Lau10, Tan09,
and WS show within only 45%, 54%, and 61% of the
ideal throughput on average, respectively. Note that no prior
methods discussed this kind of optimality, and our work
is the first to look into this issue and achieves such high
throughput close to the ideal throughput.

To see if our method can be improved further, we investi-
gated the under-utilization of each computing resource with
our LP-based algorithm. We measured how long computing
resource stays in the idle status; a computing resource
is defined as idle when it completes all assigned jobs or
waits for required data during assigned jobs. We found that
the idle time takes a small portion (13% on average) of
total running time when we use our LP-based algorithm
with hierarchical scheduling (Table 4). We also found that
the idle time due to data waiting takes less than 10% of
whole idle time since we overlap the data transfer and
computations. To check the overhead of our scheduler, we
measured how much time our scheduler running on the
CPU takes, compared to other working threads running
on the same CPU; the measured time includes not only
the time for solving LP but also communication cost for
checking the size of output queues and dispatching the
scheduling results to computing resources. It takes about
7% of total running time of those working threads. This
indicates that our scheduling method has low computational
overhead.

5.3 Near-Homogeneous Computing Systems

Although our method is designed mainly for heterogeneous
computing systems, we can apply our method for homo-
geneous computing systems. To check usefulness of our
approach even in these systems, we compare ours and
prior approaches in a near-homogeneous system consisting
of two hexa-core CPUs and four identical GPUs. Fig. 7
shows throughputs with different scheduling algorithms in
the near-homogeneous computing system for our tested
benchmarks. Prior approaches show better scalability in the
near-homogeneous system over in heterogeneous comput-
ing configurations. Tan09, Lau10, and WS methods on the
near-homogeneous system show improved performance by

020406080100120140160180

Ours(Exp.+LP)

Work stealing (WS)

Lau10(Even)

Tan09(RR)
0

50

100

150

200

2C+1G 2C+2G 2C+3G 2C+4G

Cloth benchmark

0

50

100

2C+1G 2C+2G 2C+3G 2C+4G

N-body benchmark

0

20

40

60

2C+1G 2C+2G 2C+3G 2C+4G

Fracturing

benchmark

0

0.02

0.04

0.06

0.08

2C+1G 2C+2G 2C+3G 2C+4G

Path tracing

0

1

2

3

2C+1G 2C+2G 2C+3G 2C+4G

Motion planning

Fig. 7: This figure shows the performance of tested schedul-
ing approaches on a near-homogeneous computing system
consisting of two hexa-core CPUs and four identical GPUs
(Machine 3 in Table 3).

11%, 5%, and 10% over the heterogeneous computing re-
spectively, in terms of a relative throughput compared with
Ours(Exp.+LP). Nonetheless, our approach still achieves
higher throughputs than the prior methods. On average
Ours(Exp.+LP) shows 39%, 54%, and 12% higher through-
puts over the three prior methods, respectively in the tested
benchmarks. This result demonstrates the generality and
robustness of our LP-based algorithm.

5.4 Comparison to a Manually Optimized Method

Only a few works [30], [20] have been proposed to utilize
heterogeneous multi-core architectures, such as CPUs and
GPUs, in the field of computer graphics. It is very hard
to directly compare ours against them in a fair ground.
However, these techniques are designed specifically for
particular applications (e.g., continuous collision detection
or ray tracing). They also assign jobs into either CPUs or
GPUs according to manually defined rules (i.e. application-
dependent heuristics) that are only valid for a specific ap-
plication. Unlike these prior works, our method formulates
the scheduling problem as an optimization problem based
on common components of various proximity queries, to
achieve wide applicability. Although we have not explored
in this paper, we can also adopt application-dependent
heuristics of these prior methods in the refinement step of
our LP-based scheduling algorithm, to further improve the
performance for a specific application.

We compared the performance of our method over the hy-
brid parallel continuous collision detection (HPCCD) [20].
HPCCD is designed specifically for continuous collision
detection, by manually assigning jobs to more suitable
computing resources (e.g., primitive tests for GPUs). For
a fair comparison, we have used the same benchmarks
and machine configurations (i.e. a quad-core CPU and

0

20

40

60

C+lG C+lG+lG C+lG C+lG+lG C+lG C+lG+lG

F
P

S

HPCCD Ours
Cloth

Bench.

N-body

Bench.
Fracturing

Bench.

Fig. 8: This figure compares the performance of our method
with HPCCD, which is optimized specifically for the tested
application, continuous collision detection. The throughput,
frames per second, includes hierarchy update time.

two GTX285s) used in their paper. Our method–iterative
LP scheduling method without any modification to the
application–shows similar or a slightly higher (e.g., 1.3
times higher) performance when we use a GPU with a
quad-core CPU. However, when we add one more GPU, our
algorithm achieves much higher (e.g., 2 times) performance
than HPCCD (Fig. 8). This is mainly because our LP-
scheduling method considers different capabilities of com-
puting resources and achieves a better distribution result
than that computed by HPCCD’s application-dependent
heuristic. This result further demonstrates the efficiency and
robustness of our algorithm, since we achieve even higher
performance than the method specifically designed for the
application, even though ours is not optimized at all for the
application.

5.5 Work Stealing with Expected Running Time

In heterogeneous computing systems, the work stealing
method requires a large number of stealing operations and
high communication overhead as we discussed in Sec. 5.1.
It is therefore hard to achieve a high performance with work
stealing methods in heterogeneous computing systems.

If each computing resource steals an appropriate amount of
jobs from a victim, we can reduce the number of stealing
operations and improve the utilization of the heterogeneous
computing systems. We found that we can employ one of
our contributions, the expected running time formulation,
to determine the suitable stealing granularity automatically.
In our version of work stealing method, we first calculate
the relative capacity among computing resources based
on our expected time model for each job type. We then
normalize the relative capacities to a range between 0
and 1. Finally, we assign different stealing granularities to
computing resources by scaling a basic granularity (e.g.,
half of remaining jobs in the victim) with the normalized
values. At run-time, each computing resource steals jobs
from a victim according the assigned stealing granularity.

We found that our method decreases the number of data
transfer by 71% on average compared with the basic work
stealing method when we use six computing resources. As
a result, our work stealing method achieves 11%, 20%, and
23% higher performance on average in Machine 1, 2, and 3
(Table 3) respectively over the basic work stealing method.

Also, in the near-homogeneous computing system (Machine
3) it shows compatible performance (0.6% higher on av-
erage) with our LP-based method. This result shows the
generality and a wider applicability of our expected running
time formulation. Nonetheless, in heterogeneous computing
systems (Machine 1 and 2), our LP-based method achieves
up to 45% (12% on average) higher performance than our
version of work stealing method.

6 CONCLUSION

We have presented a novel, LP-based scheduling method,
in order to maximally utilize more widely available hetero-
geneous multi-core architectures. To achieve wide applica-
bility, we factored out common jobs of various proximity
queries and formulate an optimization problem that mini-
mizes the largest time spent on computing resources. We
have designed a novel, iterative LP solver that has a minor
computational overhead and computes a job distribution
that achieves near-optimal expected running time. We then
have further improved the efficiency of our scheduling
method with hierarchical scheduling to handle a larger
number of resources. To demonstrate the benefits of our
method, we have applied our hybrid parallel framework
and scheduling algorithm into five different applications.
With two hexa-core CPUs and four different GPUs, we
were able to achieve an order of magnitude performance
improvement over using a hexa-core CPU. Furthermore,
we have shown that our method robustly improves the
performance in all the tested benchmarks, as we add more
computing resources. In addition, we improved a basic
work stealing method with our expected running time
model and it shows 18% higher performance on average
in the tested benchmarks.

6.1 Limitations and Future Work

It is evident that future architectures will have more com-
puting resources. We have demonstrated the performance
with machines consisting of up to six different computing
resources and discussed its optimality with up to three
different computing resources. It is one of the most chal-
lenging problems to maintain a near-optimal throughput,
even though we have more than six computing resources.
To address this challenge, it is critical to lower the under-
utilization of computing resources and is required to design
a better communication method among the computing re-
sources and the scheduler in terms of algorithmic and archi-
tectural aspects. We have designed our LP-based iterative
scheduler to achieve a high-quality scheduling result with
a low computational overhead. Nonetheless, our iterative
solver does not guarantee optimality of the solution and
can lapse into a local minimum. Also, its overhead can be
non-negligible depending on chosen benchmarks and ma-
chine configurations. A further investigation is required to
minimize the overhead and robustly handle local minimum
issues.

In addition, we plan to study more on hierarchical schedul-
ing and would like to extend it to a multi-resolution
scheduling method for large-scale heterogeneous comput-
ing systems like cloud computing. In this case, it is very
important to group similar, not identical, parallel cores since
those systems consist of thousands of computing resources
that have different computational capacities. Another chal-
lenging problem is to have a more accurate modeling for
the expected running time of jobs. Although our linear
formulation matches very well with the observed data,
there are many other factors (e.g., geometric configurations)
that give useful intuitions for workload prediction. We
conjecture that by considering those factors, we can have
a better model for expecting the workload of jobs [39].
Also, our method currently assumes that all the data (e.g.,
geometry and BVH) is in each computing resource. For
large data sets that cannot fit into a device memory, we
need to consider a better data management across different
computing resources. Finally, we would like to extend our
method to other general applications that have more variety
of jobs.

We believe that our work makes a step towards this in
the context of proximity computation. We wish that our
work makes a step towards it in the context of proximity
computation.

ACKNOWLEDGMENT

We would like to thank anonymous reviewers for
their constructive feedbacks. We also thank Kee-Eung
Kim and members of SGLab. for their supports.
Three of the tested models are courtesy of the
UNC dynamic model benchmarks. This research was
supported in part by MCST/KOCCA/CT/R&D 2011,
DAPA/ADD (UD110006MD), MEST/NRF/WCU (R31-
2010-000-30007-0), KMCC, MSRA, MEST/NRF (2012-
0009228), and DGIST CPS Global Center.

REFERENCES

[1] M. Lin and D. Manocha, “Collision and proximity queries,” Hand-
book of Discrete and Computational Geometry, 2003.

[2] I. Wald and V. Havran, “On building fast kd-trees for ray tracing,
and on doing that in O(N log N),” in IEEE Symp. on Interactive Ray
Tracing, 2006, pp. 61–69.

[3] Y.-J. Kim, Y.-T. Oh, S.-H. Yoon, M.-S. Kim, and G. Elber, “Coons
BVH for freeform geometric models,” ACM Trans. Graph., vol. 30,
no. 6, pp. 169:1–169:8, Dec. 2011.

[4] S. Borkar, “Thousand core chips – a technology perspective,” Design
Automation Conference, pp. 746–749, 2007.

[5] NVIDIA, “CUDA programming guide 2.0,” 2008.

[6] S. Yeo and H.-H. Lee, “Using mathematical modeling in provi-
sioning a heterogeneous cloud computing environment,” Computer,
vol. 44, pp. 55–62, 2011.

[7] G. Diamos and S. Yalamanchili, “Harmony: an execution model and
runtime for heterogeneous many core systems,” in Symp. on High
performance distributed computing, 2008, pp. 197–200.

[8] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
a unified platform for task scheduling on heterogeneous multicore
architectures,” Concurrency and Computation: Practice and Experi-
ence, vol. 23, no. 2, pp. 187–198, 2011.

[9] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming
standard for heterogeneous computing systems,” IEEE Des. Test,
vol. 12, no. 3, pp. 66–73, May 2010.

[10] The OmpSs programming model. [Online]. Available:
http://pm.bsc.es/ompss/

[11] M. L. Pinedo, Scheduling: Theory, Algorithm, and Systems.
Springer, 2008.

[12] C. N. Potts, “Analysis of a linear programming heuristic for schedul-
ing unrelated parallel machines,” Discrete Applied Mathematics,
vol. 10, no. 2, pp. 155 – 164, 1985.

[13] J. Lenstra, D. Shmoys, and E. Tardos, “Approximation algorithms
for scheduling unrelated parallel machines,” Mathematical Program-
ming, vol. 46, pp. 259–271, 1990.

[14] E. V. Shchepin and N. Vakhania, “An optimal rounding gives a
better approximation for scheduling unrelated machines,” Operations
Research Letters, vol. 33, pp. 127–133, 2005.

[15] A. Nahapetian, S. Ghiasi, and M. Sarrafzadeh, “Scheduling on
heterogeneous resources with heterogeneous reconfiguration costs,”
5th IASTED Int. Conf. on Parallel and distributed computing and
systems, pp. 916–921, 2003.

[16] I. Al-Azzoni and D. G. Down, “Linear programming-based affin-
ity scheduling of independent tasks on heterogeneous computing
systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 19, pp. 1671–1682, 2008.

[17] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective
and low-complexity task scheduling for heterogeneous computing,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 13,
no. 3, pp. 260 –274, mar 2002.

[18] R. Blumofe and C. Leiserson, “Scheduling multithreaded computa-
tions by work stealing,” Foundations of Computer Science, Annual
IEEE Symp. on, vol. 0, pp. 356–368, 1994.

[19] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall,
and Y. Zhou, “Cilk: an efficient multithreaded runtime system,”
SIGPLAN Notices., vol. 30, pp. 207–216, 1995.

[20] D. Kim, J.-P. Heo, J. Huh, J. Kim, and S.-E. Yoon, “HPCCD:
Hybrid parallel continuous collision detection,” Comput. Graph.
Forum (Pacific Graphics), vol. 28, no. 7, 2009.

[21] E. Hermann, B. Raffin, F. Faure, T. Gautier, and J. Allard, “Multi-
GPU and multi-CPU parallelization for interactive physics simula-
tions,” in Euro-Par 2010 parallel processing, 2010, pp. 235–246.

[22] S. F. Hummel, J. Schmidt, R. N. Uma, and J. Wein, “Load-sharing
in heterogeneous systems via weighted factoring,” in Proceedings
of the eighth annual ACM symposium on Parallel algorithms and
architectures, 1996, pp. 318–328.

[23] V. Janjic and K. Hammond, “Granularity-aware work-stealing for
computationally-uniform grids,” in Cluster, Cloud and Grid Com-
puting (CCGrid), IEEE/ACM International Conference on, 2010, pp.
123 –134.

[24] S. Hong and H. Kim, “An integrated GPU power and performance
model,” SIGARCH Comput. Archit. News, vol. 38, pp. 280–289,
2010.

[25] Y. Zhang and J. Owens, “A quantitative performance analysis model
for gpu architectures,” in High Performance Computer Architecture
(HPCA), Symp. on, 2011, pp. 382 –393.

[26] A. Binotto, C. Pereira, and D. Fellner, “Towards dynamic reconfig-
urable load-balancing for hybrid desktop platforms,” in IEEE Int.
Symp. on Parallel Distributed Processing, 2010, pp. 1–4.

[27] M. S. Smith, “Performance analysis of hybrid CPU/GPU environ-
ments,” Master Thesis, Portland State Univ., 2010.

[28] M. Tang, D. Manocha, and R. Tong, “Multi-core collision detection
between deformable models,” in SIAM/ACM Joint Conf. on Geomet-
ric and Solid & Physical Modeling, 2009, pp. 355–360.

[29] C. Lauterbach, Q. Mo, and D. Manocha, “gProximity: Hierarchical
gpu-based operations for collision and distance queries,” Computer
Graphics Forum, vol. 29, pp. 419–428, 2010.

[30] B. Budge, T. Bernardin, J. A. Stuart, S. Sengupta, K. I. Joy, and
J. D. Owens, “Out-of-core data management for path tracing on
hybrid resources,” Comput. Graph. Forum (EG), vol. 28, no. 2, pp.
385–396, 2009.

[31] K. Karmarkar, “A new polynomial-time algorithm for linear pro-
gramming,” Combinatorica, vol. 4, no. 4, pp. 373–395, 1984.

[32] C. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Dover Publications, 1998.

[33] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[34] S. Yoon, S. Curtis, and D. Manocha, “Ray tracing dynamic scenes
using selective restructuring,” Eurographics Symp. on Rendering, pp.
73–84, 2007.

[35] L. Dagum and R. Menon, “OpenMP: an industry standard api
for shared-memory programming,” IEEE Computational Sci. and
Engineering, vol. 5, pp. 46–55, 1998.

[36] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[37] P. Shirley and R. K. Morley, Realistic Ray Tracing, 2nd ed. AK
Peters, 2003.

[38] K. Ravichandran, S. Lee, and S. Pande, “Work stealing for multi-
core HPC clusters,” in Euro-Par 2011 Parallel Processing, 2011, pp.
205–217.

[39] Y. Lee and Y. J. Kim, “Simple and parallel proximity algorithms for
general polygonal models,” Computer Animation and Virtual Worlds,
vol. 21, no. 3-4, pp. 365–374, 2010.

Duksu Kim is currently a Ph.D student at
KAIST (Korea Advanced Institute of Science
and Technology), South Korea. His research
interests include collision detection, motion
planning, and parallel computing. He re-
ceived the distinguished paper award at the
17th Pacific Conference on Computer Graph-
ics and Applications in 2009.

Jinkyu Lee received B.S., M.S. and Ph.D.
degrees in Computer Science in 2004, 2006
and 2011, respectively, from KAIST. Since
October 2011, he is a research fellow/visit-
ing scholar in Department of Electrical En-
gineering and Computer Science, University
of Michigan, USA. His research interests in-
clude system design and analysis with tim-
ing guarantees, QoS support, and resource
management in real-time embedded sys-
tems and cyber-physical systems. He won

the best student paper award from the 17th IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS) in 2011,
and the best paper award from the 33rd IEEE Real-Time Systems
Symposium (RTSS) in 2012

Junghwan Lee is currently a Ph.D student
at the Dept. of Computer Science at KAIST.
He received his B.S. degree in computer
science from Yonsei University in 2006. His
research interests include motion planning
and collision detection.

Insik Shin is currently an assistant professor
in Dept. of Computer Science at KAIST, since
2008. He received a B.S. from Korea Univer-
sity, an M.S. from Stanford University, and a
Ph.D. from University of Pennsylvania all in
Computer Science in 1994, 1998, and 2006,
respectively. He has been a post-doctoral re-
search fellow at Malardalen University, Swe-
den, and a visting scholar at University of
Illinois, Urbana-Champaign until 2008. His
research interests lie in cyber-physical sys-

tems and real-time embedded systems. He is currently a member of
Editorial Boards of Journal of Computing Science and Engineering.
He has been co-chairs of various workshops including satellite work-
shops of RTSS, RTAS, and RTCSA and has served various program
committees in real-time embedded systems, including RTSS, RTAS,
ECRTS, and EMSOFT. He received best paper awards, including the
Best Paper awards from RTSS in 2003 and 2012, the Best Student
Paper Award from RTAS in 2011, and Best Paper runner-ups at
ECRTS (IEEE Euromicro Conference on Real-Time Systems) and
RTSS in 2008.

John Kim is currently an assistant professor
in the Department of Computer Science at
KAIST with joint appointment in the Web
Science and Technology Division at KAIST.
He received his B.S. and M.Eng. from Cornell
University in the Department of Electrical En-
gineering in 1997 and 1998. He spent several
years working on the design of different mi-
croprocessors at Motorola and Intel. He then
received his Ph.D. from Stanford University
in 2008 from the Department of Electrical

Engineering. His research interests includes multicore architecture,
interconnection networks, and datacenter architecture. He is a mem-
ber of IEEE and ACM.

Sung-Eui Yoon is currently an associate
professor at KAIST. He received the B.S.
and M.S. degrees in computer science from
Seoul National University in 1999 and 2001,
respectively. He received his Ph.D. degree
in computer science from the University of
North Carolina at Chapel Hill in 2005. He was
a postdoctoral scholar at Lawrence Liver-
more National Laboratory. His main research
interest is on designing scalable graphics
and geometric algorithms. He wrote a mono-

graph on real-time massive model rendering with other three co-
authors. He also gave numerous tutorials on proximity queries
and large-scale rendering at various conferences including ACM
SIGGRAPH and IEEE Visualization. Some of his work received a
distinguished paper award at Pacific Graphics, invitations to IEEE
TVCG, an ACM student research competition award, and other
domestic research-related awards. He is a senior member of IEEE,
and a member of ACM and Eurographics.

