
1

Recursive Path Planning Using Reduced States for
Car-like Vehicles on Grid Maps

Sangyol Yoon, Sung-Eui Yoon, Unghui Lee, and David HyunchulShim

Abstract—We present a recursive path-planning method that
efficiently generates a path by using reduced states of the search
space and taking into account the kinematics, shape, and turning
space of a car-like vehicle. Our method is based on a kinematics-
aware node expansion method that checks for collisions based
on the shape and turning space of a vehicle. We present
two heuristics that simultaneously consider the kinematics of a
vehicle with and without obstacles. In particular, for challenging
environments containing complex obstacles and even narrow
passages, we recursively identify intermediate goals and nodes
that allow the vehicle to compute a path to its destination.
We show the benefits of our method through simulations and
experimental results by using an autonomous ground vehicle.
Furthermore, we show that our method can efficiently generate
a collision-free path for vehicles in complex environmentswith
passageways.

Index Terms—A∗, path planning, car-like vehicle, turning space

I. I NTRODUCTION

A UTONOMOUS vehicles have lately drawn considerable
attention, especially following the successes of the De-

fense Advanced Research Projects Agency’s (DARPA) Grand
and Urban Challenges [1], [2] and Google’s Self-Driving
Car [3]. Autonomous vehicles are built atop various functional
blocks, including sensing technologies and other controls. At a
high level of abstraction, autonomous driving consists of four
steps [4]: 1) perceiving the environment of the vehicle [5],
[6], 2) localizing the vehicle in the environment [7], [8], 3)
generating a collision-free path to the chosen goal [9], [10],
and 4) operating the vehicle as desired to follow the path [11],
[12]. In this paper, we focus on the efficient generation of
collision-free paths that vehicles can easily follow in various
environments.

Considerable research has been devoted in the last few
decades to generating collision-free paths for autonomous
ground vehicles [10]. Most existing approaches can be classi-
fied into grid- and sampling-based path planners [13]. In the
grid-based approach, the A∗ algorithm is known to be very
effective at finding the shortest path to goal while avoiding

This work was supported by Grant No. 20110031920 from the National
Research Foundation (NRF) of Korea, funded by the Korean Government
(MEST).

Sangyol Yoon is with LG Electronics Inc., 322, Gyeongmyeong-daero, Seo-
gu, Incheon 404-170, Korea (e-mail: sangyol.yoon@kaist.ac.kr).

Unghui Lee and David Hyunchul Shim are with the Department of
Aerospace Engineering, KAIST, 291 Daehak-ro, Yuseong-gu,Daejeon 305-
701, Korea (e-mail: lamer0712@kaist.ac.kr, hcshim@kaist.ac.kr).

Sung-Eui Yoon is with the Department of Computer Science,
KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea (e-
mail:sungeui@gmail.com).

obstacles [14], [15]. Many variants that purport to overcome
the drawbacks associated with A∗ have been developed. No-
table approaches include identifying fewer grid edges (e.g.,
Field D∗ [16] and Theta∗ [17]), designing better heuristics by
considering the kinematics of the vehicle or the obstacles [18],
[19], [20], respecting the shapes of vehicles [21], replanning
(e.g., Lifelong Planning A* (LPA∗) [22] and D∗ Lite [23]),
post-processing [24], etc. Sampling-based approaches include
the Probabilistic Road Map (PRM) [25], [26], Rapidly-
exploring Random Trees (RRT) [27], and RRT∗ [28].

Computing an optimal, collision-free path for car-like ve-
hicles with nonholonomic constraints has been known to be
NP-hard [29]. As mentioned above, several approaches have
been proposed to improve both grid- (variants of A∗) and
sampling-based (variants of PRM and RRT) algorithms for
car-like vehicles. Grid-based techniques have been adopted for
autonomous vehicles and have shown successful results [20].
This is mainly because grid-based techniques tend to be more
efficient than sampling-based path planners, especially when
the dimensions of the state spaces are fewer than six [13]. One
can also use RRT∗, but it generally runs on the order of a few
seconds, although its efficiency depends on the size of the map
of the path in question [30]. Furthermore, if no collision-free
path to goal exists, grid-based path planners can report this
failure much more quickly than sampling-based ones.

In light of this, we focus on improving existing grid-based
path planners that efficiently compute collision-free paths in a
discrete space for a given environment with obstacles. Existing
grid-based path planners are not designed for complex environ-
ments containing many obstacles or narrow passages, and thus
tend to either run slowly or fail to find paths to goal. In this
paper, we present an efficient, recursive path-planning method
operating with grid maps and two online heuristic functions
that takes into account the kinematics, shape, and turning space
of car-like vehicles and uses reduced states of the search
space to compute the shortest path to goal. The main idea
underlying our method is that when we cannot find a path in an
initial attempt in complex scenarios, we identify intermediate
goals and nodes and recursively find paths to these goals and
nodes. We use simulations and conduct experiments with an
autonomous vehicle to show the benefits of our method in
challenging scenarios (Fig. 1).

II. RELATED WORKS

In this section, we discuss past research directly related to
our work.

2

(a)

Controller
(CompactRio)

Receiver for
Emergency
Stop

INS

Motor
Driver

PCs

(b)

Sensor Interface

Sub-network Module
for Laser Scanners

Sub-network Module
for Cameras

Main Module
for Map Building

Path & Speed
Planner

Low-level
Controller

Local IntranetPC Network CAN Network

INS (GPS / IMU)

Transmission
(Linear DC Motor)

Motor-driven Power
Steering Wheel (MDPS)

Brake
(Rotary DC Motor)

Gas Pedal
(Cruise Box)

Actuator

Vehicle-installed Sensor
(Speed, Steering Wheel Angle, etc.)

(c)

Fig. 1: (a) KAIST autonomous ground vehicle, (b) built-in computer systems for path planning, inertial navigation system
(INS) operation, steering wheel control, etc., and (c) overall system architecture.

A. A∗ Algorithms

A∗ algorithms have been extensively studied and are known
to be effective for finding the shortest path to goal using
grid maps [14], [15]. A brief review of these algorithms is
provided in Sec. III. Earlier techniques of this sort tended
to find zigzag paths when the goal was not located on a
horizontal, a vertical, or a 45-◦ slope to the starting position.
Moreover, most techniques perform their procedures without
using information from nodes already searched, even when the
obstacles move slightly.

To overcome these problems, techniques that identify fewer
grid edges (Field D∗ [16] and Theta∗ [17]) and replanning by
using information from nodes already searched (LPA∗ [22] and
D∗ Lite [23]) have been proposed. However, these techniques
do not take into account the kinematics, shape, and turning
space of car-like vehicles.

B. Heuristic

In general, Euclidean distance is used as the heuristic for
several types of A∗ algorithms. However, this often results in
the algorithm performing poorly because the quality of the
heuristic function affects the search time for goal [31].

Ziegler et al. [18], Likhachevet al. [19], and Dolgovet
al. [20] proposed methods that use two kinds of comple-
menting heuristics such that the one yielding the maximum
value is chosen as the final heuristic. The first heuristic

takes into account the kinematics of the car-like vehicle by
assuming an obstacle-free environment, whereas the second
one considers obstacles but ignores the vehicle’s kinematics.
The first heuristic is based on rotation-translation-rotation
paths. Alternatively, it can first make offline calculations
given precomputed parameters, including the initial and target
positions and orientations of the vehicle, and then translate and
rotate to account for configurations that are not precomputed.
On the other hand, the second heuristic is computed online
using a Voronoi graph or dynamic programming regardless of
the kinematics of the car-like vehicle. The above-mentioned
researchers showed that a combination of the two heuristics
effectively reduces the search time for the path to goal.
However, these complementing heuristics cannot simultane-
ously accommodate kinematics, thus resulting in expansions
to unpromising regions. Moreover, the second heuristic can
require longer to compute a solution because of the Voronoi
graph or dynamic programming used.

Our proposed method uses the two types of heuristics
described above. Unlike prior approaches, however, both our
online obstacle-free and obstacle-aware kinematic heuristics
consider the kinematics of the car-like vehicle. Furthermore,
our obstacle-aware kinematic heuristic can be efficiently eval-
uated online within the A∗ framework, since it is based on the
geometric concept of the Dubins model [32]. Our obstacle-
free kinematic heuristic computes the shortest distance from a
current position to goal while considering the kinematics of the

3

car-like vehicle by assuming an obstacle-free environment, i.e.,
it is more aggressive and focuses on identifying the shortest
path to goal, whereas our obstacle-aware kinematic heuristic
computes the obstacle distance while considering its kinemat-
ics in the presence of obstacles, i.e., it is more conservative
and focuses on identifying paths that avoid obstacles.

C. Narrow Passages

Computing a collision-free path in environments with many
obstacles and narrow passages poses significant technical chal-
lenges for path planners. To address them, many variants of
PRM [25], [26], RRT [27], and RRT∗ [28] have been proposed.
At a high level of abstraction, the probability of finding a path
through narrow passages depends upon the sampling density
and the sampling strategies. A few prior techniques employed
adaptive sampling [33], hybrid approaches using approximate
cell decomposition [34], free-space information [35], and
retraction techniques that utilize the boundary of the obstacle
space [36]. Nonetheless, finding paths to goal by taking into
account the kinematics of car-like vehicles has not been
extensively researched for environments with narrow passages.

A few approaches for A∗ techniques have been proposed
for finding a collision-free path in narrow passages. One
proposed method [37] for PRM techniques used a kind of
regular structure, i.e., an adaptive grid structure commonly
generated by approximate cell decomposition, and captured
the connectivity of free space between the cells of the regular
structure in a manner used for roadmap construction. These
techniques are not primarily designed for use in A∗ methods,
but can be applied to A∗ techniques. However, such techniques
do not consider the kinematics of car-like vehicles.

By contrast, our method directly handles the narrow passage
problem within the A∗ framework. When our method cannot
compute a collision-free path to goal in an initial attempt,
we treat it as involving narrow passages, and recursively
compute intermediate goals and nodes by utilizing expanded
node information extracted from our prior attempts to compute
a path to goal.

D. Shape and Turning Space of Vehicles

Ground vehicles can be broadly classified into tank-like and
car-like vehicles. A tank-like vehicle can rotate on a point,
whereas a car-like vehicle driven by front or rear wheels,
the focus of this paper, has nonholonomic constraints on its
movement [38]. As a result, we need to consider its turning
space as well as its shape.

In their research, Likhachev and Ferguson treated the vehi-
cle as a point, and generated two kinds of obstacle maps by
considering the inner and outer radii of the circle surrounding
the vehicle [19]. This method tends to be expensive because
we need to expand obstacles with the inner and outer radii.
Additionally, it does not consider the turning space and
thus cannot make a tight turn. Recently Dolgovet al. find
a collision-free path with a largest clearance based on the
center of the rear axle of the vehicle without considering the
turning space [20]. It then smooths a collision-free path, while
checking the turning space. This process is repeated until the

TABLE I: Legend for boxes and triangles used in the grid
map. The line used in a triangle indicates the orientation of
the vehicle. See the pdf file for their color difference.

Type Meaning

Start node

Goal node

Obstacle

Node in a discovered path

Expanded node

Node expanded with forward movement

Node expanded with reverse movement

Node expanded with orientation

computed path is confirmed to be collision-free. This approach
is rather time-consuming due to the nature of iterative process.

On the other hand, our method represents a car-like vehicle
as a rectangle instead of a circle, and directly considers
the turning space, while expanding nodes and evaluating
heuristics. As a result, our approach can efficiently identify
a collision-free path considering the shape and turning space
of the car-like vehicle.

III. OVERVIEW

In this paper, we focus on a path planner that generates
a collision-free path by considering the kinematics, shape,
and turning space of car-like vehicles. We then assume that
autonomous ground vehicles follow such paths by smoothing
the paths for better driving conditions and using path-following
methods. Many approaches have been developed for path fol-
lowing of this sort [4], [12], [39]. A path-following controller
is responsible for tracking the generated path with minimal
error.

We will show examples and images of paths in a grid
map representing obstacles. Throughout this paper, we use the
legend for such plots described in Table I, unless otherwise
indicated.

A. Notations

Our work utilizes the conventional A∗ algorithm. In this
subsection, we define terms used throughout this paper.

As in the common A∗ algorithm, a node be in one of the
following statuses: “unvisited,” “open,” or “closed” [14]. When
a noden is expanded to its child noden′, the distance between
them is associated with anarc cost. If the current noden is
arrived at through several expansions from the start nodens,
the sum of the arc costs of those expansions from the start node
ns to the current noden is defined as thepath cost. Further, a
conservatively estimated cost from the current noden to the
goal nodeng is called the cost-to-goheuristic. In general, the
heuristic used by conventional A∗ is the Euclidean distance.
The sum of the path cost and the heuristic for a node is
defined as theevaluation cost. When a heuristic isconsistent,
it is unnecessary to reopen nodes that are “closed” [40]. The
consistency condition is defined as follows:

h(n) ≤ c(n, n′)+h(n′), (1)

4

whereh(n) andh(n′) are the heuristics of the current noden
and its child noden′, respectively, andc(n, n′) is the arc cost
from noden to n′.

When the heuristic function satisfies the following three
conditions and there exists a path to the goal, the A∗ algorithm
is guaranteed to find the optimal path to goal [41]. These
conditions are calledadmissibilityconditions and defined as
follows: 1) each node in a grid (or a graph) has a finite number
of successors, 2) all arc costs are positive, and 3) the heuristic
is conservative, i.e., for all nodes, the heuristic must never
overestimate the actual value.

B. Overview of Our Approach

To accommodate the kinematics of car-like vehicles and find
paths even for narrow passages, we propose our Kinematics-
and Shape-aware A∗ (KSA∗) algorithm. We define the state of
each node to represent information related to the kinematics
of the vehicle, including a position, an orientation, and a
forward/reverse direction. For the state of a search space in
order to construct trees for each node, however, we consider
only an x-y position among the available states for greater
efficiency; other state information, such as orientation and
direction, is derived from the position of the node relativeto
neighboring nodes. Moreover, we only consider x-y positions
to check whether each node is duplicated in the search space.
Fig. 2 shows the flow of our recursive path-planning algorithm,
which is introduced in Sec. IV-H and IV-I.

We propose using a kinematics-aware node expansion
method (Sec. IV-A) to construct a collision-free path that the
vehicle can follow at a minimum turning radius. Our node
expansion method is based on our orientation-driven arc costs
(Sec. IV-B) to provide a comfortable driving experience by
regulating the steering action of the vehicle. These methods
are combined with our online kinematic heuristics (Sec. IV-C,
IV-D and IV-E) that consider both obstacle-free and obstacle-
ridden environments to effectively reduce search time. In order
to generate more realistic collision-free paths, we take into
account the turning space of the vehicle as well as its shape.

For complex environments with several obstacles or narrow
passages, our KSA∗ algorithm consisting of the aforemen-
tioned components may not find a path. In this case, we recur-
sively find a path by identifying intermediate goals or nodes
using either our shape-aware A∗ or heuristic-driven search
(Sec. IV-H and IV-I). We finally smooth the computed path
to provide a comfortable driving experience and better path-
following performance (Sec. IV-G), and pass this information
on to the path-following module.

IV. PROPOSEDALGORITHMS

In this section, we explain each component of our method.

A. Kinematics-aware Node Expansion

It is critical to respect the kinematics of a car-like vehi-
cle during node expansions in order to compute paths that
can be easily taken by such vehicles. For this, we propose
a kinematics-aware node expansion method. Our expansion

method allows node expansion in three forward directions:
straightforward, and left/right forward turns. We also allow
three reversing directions corresponding to each forward ex-
pansion.

It is easy to expand nodes straight forward. To efficiently
handle left and right turning cases, we discretize a circle of
the minimum turning radius for the vehicle using grid edges.
In particular, we approximate the circle by a series of straight
lines consisting ofnt1 straight edges (trajectory modules, e.g.,
nt1 = 2 and 5 in Fig. 3).

When the vehicle aims to turn left or right with its minimum
turning radiusrmin, we allow an orientation change (e.g., fol-
lowing a diagonal edge from the horizontal edge) in the same
direction (forward/reverse) as the vehicle only after expanding
nt1 nodes with the same orientation and the same direction. To
reverse the vehicle, we use a similar constraint. If the vehicle
turns left, it is always allowed to turn right irrespective of the
conditions for expandingnt1 straight edges (Fig. 4), since this
kind of turning always satisfies the minimum turning radius.
The vehicle is also permitted to turn left immediately afterit
turns right.

Our simple kinematics-aware node expansion technique can
easily support U-turns, one-point turns, and two-point turns
(Fig. 5). When the goal is located inside the minimum turning
radius, a one-point turn requires less space than a U-turn and
is thus preferred. To check whether a one-point turn (in caseof
reverse movement following forward movement) is possible,
interference against obstacles with regard to subsequent for-
ward movement is gauged by turning half ofnt1 child nodes
by 45◦ (the red circle in Fig. 5(b)). For simply expanding
nodes, however, the gauged child nodes are only generated
in a final path when there are changes in the direction of
movement in the final path, although the nodes are checked
for interference against obstacles during node expansions.
The circular arc created by such a 45◦ turning pattern is
geometrically sufficient to accomplish such maneuvering. We
compute a similar circular arc for the reverse movement.

The kinematics-aware node expansion described above is
efficient, since we can perform numerous maneuvers based
only on six grid edges. However, when the grid resolution
is insufficient, our discretized trajectory module, given a
minimum turning radius, can also realize a low resolution.
In practice, we can use one meter or less as the width of
each cell, by virtue of the efficiency of kinematics-aware node
expansion.

B. Orientation-driven Arc Cost

We propose orientation-driven arc costs that depend on the
orientation of the current node. This method is designed such
that it provides a comfortable driving experience by restraining
the steering actions of the vehicle. We also show how to make
our arc costs adhere to the consistency condition that is useful
for avoiding the reopening procedure in the A∗ algorithm.

We assign different values of arc costs to eight possible
expansion nodes, depending on the orientation of the current
node (Fig. 6). For movement straight forward where a child
node has the same orientation as the current node, we can

5

Start node

KSA* (Sec. IV-A to G)

Shape-aware A* (Sec. IV-H)Path exists ?

F1

KSA*

Path exists ?

Heuristic-driven search
(Sec. IV-I)

End

F2 (Success)

F3 (Fail)

F7 (Success)

F5 (Fail)

F6

Goal node

Start node

Goal node

Start node
Goal node

Intermediate
goal

Intermediate
node

New start node
Goal node

F4

Fig. 2: This figure shows the overall flow of our method, with examples and the running sequence represented using numbers.
We first run our KSA∗ algorithm given the start and goal positions (F1). If it findsa path (F2), we return the path to the path-
following control module in the autonomous vehicle. Otherwise (F3), we then recursively attempt to find a path by identifying
intermediate goals (F4) and nodes (F6).

current node (n)

trajectory
module
(nt1 = 2)

(a)

current node (n)

trajectory
module
(nt1 = 5)

(b)

Fig. 3: Kinematics-aware node expansion. (a) shows straight-
edge patterns withnt1 = 2, which approximates the minimum
turning radius. (b) shows node expansions withnt1 = 5.

assign an arc cost equal to the diagonal grid width, say 1.4,
which approximates

√
2 (not 1.0 for the movement straight

forward), to the expansion between the current node and its
expanded child node. This cost is chosen mainly because this
cost should be valid when we have different orientations (see
the right side of Fig. 6). For a 45◦ left or right turn, the arc
cost can have a value greater than that for the straight forward
movement, i.e., 1.4 to restrain the steering action. Given the
constraint, we choose the value 2.0.

In order to show the consistency condition, letc(n, n′)
and c′(n, n′) be arc costs defined by the Euclidean distance
and our proposed method, respectively. By the aforemen-
tioned definition,c(n, n′)≤ c′(n, n′). Therefore, our proposed

(a) rmin =4.5 m,nt1 = 3 (b) rmin =7.5 m,nt1 = 5

Fig. 4: These figures show that we can turn left while sat-
isfying the minimum turning radius and can then turn right,
irrespective of the conditions for orientation change (shown in
the red circle).

arc costs satisfy the consistency condition becauseh(n) ≤
c(n, n′)+h(n′)≤ c′(n, n′)+h(n′) from (1). Since arc costs for
expansion in the same orientation are smaller than those for
expansion in different orientations, we can reduce unnecessary
turns and construct a smooth trajectory. To movement in lateral
directions from the current orientation we assign an infinite
cost, thus blocking expansion to nodes that makes such lateral
changes.

Unlike for forward movement, we restrain reverse move-
ment when a vehicle is far from its goal. Specifically, the
arc cost associated with reverse movement is multiplied by
d, the Euclidean distance between the current node and the
goal node. As a result, expansions for reverse movements are

6

(a) U-turn (b) One-point turn (c) Two-point turn

Fig. 5: Our method supports different turning maneuvers. The
red circles represent the point of change in the direction of
movement of the vehicle. The child nodes in red circles are
only included when determining the final path by checking
if there exist changes in the direction of movement in the
final path to goal but not when expanding nodes. However,
interference against obstacles is checked in the child nodes
when expanding nodes.rmin is set to 4.5 m andnt1 to 3.

orientation

forward

reverse

lateral
(not allowed)

INF

INF 2.0 1.4

2.02.0 d×

1.4 d× 2.0 d×

arc cost

INF

INF2.0 d× 2.0

1.4 d×

2.0 d×

1.4

2.0

Fig. 6: Our consistent orientation-driven arc costs for twodif-
ferent directions given the center node. INF indicates infinite
values to prevent expansion in the lateral directions.d is the
Euclidean distance from a current node to a goal node.

reduced because of higher arc costs. However, we canceld
when its values becomes less than 1.5 times the length of
the vehicle in order to equitably treat reverse and forward
movements close to the goal. One can easily show that our
orientation-driven arc costs are consistent.

C. Obstacle-free Kinematic Heuristic

Euclidean distance as a heuristic does not do well to
represent a variety of situations, especially cases that depend
on whether the goal is attainable within the turning radius
of the vehicle, and ones where it is located in a direction
lateral to that of the vehicle. In order to overcome these
problems, we propose anobstacle-free kinematic heuristic,
H f ree, designed to compute the shortest path to goal without
considering obstacles but taking into account the kinematics
of the vehicle. The heuristic also supports efficient online
computing.

To evaluate our obstacle-free kinematic heuristic, we com-
pute the length of the shortest path based on the Dubins model,
i.e., we calculate the optimal trajectory using a single line, and
the combination of a circular arc and one or two lines [42].
We then use the length of the trajectory for the obstacle-free
kinematic heuristicH f ree.

Let us first define a movement vector as the orientation
toward forward movement, or as its negative for the reverse
movement. Different trajectory types can be constructed by
considering the movement vector and whether the goal is
within the turning radius of the vehicle. Based on these

configurations, we generate five different cases and calculate
trajectories in an obstacle-free environment (Fig. 7).

We can use a straight line for the trajectory in the following
two cases: 1) when the movement vector of the current node−→
hs is identical to the vector from the current node to the goal
node

−→
hg, or 2) when the angle between the two vectors

−→
hs and−→

hg is 45◦ or 135◦, and we can expand nodes with diagonal
edges.

Otherwise, we check the following three cases to calculate a
trajectory based on a combination of a circular arc and a line
(or two lines): 3) the goal is located beyond the minimum
turning radius of the vehicle in its current position, 4) it is
located on a trajectory with the minimum turning radius, or 5)
it is inside the minimum turning radius. These five conditions
and the corresponding computed paths are summarized in
Fig. 7.

The latter three cases are determined by considering geo-
metric relations, as shown in the condition at the bottom of
Fig. 7. Given the minimum turning radiusrmin and the distance
h between the turning center and the goal, these three cases are
determined whenrmin< h, rmin= h, andrmin> h, respectively.
The trajectory computed for the third and fourth cases consists
of a circular arc followed by a line, while two lines are used
for the fifth case.

To identify such conditions, we need to compute the center,
(xc, yc), of the circular trajectory (Fig. 7). When a node ex-
pands from its parent node, we have the following relationship
between the position(xs, ys) of the current node and the
position(xst, yst) where it begins to turn:

(xst, yst) = (xs, ys)+ (0.5nt1−nt2)
−→
h s,

where

nt2 =







nt , if nt1 > nt

nt1, otherwise
(2)

Here, nt is the number of nodes that continuously have the
same orientation and direction (e.g., forward or reverse),

−→
hs

is the unit movement vector of the current node, andnt1 is
the number of straight edges of our trajectory module for the
turning circle. These geometric quantities are shown at the
bottom condition of Fig. 7. We can easily derive the above
equation by examining the location of the current node in
the trajectory module while respecting the definition of our
trajectory module (Fig. 3), and the orientation of the current
node as tangential to the circular arc.

We observe that the center(xc, yc) of the circular trajec-
tory is on a normal vector,−→v ′

n, heading inside the circle
(and toward the goal) computed at(xst, yst). Based on this
observation, the center(xc, yc) of the circular trajectory is

7

Situation Condition Trajectory

1)

2)
1)

2) Orientation is changeable

3) The goal is located outside the
turning radius

4) On the turning radius

5) Inside the turning radius

: movement vector of current node

: vector from the current to the goal

current
node

goal

(xs , ys)
(xg , yg)

rmin

h
current node
(xs , ys)

position starting
a turn (xst , yst)

center of circular
trajectory (xc , yc)

nt1

goal

vn'

hs

(xg , yg)
(qx , qy)

hrmin

(xs , ys) trajectory

goal (xg , yg)

current
node

1cos 45 or 135−
 ⋅
  =
 
 

� �

� �

� �

s g

s g

h h

h h

=
� �

s gh h
�

�

s

g

h

h

Fig. 7: Conditions and types of trajectories for each situation in our obstacle-free kinematic heuristic.

then obtained as follows:

(xc, yc) = rmin
−→v ′

n+(xst, yst),

where

−→v n = ±





0 −1

1 0





−→
h s,

−→v ′
n = argmin

−→v n

(

||rmin
−→v n+(xst, yst)− (xg, yg)||

)

.

(3)

Here,(xg, yg) is the position of the goal node.
Fig. 8 shows the estimated center of the circular trajectory

from the current expanded node. The centers are well esti-
mated on the whole. In particular, the center of the trajectory
is correctly computed on the horizontal or the vertical turning
pattern, whereas it is less accurately computed for diagonal
edges. This is mainly because the approximation of the circular
trajectory based on our trajectory module is less accurate on
diagonal edges. Note that the estimation of the center is used
for the heuristic and not the calculation of the final path.

The fifth case represents a maneuver such as a one-point
turn at (qx, qy) (shown in Fig. 5(b)) for the situation where
the goal is located inside the turning radius. We can simplify
it by using two lines (the bottom trajectory in Fig. 7). This
simplified approach satisfies the admissibility criteria for the
heuristic, since the length of the lines is shorter than the length
of a path generated in a grid space.(qx, qy) is determined at
a position where the current node can change its orientation

The cost estimated by our obstacle-free kinematic heuristic
is larger than or equal to that estimated by Euclidean distance
and is also admissible, which will be discussed in Sec. IV-E;
our obstacle-free kinematic heuristic makes nodes expanded
fewer. Let two nodes exist. We assume that the Euclidean
distance of the first node is larger than that of the second

5 10 15 20 25

5

10

15

20

25

c2

c3

c1

T1

T2

T3

T1'

rmin

Fig. 8: This figure shows estimated centers of the circular
trajectory.(xst, yst) begins the turn in each group (T1, T1′,
T2, and T3) and are represented by�. The estimated center
of each circular trajectory is placed onc1 for T1 and T1′, c2

for T2, andc3 for T3. Lines shown in the figure representrmin

computed in each group.rmin is set to 7.5 m ,nt1 to 5, and
the grid size to 1 m.

while the path costs of them are same, whereas the obstacle-
free kinematic heuristic of the first is smaller than that of the
second. In this situation, the second node can be selected asa
parent if we use the Euclidean distance as a heuristic. However,
the first node can be selected as a parent using the obstacle-free
kinematic heuristic. It is desirable to select the node having
smaller obstacle-free kinematic heuristic as the parent because
the obstacle-free kinematic heuristic reflects the kinematics
of the vehicle. As a result, it is more informative than the
heuristic that uses Euclidean distance [40]. Fig. 9 shows the
expanded nodes to find a path to goal using Euclidean distance
as well as our obstacle-free kinematic heuristic. As expected,
our heuristic identifies the path with fewer expanded nodes.

8

(a) Euclidean (b) H f ree

Fig. 9: Our obstacle-free kinematic heuristic (b) is more
informative than one that uses Euclidean distance (a) (nt1 =
2). In this example, a one-point turn is preferred to forward
movement because space for forward movement is insufficient.
The child nodes in red circles are included when calculating
the final path, as shown in Fig. 5(b).

D. Obstacle-aware Kinematic Heuristic

Although the obstacle-free kinematic heuristic takes into
account the kinematics of the car-like vehicle, it does not
reflect obstacles in the environment and thus can fail to find a
path to goal (Fig. 10(a)). In order to overcome this problem,we
propose anobstacle-aware kinematic heuristic, Hobs, obtained
by computing the obstacle distance used in the geometric
approach [43].

Hobs is simply computed by modulating the obstacle-free
kinematic heuristicH f ree with the inverse of the trajectory
length (or obstacle distance),mind, from the current node to
a position at which the vehicle collides with obstacles. We
use the inverse of the trajectory length because the vehicle
must avoid obstacles as it approaches them. To calculate the
position of the vehicle at collision, we use the trajectories
computed to calculate the obstacle-free kinematic heuristic
(Fig. 7). Fig. 11 shows an example of a trajectory andmind

in the test environment.
Given the minimum distancemind between the colliding

points of potential obstacles, the obstacle-aware kinematic
heuristicHobs is defined as follows:

Hobs =



















H f ree
mind

, if mind > 1

H f ree, if mind ≤ 1

0, no collisions

. (4)

The first equation of (4) can overestimate the distance to goal
on the grid map whenmind is too small, i.e., less than 1. We
therefore limit its estimation withH f ree whenmind is less than
one.

Figs. 10(a) and 10(b) show expanded nodes for finding the
path to goal. Compared toH f ree, Hobs finds the path more
effectively, especially when it needs to be computed in the
presence of obstacles.

E. Admissibility of Our Heuristics

The proposed heuristics naturally satisfy the first and second
conditions (finite successors and positive costs) of the three
conditions of admissibility. We now discuss the conserva-
tiveness of the proposed heuristics. The obstacle-free kine-
matic heuristic is based on the optimal path to goal while
incorporating the kinematics of the car-like vehicle. It is
admissible because it guarantees an estimated distance smaller
than an actual distance to goal in the grid space. The obstacle-
aware kinematic heuristic is also admissible because it only
reduces the distance of the obstacle-free kinematic heuristic.
Intuitively, if a distance estimated by any heuristic is larger
than an actual distance, the evaluation cost (f = g+h) at goal
is higher than the cost of optimal path (g∗(ng)) because the
estimated heuristic at goal (h(ng)) is higher than an actual
distance (h∗(ng)), i.e., zero. As a result, if any heuristic is not
admissible, the found path is not optimal (see [40] for a formal
proof).

The search procedures can be more efficient if they are
combined. In general, a simple method for satisfying the
admissibility of a heuristic is to compute a weighted sum
of multiple admissible heuristics. When the sum of weights
is less than or equal to 1, the combined heuristic is also
admissible [44].

In the path finding problem, however, combining heuristics
with a sum of weights of less than 1 has been known to
be inefficient because the output of the combined heuristic is
significantly smaller than the actual distance. To increasethe
search efficiency, we combine the two heuristics to form a new
combined heuristic,Hc

comb, with a weight factor as follows:

Hc
comb = kh(H f ree+Hobs), (5)

where kh is an amplification factor for the sum of the two
heuristics. Note that we use superscriptc to indicate that
we compute a path tracking the current orientation. We will
also subsequently introduce a heuristic valueHr

comb, computed
using an orientation opposite the current orientation in order
to handle narrow passages.

When Hobs is 0, i.e., there are no obstacles along the
computed trajectory, we setkh to 1 to prevent the heuris-
tic from overestimating the distance to goal. Otherwise, we
aggressively setkh to be higher than 1 because it is more
important in our problem to find paths of reasonable quality
in an efficient manner than to find the optimal path. In practice,
a range of 1.0 to 2.0, especially 1.5, forkh works well, and
strikes a good balance between efficient search and high-
quality paths. Fig. 12 shows search patterns with varyingkh

in a simple environment with obstacles. Moreover, Fig. 13
shows that whenkh is higher than 1, our combined heuristic
tends to be overestimated to a greater extent as we have a
smaller value of the minimum turning radius. Nonetheless, it is
more effective in environments containing complex obstacles,
as shown in Fig. 10(c). In Sec. V-A, we show that our proposed
method is more efficient than prior methods [19], [20].

F. Shape-aware Collision Checking

We have thus far discussed techniques considering the
kinematics of car-like vehicles. In this subsection, we present

9

5 10 15 20

5

10

15

20

(a) H f ree (b) Hobs (c) H f ree & Hobs

Fig. 10: (a) and (b) show node expansion results combined only with the obstacle-free or obstacle-aware kinematic heuristic.
(c) shows the result combined with both. By using both heuristics, we can effectively find a path to goal. To test our method,
nt1 is set to 2, and the weight factor of the combined heuristickh is set to 1.5.

5 10 15 20 25 30

5

10

15

20

25

30

mind

H free

Fig. 11: A circular trajectory used to calculate the colliding
point (shown in white circle) used inHobs.

a shape-aware collision checking technique that takes into
account the shape of the vehicle. This method is based on our
previous work that employs a graphical method [45]. As in that
study, we approximate the shape of a vehicle as an oriented
rectangle (Fig. 14), since it tightly approximates the shape of
many types of vehicles. Unlike in our previous work, however,
this method checks collisions along trajectories followedby
or estimated by our kinematics-aware node expansion and
heuristics while considering the shape and turning space of
vehicles in order to reflect the kinematics of car-like vehicles.

We consider two cases, moving in a straight line or making
a turn, where the shape of the vehicle is taken in account while
following trajectories (Fig. 7). Checking interference against
obstacles along a line is easily checked on each node during
node expansion and on trajectories estimated by our heuristics,
as shown in Fig. 14(a), by translating the box of the vehicle
in the direction of movement.

When a car-like vehicle makes a turn, i.e., follows a circular
arc, our approach considers the width and length of the vehicle,
assuming that each node is placed on the center of the rear
axle of the vehicle (Fig. 15). We then generate inner and outer
circular arcs that cover the turning vehicle [46]. The turning

(a) kh = 0.5 (121) (b) kh = 1.0 (120)

(c) kh = 1.5 (63) (d) kh = 2.0 (63)

Fig. 12: Search patterns with different values ofkh. The values
in parentheses indicate the number of expanded nodes.nt1 is
set to 2.

radii of each of these inner and outer circular arcs is set tor in

and rout, respectively, based on the center of the rear axle, as
follows:

r in = rmin−0.5aw

rout =
√

(rmin+0.5aw)2+a2
f , (6)

whereaw andaf are the width and the front overhang of the
vehicle, respectively. Once we construct these inner and outer
circular arcs, we check for interference against obstaclesbased

10

(a) nt1 = 2 (b) nt1 = 4

Fig. 13: Search patterns with different values ofnt1. kh is set
to 1.5.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

(a) Straightforward

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

(b) Turn

Fig. 14: Procedure for checking interference against obstacles
when the vehicle moves straightforward or makes a turn.

on them (Fig. 16) with a higher accuracy irrespective of the
resolution of the grids [47].

G. Path Smoothing

In our node expansion, we can smooth a path by computing
the turning center of circular arcs and placing the nodes forthe
path on the circular arcs along their normal direction. Since
we compute the turning center of the vehicle from the center
of the nodes, these turning centers may be computed a little
differently, even from neighboring nodes, while making a turn
as shown in Fig. 8.

To compute the turning center of the circular arcs, we access
each node in the path and use the same turning center when
making a consistent turn without any change of angle. We can
assume that nodes prior to and following one that changes
orientation make consistent turns. From the above process,in
Fig. 8, we set the center of the circular arc toc1 when nodes at
T1 begin to turn. Fig. 17(c) shows the circular arcs of turning
nodes and a smoothed path from an initial path (Fig. 17(b))
during our node expansion method.

H. Intermediate Goals for Narrow Passages

Computing a collision-free path in environments with nar-
row passages poses a significant challenge for path planners.
Similar problems arise when most prevalent A∗ algorithms

minr
inr

outr wa

ra fa

center of
rear axle

Fig. 15: The space required to make a turn. Our method
computes such space while expanding nodes and evaluating
heuristics.

5 10 15 20

5

10

15

20

(a) Forward

5 10 15 20

5

10

15

20

(b) Reverse

Fig. 16: Collision checking by considering the shape and
turning space of the car-like vehicle. The solid line represents
the trajectory for the vehicle while dashed lines representthe
space required for a vehicle to turn.

are applied to narrow passages for a car-like vehicle. This
is mainly because the vehicle needs to repeatedly make a
forward/reverse movement to find a path to goal. Fig. 17(a)
shows an example where it is difficult to find a path through
a narrow passage owing to the kinematics of the vehicle.

In this kind of complex environment, we may need to pass
the same region multiple times, i.e., have a node with the same
state (we now use only a state of the search space that encodes
a position for the efficiency of the search time) multiple times
in a found path. Having a node with same state multiple
times in a found path, unfortunately, is not allowed in the
conventional A∗. To allow this feature and effectively identify
paths for narrow passages, we propose a recursive path-finding
approach in multiple steps by introducingintermediate goals
while using the reduced states of the search space. Finding
intermediate paths using intermediate goals is a divide-and-
conquer strategy for challenging environments. The divide-
and-conquer algorithm works by breaking down a problem into
sub-problems. The solutions to the sub-problems are combined
to give a solution to the original problem. One may think of
an alternative approach that uses higher-dimensional states of
the search space, such as ones encoding orientations as well
as positions to allow multiple nodes at the same position as
long as they have different orientations. We attempted this
alternative, but found that our current approach, which uses a

11

(a) (b)

5 10 15 20 25 30

5

10

15

20

25

30

12

3
4

(c)

5 10 15 20 25 30

5

10

15

20

25

30

(d)

Fig. 17: We only use a state of the search space that encodes
a position for the efficiency of search time. (a) shows an
identified intermediate goal (shown in the red box) and (pink
colored) path segments computed by our shape-aware A∗ for
a narrow passage (nt1 is set to 4). (b) shows a path found
by the intermediate goal (coordinates (17, 16)) and nodes
(coordinates (6, 16) and (25, 17)). (c) shows a smoothed path.
Dashed circles represent the minimum turning radius of the
vehicle. Numbers shown near the paths represent maneuvering
sequence. (d) shows a path (shown in gray) tracked by our
vehicle given a perfect obstacle map. Our path planner takes
91 ms on an Intel i7 computer to calculate the path.

simple state of the search space and recursive path-finding,is
more efficient (Sec. V-A).

For our method, we first run our KSA∗ algorithm to find
a collision-free path. When we cannot find such a path,
we assume that the environment has a narrow passage. We
perform two procedures to pass through the narrow passage:
1) we find an intermediate goal,nmid, near the narrow passage,
and 2) then find a path by passing from the intermediate goal
to the final goal.

In order to find intermediate goals, we apply an A∗ algo-
rithm, calledshape-aware A∗ algorithm, that considers only
the shape of the vehicle (Sec. IV-F). This shape-aware A∗

algorithm does not consider the kinematics of the car-like
vehicle because we are interested mainly in checking whether
the vehicle can pass through the narrow passage. A visual flow
of the different components is shown in Fig. 2.

The path computed by the shape-aware A∗ algorithm is used
only to compute intermediate goals for our KSA∗ algorithm,
not as a path for the vehicle. We can then choose nodes

Intermediate
node (nin)

Start (ns)

Goal (ng)

Intermediate
goal (nig)

nfi nse

Layer 1 Layer 2

Fig. 18: Our heuristic-driven search method checks a path
passing a new intermediate nodense by starting from a prior
intermediate nodenin or by checking another such nodenf i.

along the identified path as intermediate goals for our KSA∗

algorithm. In particular, we choose the node from the identified
path that is closest to expanded nodes of the prior operationof
our KSA∗ algorithm. We choose the node (on the path found
by the shape-aware A∗) closest to expanded nodes among other
possible candidates because there is a smaller probabilitythat
obstacles are encountered in regions close to nodes expanded
by the KSA∗ algorithm.

Given the intermediate goal, we try to find a path to it
by re-executing our KSA∗ algorithm. If we can find a path
to the intermediate goal, we attempt to find a path from
the intermediate goal to the final goal by running the KSA∗

algorithm again. Fig. 17(a) shows the identified intermediate
goal in an environment with a narrow passage.

I. Heuristic-driven Search for Narrow Passage

We may not even find a path to an intermediate goal
identified by our shape-aware A∗ method. In this case, we
attempt to find a path to the intermediate goal by computing
intermediate nodes. Unlike in the A∗ framework, we sort and
search nodes based on heuristic values rather than evaluation
costs similar to the best-first search (heuristic-driven search).
This method is known to be very effective at expanding the
most promising node to goal [40], i.e., it is suitable when
we find a collision-free path for these difficult environments.
Nonetheless, we could not prove the completeness of our
heuristic-driven search due to using the most promising nodes
from the searching layers as shown in Fig. 18.

Thus far, we have computedHc
comb(n) for a node using

the current orientation of noden. To increase a probability
of finding a path to goal, we check to see whether we can
compute a path to the node using the opposite orientation to
the current one. The heuristic value of the reverse orientation
is denoted byHr

comb(n).
In our heuristic-driven search, each node is associated with

the minimum valueHm
comb(n) betweenHc

comb(n) andHr
comb(n).

Given two componentsH f ree(n) and Hobs(n) of Hm
comb(n), if

Hobs(n) is zero, it indicates a high probability that a collision
will not occur on a path to goal.

To use this information, we sort values ofHm
comb(n) for all

expanded nodes in ascending order into two cases, depend-
ing on whether the value ofHobs(n) is zero. We prioritize
the Hm

comb(n) for which the value ofHobs(n) is zero over
Hm

comb(n) for which the value ofHobs(n) is non-zero. We

12

call Hm
comb(n) sorted in this mannerHsort(n). Note that this

approach is different from that of A∗, since we search nodes
based only on heuristic values, not on evaluation costs. As
a result, our heuristic-driven search cannot guarantee path
optimality. Nonetheless, the environment that we are handling
in this context is complex, and we thus focus on computing a
collision-free path even though it is not optimal.

In this approach we choose a node with the minimum value
of Hsort(n) and treat it as an intermediate node,nin. Note that
we already have a path from the start node tonin, since the
node is chosen from expanded nodes from an earlier invocation
of our KSA∗ algorithm. We then re-run the KSA∗ algorithm to
find a path from the intermediate nodenin to the intermediate
goal nig.

It is possible that we are still unable to find a path between
the intermediate node and the intermediate goal. Nonetheless,
we have more information by now. First, we have expanded
node information used to choosenin; second, we have infor-
mation about expanded nodes acquired to compute a path from
nin. We call nodes with the minimum value for eachHsort(n)
from the first and second pieces of informationnf i and nse,
respectively. Of the nodesnf i andnse, we choose the one with
the minimum evaluation cost as the next intermediate node.

Intuitively, if we pick nf i , we changenf i to nin and search
another path from the start node (Fig. 18). If we otherwise pick
nse, we changense to nin and continue to find a path starting
from the prior intermediate node. We continue this process
until we no longer have nodes inHsort(n). In other words, our
recursive method terminates when no candidate nodes exist.
As a result, our heuristic-driven search can efficiently reduce
the number of intermediate nodes by using promising nodes
instead of all nodes expanded from each intermediate node
every time.

In order to show the benefits of our heuristic-driven search
algorithm, we compared the expansion results of a method
that uses our proposed heuristic values with one that considers
evaluations costs (Fig. 19) in an environment with a narrow
passage. As shown in the figure, our method finds a path to an
intermediate goal with fewer expanded nodes or intermediate
nodes. When evaluation cost is used as a heuristic, the method
finds intermediate nodes close to the start node according
to the common expansion pattern for any A∗ algorithm.
Furthermore, there are cases where the common A∗ algorithm
fails to find paths, whereas our recursive method succeeds in
finding a path (Fig. 25). These results prove the efficiency and
robustness of our method.

V. RESULTS

Thus far, we have shown the effectiveness of different
components of our proposed algorithm through examples. In
this section, we prove the efficiency of our two proposed online
heuristics and the recursive path-planning method, followed
by experimental results obtained by using an autonomous
vehicle. The simulations and experiments are conducted using
MATLAB, and our autonomous vehicle is equipped with
controllers and a path planner, which are integrated using
LabVIEW on an i7 computer with a 3.4 GHz CPU and 3
GB DRAM.

(a) (b)

Fig. 19: Results of methods that compute intermediate nodes
(shown in black circles) using our proposed heuristic values (a)
and evaluation cost (b) to the intermediate goal (shown in the
red box). The use of our heuristic values makes it possible to
find a path to an intermediate goal with fewer expanded nodes
or intermediate nodes than the method that uses evaluation
cost.

A. Simulation Results

We tested our method against a complex scenario involving
moving from a small region toward a goal in another tight
region (Fig. 20). Our proposed method can find paths for such
complex scenarios because of our recursive approach. Exiting
a constricted space to reach the goal by passing a narrow
passage, as shown in Fig. 20, is a difficult case because it
requires for a node to repeatedly be in the same state in the
found path, due to repetitive forward and reverse movements
of the vehicle in limited space.

In order to show the benefits of our proposed heuristics, we
tested two versions, both of which use only our kinematics-
aware node expansion. However, the first version uses previ-
ously proposed heuristics [19], [20] whereas the second one
uses our heuristics. We performed these comparisons in two
environments without and with obstacles (Fig. 21).

Table II shows the number of node expansions and the
computation time required to evaluate them. Our method
performs significantly better than the method that uses pre-
viously proposed heuristics across two benchmarks. This is
primarily because our method is very efficient in computing
our heuristics. On the other hand, the previously proposed
heuristic functions, against which ours were compared, rely
on expensive dynamic programming techniques for computing
a heuristic for environments with obstacles. Our method also
entails a smaller number of node expansions for environment
with obstacles than the prior method. However, for a simple
environment without obstacles (Fig. 21(a)), the prior method
has a smaller number of expansions than ours. This is because
the prior method uses dynamic programming that directly con-
siders node expansions but does not consider the kinematics
of the vehicle. As a result, in an empty environment, such as
our test environment, dynamic programming can generate a
path with a small number of node expansions. Nonetheless,
in practice, there can exist many obstacles in a path, and the
computation time for dynamic programming in such cases can

13

(a)

5 10 15 20 25 30

5

10

15

20

25

30

(b)

5 10 15 20 25 30

5

10

15

20

25

30

(c)

5 10 15 20 25 30

5

10

15

20

25

30

(d)

5 10 15 20 25 30

5

10

15

20

25

30

(e)

5 10 15 20 25 30

5

10

15

20

25

30

(f)

5 10 15 20 25 30

5

10

15

20

25

30

(g)

5 10 15 20 25 30

5

10

15

20

25

30

(h)

5 10 15 20 25 30

5

10

15

20

25

30

(i)

5 10 15 20 25 30

5

10

15

20

25

30

(j) (k) (l)

5 10 15 20 25 30

5

10

15

20

25

30

(m)

5 10 15 20 25 30

5

10

15

20

25

30

(n)

5 10 15 20 25 30

5

10

15

20

25

30

(o)

5 10 15 20 25 30

5

10

15

20

25

30

(p)

Fig. 20: (a) to (o), show how our recursive method computes a path given a complex environment. (p) shows the final path.
Nodes in purple, in the red box, and in the black circle represent a path found by our shape-aware A∗, intermediate goals, and
intermediate nodes, respectively. Arrows indicate the direction of movement.

be very expensive, as shown in this simulation.

Detailed state representations:One can represent states
of the search space for nodes by using position and orientation,
not only by using position as we did for our method. In this
case, one may think that we can naturally allow multiple
nodes at the same position as long as they have different
orientations. As a result, we can avoid using the proposed

recursive path planning. However, we found that this alter-
native is much slower than our proposed method. In order
to show the efficiency of our recursive method in a simple
representation of the state of the search space encoding only
positional information, we compared the computation time of
our proposed method with an alternative method encoding both
position and orientation and not executing the recursive path-

14

(a) (b)

(c) (d)

Fig. 21: (a) and (b) show expanded nodes and paths obtained
by applying the maximum value of two heuristics proposed in
[19], [20], and (c) and (d) are obtained by applying our two
heuristics.nt1 is set to 2.

TABLE II: The number of node expansions and average
computation times for 10 trials using MATLAB in order to
evaluate our heuristic.

Figs. 21(a) & 21(c) Figs. 21(b) & 21(d)

Prior [19], [20] Ours Prior [19], [20] Ours

Computation
time (s)

58.87 1.31 75.44 1.23

Num. of node
expansions

63 70 105 64

planning algorithm in the environment shown in Fig. 17. The
runtimes of these methods are summarized in Table III. Fig. 22
shows a path with expanded nodes when we differentiate states
of the search space by using position and orientation without
executing the recursive planning algorithm. Our method can
efficiently find feasible paths while expanding fewer nodes
than the alternative method, which encodes both position and
orientation without executing recursive planning.

B. Experimental Results

We performed experiments on a ground vehicle (Fig. 1).
The ground vehicle was equipped with a gasoline engine of
1591 cm3, a four-speed automatic transmission, a front-wheel
drive, and an anti-lock braking system (ABS). Its wheelbase
was 2.55 m long (total length : 4.105 m) and the average tire
angle for the two wheels was 26◦. Based on the Ackerman

5 10 15 20 25 30

5

10

15

20

25

30

Fig. 22: This shows a found path and expanded nodes when
we used states encoding positions and orientations withoutour
recursive method.

TABLE III: Average computation time for 10 trials using
MATLAB in order to evaluate our recursive path-planning
method. P and O represent a position and an orientation,
respectively.

State of P,
w/ recursive
method

State of P &
O, w/o recur-
sive method

Computation
time (s) 12.58 42.04

steering condition, the minimum turning radius of the vehicle
is computed as follows [46]:

rmin =
wheelbase

tan(average tire angle)
. (7)

From (7),rmin is approximately 5.2 m.
For all experimental results, we set the size of the grid cell

in each dimension to 1 m. In this grid resolution, we setnt1

to 4 and the turning radiusrmin to 6 m. In order to achieve
a more realistic turning radius for the test vehicle, we can
use a higher-resolution grid map, i.e., forrmin = 5.2 m, the
ratio between the minimum turning radius in a 1-m grid and
that of the real vehicle can be selected as the grid resolution
(0.87 m per grid). However, we finally set the resolution to 1 m
because it worked well in our experiments. Further, Dolgovet
al. obtained good results with a 1-m resolution in the DARPA
Urban Challenge [20].

For autonomous driving, the vehicle is installed with laser
scanners, cameras, an inertial navigation system (INS), PCs,
and actuators (Fig. 1). The in-vehicle actuators considered
here included a motor-driven power steering wheel (MDPS),
a gas pedal, brakes, transmission controlled by a controller-
area network (CAN), a cruise control box, a rotary direct
current (DC) motor, and a linear DC motor. Note that the
laser scanners installed in the vehicle could detect obstacles
in front of it and in a small lateral range (± 135◦ from the
longitudinal axis) of the vehicle. We chose its field of view

15

because it is sufficient to avoid obstacles placed in front of
the vehicle while driving. In the case of reverse parking, we
can sufficiently scan obstacles by moving forward and detect
them using rear ultrasonic sensors while making a parking.
Moreover, we acquired the position, steering angle, and speed
of the vehicle using a differential global positioning system
(DGPS) with a Pacific Crest Positioning Data Link Low-power
base (PDL LPB) and sensors installed by the car manufacturer
(Kia Motors Corp.).

We first tested how well our autonomous ground vehicle
could compute and track a collision-free path. We placed the
vehicle in an open space but used a perfect obstacle map
of a virtually created complex environment with a narrow
passage, as shown in Fig. 17(a). The path tracked by our
vehicle given the perfect obstacle map is shown in Fig. 17(d).
Our autonomous ground vehicle followed the computed path
consisting of combinations of forward and reverse movements.
The computation time taken by our path planner, installed
in the autonomous ground vehicle, for a virtual but complex
environment was 91 ms using an i7 computer.

Environment with narrow passage: We also tested
our method in a real environment with a narrow passage.
Fig. 23 shows that our vehicle passed the narrow passage by
making a tight turn. Note that such a tight turn was made by
taking into account the shape and turning space of the vehicle.
The driving in this environment required reversing because
obstacles were placed inside the minimum turning radius of
the vehicle. Fig. 24 shows still images of this scenario.

Recursive path planning: We have pointed out that by
encoding more information regarding the state of the search
space of each node, we can find paths without using our
recursive path planning as mentioned above. To show the
significant benefits of our recursive path planning, we tested
our method in another constricted region (i.e., parking in a
narrow region) (Fig. 25). In this environment our recursive
path planner found feasible paths while only using a simple
state of the search space, i.e., encoding a position for each
node. On the other hand, we could not find a path even
though we used states of the search space encoding position,
orientation, and direction of the vehicle. In this alternative
method, we found paths for three sequences from 1 to 3,
since the states of the nodes in these sequences are different.
However, the nodes in the sequence 4 have the same state as
the nodes in the sequence 2 because the reverse movement
in those sequences occurs two times. This result shows the
efficiency and robustness of our method for the planning
problem of car-like vehicles.

VI. CONCLUSION

In this paper, we proposed a holistic approach, the KSA∗

algorithm, to find a collision-free path to goal by taking into
account the kinematics, shape, and turning space of a car-
like vehicle. Our grid-based path planner used only a state of
the search space encoding a position, without orientation and
direction for the sake of efficiency. Specifically, we designed a
kinematics-aware node expansion algorithm with orientation-
driven arc costs for considering the kinematics of vehicles. We

5 10 15 20 25 30

5

10

15

20

25

30

46
10

16
18

20

32
342

22 24 26
28

30

(a)

0 5 10 15 20 25 30 35
−600
−400
−200

0
200
400
600

st
ee

rin
g

an
gl

e
(d

eg
)

0 5 10 15 20 25 30 35
−10

−5

0

5

10

time (s)

sp
ee

d
(k

m
/h

) gear shift

(b)

Fig. 23: (a) Our method generated a trajectory by making a
tight turn and passing through a narrow passage. The number
beside each path indicates the time (in seconds) when the
vehicle passed a designated point on the path. (b) Steering
angle and speed of the vehicle over time. The computation
time was 4 ms.

then proposed two online kinematic heuristics with obstacle-
free and obstacle-aware approaches for efficient search within
our KSA∗ algorithm. For complex environments with many
obstacles and narrow passages, our method attempts to find a
path by recursively identifying intermediate goals and nodes.

To verify the benefits of our method, we tested each compo-
nent of our method using various simulations, and proved that
our planner can support complex maneuvering, such as two-
point turns in constricted space. Further, we tested our method
in environments with narrow passages and confirmed that it
satisfactorily handles such cases. Moreover, we compared our
heuristics with state-of-the-art heuristics to exhibit the superior
efficiency of our techniques. We also tested our path-planning
method with an autonomous vehicle that captures obstacle
maps in real time. Our results showed that the vehicle can
follow paths generated by our method, which can compute
paths even for environments with narrow passages.

Our research here open several interesting research avenues
for future work. In this paper, we have not taken into account
the speed of the vehicle. For situations such as a lane change
during high-speed driving, the speed of the vehicle should

16

1) 0 s 2) 2 s 3) 6 s 4) 10 s

5) 20 s 6) 23 s 7) 28 s 8) 34 s

Reverse movement Pause

Forward movement Narrow passage Goal

Fig. 24: An image sequence of passing through the narrow passage shown in Fig. 23. The vehicle made a reverse movement
of up to 10 s, followed by a forward movement with a left turn.

5 10 15 20 25 30

5

10

15

20

25

30

2

1

(a)

5 10 15 20 25 30

5

10

15

20

25

30

3

(b)

5 10 15 20 25 30

5

10

15

20

25

30

4

(c)

Fig. 25: These figures show that our recursive path planner with a state of search space encoding the position of each node
can find feasible paths. It is difficult to find a feasible path,even though we used states of search space encoding position,
orientation, and direction of the vehicle within the A∗ algorithm without running our recursive path planning. That is mainly
because the sequence in 4 passes the nodes with the same stateto ones of the sequence generated in 2. In other words, the
reverse movement in that sequence occurred two times. The computation time of the path planner installed on our autonomous
vehicle was 9 ms.

be taken into account in computing the turning radius, which
was assumed to be constant in this paper. Fortunately, our
trajectory module can be dynamically re-computed according
to the speed of the vehicle. Nonetheless, it remains for us to
improve our method to operate robustly even in high-speed
driving mode. In particular, we would like to consider the
dynamics of the vehicle to support high-speed driving. We
have shown here that our method is efficient and robust, but
have not proved its completeness. We leave this pending for
future work.

REFERENCES

[1] U. Özgüner, C. Stiller, and K. Redmill, “Systems for safety and
autonomous behavior in cars: The DARPA Grand Challenge experience,”
Proceedings of the IEEE, vol. 95, no. 2, pp. 397–412, 2007.

[2] B. Siciliano, O. Khatib, and F. Groen, Eds.,The DARPA Urban Chal-
lenge: Autonomous Vehicles in City Traffic. Springer, 2009.

[3] A. Fisher, “Inside Google’s Quest To Popularize Self-Driving Cars,”
Popular Science, September 2013.

[4] J. Wit, C. D. Crane, and D. Armstrong, “Autonomous GroundVehicle
Path Tracking,”Journal of Robotic Systems, vol. 21, no. 8, pp. 439–449,
2004.

[5] G. Oriolo, G. Ulivi, and M. Vendittelli, “Real-Time Map Building and
Navigation for Autonomous Robots in Unknown Environments,” IEEE
Trans. Syst., Man, Cybern. B, vol. 28, no. 3, pp. 316–333, June 1998.

[6] R. C. Luo and C. C. Lai, “Multisensor Fusion-Based Concurrent Envi-
ronment Mapping and Moving Object Detection for Intelligent Service

17

Forward movement (1) Reverse movement (2)

Forward movement (3) Reverse movement (4)

Fig. 26: An image sequence showing an advantage of our recursive path-planning method in a tight region, whose observed
grid map is shown in Fig. 25.

Robotics,” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 4043–4051,
November 2013.

[7] E.-H. Shin, “Accuracy Improvement of Low Cost INS/GPS for Land
Applications,” Master’s thesis, The University of Calgary, 2001.

[8] C. R. Jung and C. R. Kelber, “A Lane Departure Warning System
Using Lateral Offset with Uncalibrated Camera,” inIEEE Conference
on Intelligent Transportation Systems, September 2005, pp. 348–353.

[9] S. S. Ge, X. Lai, and A. A. Mamun, “Boundary Following and Globally
Convergent Path Planning Using Instant Goals,”IEEE Trans. Syst., Man,
Cybern. B, vol. 35, no. 2, pp. 240–254, April 2005.

[10] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun,Principles of Robot Motion: Theory, Algorithms,
and Implementation. MIT Press, 2005.

[11] J. Gerdes and J. Hedrick, “Vehicle speed and spacing control via
coordinated throttle and brake actuation,”Control Engineering Practice,
vol. 5, no. 11, pp. 1607–1614, 1997.

[12] G. Antonelli, S. Chiaverini, and G. Fusco, “A Fuzzy-Logic-Based
Approach for Mobile Robot Path Tracking,”IEEE Trans. Fuzzy Syst.,
vol. 15, no. 2, pp. 211–221, April 2007.

[13] S. M. LaValle, M. S. Branicky, and S. R. Lindemann, “On the Rela-
tionship between Classical Grid Search and Probabilistic Roadmaps,”
The International Journal of Robotics Research, vol. 23, no. 7-8, pp.
673–692, August 2004.

[14] P. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths,”IEEE Trans. Syst. Sci. Cybern.,
vol. 4, no. 2, pp. 100–107, July 1968.

[15] P. E. Hart, N. J. Nilsson, and B. Raphael, “Correction to”A formal
basis for the heuristic determination of minimum cost paths”,” SIGART
Bulletin, vol. 37, pp. 28–29, December 1972.

[16] D. Ferguson and A. Stentz, “Using Interpolation to Improve Path
Planning: The Field D∗ Algorithm,” Journal of Field Robotics, vol. 23,
no. 2, pp. 79–101, 2006.

[17] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta∗ : Any-Angle Path
Planning on Grids,”Journal of Artificial Intelligence Research, vol. 39,
pp. 533–579, 2010.

[18] J. Ziegler and M. Werling, “Navigating car-like Robotsin unstructured
Environments using an Obstacle sensitive Cost Function,” in IEEE
Intelligent Vehicles Symposium, June 2008, pp. 787–791.

[19] M. Likhachev and D. Ferguson, “Planning Long Dynamically Feasible
Maneuvers for Autonomous Vehicles,”The International Journal of
Robotics Research, vol. 28, no. 8, pp. 933–945, August 2009.

[20] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “PathPlanning for
Autonomous Vehicles in Unknown Semi-structured Environments,” The
International Journal of Robotics Research, vol. 29, no. 5, pp. 485–501,
April 2010.

[21] R. Geraerts and M. H. Overmars, “The corridor map method: a general
framework for real-time high-quality path planning,”Computer Anima-
tion and Virtual Worlds, vol. 18, pp. 107–119, May 2007.

[22] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong Planning A∗,”
Artificial Intelligence, vol. 155, pp. 93–146, 2004.

[23] S. Koenig and M. Likhachev, “Fast Replanning for Navigation in
Unknown Terrain,” IEEE Trans. Robot., vol. 21, no. 3, pp. 354–363,
June 2005.

[24] B. Graf, J. M. H. Wandosell, and C. Schaeffer, “FlexiblePath Plan-
ning for Nonholonomic Mobile Robots,” inProceedings of the Fourth
European Workshop on Advanced Mobile Robots, 2001, pp. 199–206.

[25] L. E. Kavraki, P.Švestka, J.-C. Latombe, and M. H. Overmars, “Proba-
bilistic Roadmaps for Path Planning in High-Dimensional Configuration
Spaces,”IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580, August
1996.

[26] D. Hsu, J.-C. Latombe, and H. Kurniawati, “On the Probabilistic Foun-
dations of Probabilistic Roadmap Planning,”The International Journal
of Robotics Research, vol. 25, no. 7, pp. 627–643, 2006.

[27] S. M. LaValle and J. James J. Kuffner, “Randomized Kinodynamic
Planning,” The International Journal of Robotics Research, vol. 20,
no. 5, pp. 378–400, May 2001.

[28] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[29] J. L. Ny, E. Feron, and E. Frazzoli, “On the Dubins Traveling Salesman
Problem,” IEEE Trans. Autom. Control, vol. 57, no. 1, pp. 265–270,
January 2012.

[30] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime
Motion Planning using the RRT∗,” in ICRA, May 2011, pp. 1478–1483.

[31] R. A. Knepper and A. Kelly, “High performance state lattice planning
using heuristic look-up tables,” inIROS, 2006, pp. 3375–3380.

[32] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,”American Journal of Mathematics, vol. 79, no. 3, pp.
497–516, July 1957.

[33] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The Bridge Test forSampling
Narrow Passages with Probabilistic Roadmap Planners,” inICRA, vol. 3,
September 2003, pp. 4420–4426.

[34] L. Zhang, Y. J. Kim, and D. Manocha, “A Hybrid Approach for
Complete Motion Planning,” inIROS, October 2007, pp. 7–14.

[35] S. Dalibard and J.-P. Laumond, “Linear dimensionalityreduction in ran-
dom motion planning,”The International Journal of Robotics Research,
vol. 30, no. 12, pp. 1461–1476, October 2011.

[36] J. Lee, O. Kwon, L. Zhang, and S.-E. Yoon, “A Selective Retraction-

18

Based RRT Planner for Various Environments,”IEEE Trans. Robot.,
vol. 30, no. 4, pp. 1002–1011, 2014.

[37] N. I. Katevas, S. G. Tzafestas, and C. G. Pnevmatikatos,“The Ap-
proximate Cell Decomposition with Local Node Refinement Global
Path Planning Method: Path Nodes Refinement and Curve Parametric
Interpolation,” Journal of Intelligent and Robotic Systems, vol. 22, pp.
289–314, April 1998.

[38] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A Stable
Tracking Control Method for a Non-Holonomic Mobile Robot,”in
IEEE/RSJ International Workshop on Intelligent Robots andSystems,
vol. 3, November 1991, pp. 1236–1241.

[39] A. P. Aguiar and J. P. Hespanha, “Trajectory-Tracking and Path-
Following of Underactuated Autonomous Vehicles With Parametric
Modeling Uncertainty,” IEEE Trans. Autom. Control, vol. 52, no. 8,
pp. 1362–1379, August 2007.

[40] J. Pearl,Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley Publishing Company, Inc., 1984.

[41] N. J. Nilsson, Artificial Intelligence: A New Synthesis. Morgan
Kaufmann Publishers, Inc., 1998.

[42] F. Lamiraux and J.-P. Laumond, “Smooth Motion Planningfor Car-Like
Vehicles,” IEEE Trans. Robot. Autom., vol. 17, no. 4, pp. 498–502,
August 2001.

[43] M. Vendittelli, J.-P. Laumond, and C. Nissoux, “Obstacle Distance for
Car-Like Robots,”IEEE Trans. Robot. Autom., vol. 15, no. 4, pp. 678–
691, August 1999.

[44] L. Mandow and J. P. de la Cruz, “Multicriteria heuristicsearch,”
European Journal of Operational Research, vol. 150, pp. 253–280, 2003.

[45] S. Yoon and D. H. Shim, “SLPA∗: Shape-aware Lifelong Planning A∗

for Differential Wheeled Vehicles,”IEEE Trans. Intell. Transp. Syst.doi:
10.1109/TITS.2014.2340020

[46] R. N. Jazar,Vehicle Dynamics: Theory and Applications. Springer,
2008.

[47] D. Kim, J.-P. Heo, J. Huh, J. Kim, and S.-E. Yoon, “HPCCD:Hybrid
Parallel Continuous Collision Detection using CPUs and GPUs,” Com-
puter Graphics Forum (Pacific Graphics), vol. 28, no. 7, pp. 1791–1800,
2009.

Sangyol Yoon received his B.S. in mechanical en-
gineering from Hongik University, Seoul, Korea, in
1999, his M.S. in mechatronics from Gwangju In-
stitute of Science and Technology, Gwangju, Korea,
in 2001, and his Ph.D. from Korea Advanced Insti-
tute of Science and Technology (KAIST), Daejeon,
Korea, in 2014.

From 2003 to 2007, he was with Samsung Elec-
tronics Company Ltd., Suwon, Korea, where he was
engaged in the development of three-axis optical
pickup actuators for optical disk drives. From 2007

to 2009 he was with Hyundai Mobis, Yongin, Korea, where he wasinvolved
in pre-crash and advanced external airbag systems development. Since 2014,
he has been with LG Electronics Inc., Incheon, Korea. His research interests
include vehicle motion planning and control, and active safety.

Sung-Eui Yoon received his B.S. and M.S. degrees
in computer science from Seoul National Univer-
sity, in 1999 and 2001, respectively, and his PhD
in computer science from the University of North
Carolina at Chapel Hill in 2005. He is currently
an associate professor at Korea Advanced Institute
of Science and Technology. He was a postdoctoral
scholar at Lawrence Livermore National Laboratory.
His main research interests include designing scal-
able graphics and geometric algorithms. He co-wrote
a monograph on real-time massive model rendering,

and gave numerous tutorials on proximity queries and large-scale rendering at
various conferences, including ACM SIGGRAPH and IEEE Visualization. His
work has received a Distinguished Paper Award at Pacific Graphics, invitations
to IEEE TVCG, an ACM Student Research Competition Award, andother
domestic research-related awards. He is a senior member of the IEEE, and a
member of the ACM and Eurographics.

Unghui Lee received his B.S. in aerospace engi-
neering from Korea Aerospace University in 2009,
and his M.S. in aerospace engineering from KAIST
in 2011. He is currently working toward his Ph.D.
in aerospace engineering at KAIST. His research
interests include path planning and navigation for
autonomous systems.

David Hyunchul Shim received his B.S. and M.S.
degrees in mechanical design and production en-
gineering from Seoul National University, Seoul,
Korea, in 1991 and 1993, respectively, and his
Ph.D. in mechanical engineering from University of
California-Berkeley, Berkeley, CA, USA, in 2000.

From 1993 to 1994, he was with Hyundai Motor
Company, Seoul, Korea, as a transmission design
engineer. From 2001 to 2005, he was with Maxtor
Corporation, Milpitas, CA, USA, as a staff engineer.
From 2005 to 2007, he was with the University of

California-Berkeley as a principal engineer in charge of the Berkeley Aerobot
Team. In 2007, he joined the Department of Aerospace Engineering at Korea
Advanced Institute of Science and Technology (KAIST), Daejeon, Korea. He
is currently associate professor at the Department of Aerospace Engineering,
College of Engineering, KAIST and the director of the Centerof Field
Robotics at KAIST. His interests include control theory, unmanned aerial
vehicles, self-driving cars, and field robotics.

