Recursive Path Planning Using Reduced States for
Car-like Vehicles on Grid Maps

Sangyol Yoon, Sung-Eui Yoon, Unghui Lee, and David HyuncBiim

Abstract—We present a recursive path-planning method that obstacles [14], [15]. Many variants that purport to overeom
efficiently generates a path by using reduced states of theareh  the drawbacks associated with Aave been developed. No-
space and taking into account the kinematics, shape, and taing table approaches include identifying fewer grid edges. (e.g
space of a car-like vehicle. Our method is based on a kinemas- . S A
aware node expansion method that checks for collisions base F'eld,D* ,[16] and.Theté _[17])' de5|gn|pg better heuristics by
on the Shape and turning space of a vehicle. We present ConSIderlng the klnematICS Of the Veh|C|e or the Obstadleﬁ[
two heuristics that simultaneously consider the kinematis of a [19], [20], respecting the shapes of vehicles [21], repiagn
vehicle with and without obstacles. In particular, for challenging (e.g., Lifelong Planning A* (LPA) [22] and D' Lite [23]),
environments containing complex obstacles and even narrow post-processing [24], etc. Sampling-based approachasdic

passages, we recursively identify intermediate goals andodes S .
that allow the vehicle to compute a path to its destination. the Probabilistic Road Map (PRM) [25], [26], Rapidly-

We show the benefits of our method through simulations and €Xploring Random Trees (RRT) [27], and RR[8].
experimental results by using an autonomous ground vehicle Computing an optimal, collision-free path for car-like ve-
Furthermore, we show that our method can efficiently genera  pjcles with nonholonomic constraints has been known to be
Sﬁ!;fﬁ:ﬁe path for vehicles in complex environmentswith NP-hard [29]. As mentioned above, several approaches have
' been proposed to improve both grid- (variants of) Aand
Index Terms—A*, path planning, car-like vehicle, turning space sampling-based (variants of PRM and RRT) algorithms for
car-like vehicles. Grid-based techniques have been addpte
autonomous vehicles and have shown successful results [20]
. INTRODUCTION This is mainly because grid-based techniques tend to be more
efficient than sampling-based path planners, especialignwh

UTONOMOUS vehicles have lately drawn considerablﬁ]e dimensions of the state spaces are fewer than six [1&. On

attention, especially foIIovx_/ing the successes of the Dgz ) 5156 yse RRT but it generally runs on the order of a few
fense Advanced Research Projects Agency's (DARPA) Gra@aconds, although its efficiency depends on the size of tipe ma

and Urban Cha”engesh_[llL (2] %n(_jl Google's Sep‘—Dri\.gng)f the path in question [30]. Furthermore, if no collisioed
Car [3]..Aut0n_omous venhicies are gltatop various funta path to goal exists, grid-based path planners can repat thi
b!OCkS’ including sensing technologies ar_1d_ other cc_>ntmla failure much more quickly than sampling-based ones.

high level of abstraction, autonomous driving consistsoafr f In light of this, we focus on improving existing grid-based

steps [4]: 1) perceiving the environment of the vehicle [Sbath planners that efficiently compute collision-free gdtha

[6], 2) localizing the vehicle in the environment [7], [8]) 3 % . : . .
. L iscrete space for a given environment with obstacles tiBgis
generating a collision-free path to the chosen goal [9]],[10 - . !
: . : rid-based path planners are not designed for complexamvir
and 4) operating the vehicle as desired to follow the path [1 o
i " : ents containing many obstacles or narrow passages, asd thu
[12]. In this paper, we focus on the efficient generation . : . .
- . ) . end to either run slowly or fail to find paths to goal. In this
collision-free paths that vehicles can easily follow inigas - . .
paper, we present an efficient, recursive path-planningoadet

environments. erating with grid maps and two online heuristic functions
Considerable research has been devoted in the last %Bv g_ 9 P . . .
decades to generating collision-free paths for autonomot gttakes into account the kinematics, shape, and turpiag

9 9 . P OMOBS car-like vehicles and uses reduced states of the search

ground vehicles [10]. Most existing approaches can be |elas§

SN . . ace to compute the shortest path to goal. The main idea
f|e_d into grid- and sampllr:g—basgd pgth planners [13]. In trl‘f?\derlying our method is that when we cannot find a path in an
grid-based approach, the* Aalgorithm is known to be very

. T . -2 initial attempt in complex scenarios, we identify interrizd
effective at finding the shortest path to goal while aVO'd'”80a|s and nodes and recursively find paths to these goals and
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Fig. 1: (a) KAIST autonomous ground vehicle, (b) built-inngouter systems for path planning, inertial navigation exyst
(INS) operation, steering wheel control, etc., and (c) allesystem architecture.

A. A Algorithms takes into account the kinematics of the car-like vehicle by

A* algorithms have been extensively studied and are kno@fSuming an obstacle-free environment, whereas the second
to be effective for finding the shortest path to goal usin ne considers obstacles but ignores the vehicle's kinemati
grid maps [14], [15]. A brief review of these algorithms is he first heuristic is based on rotation-translation-iotat
provided in Sec. lll. Earlier techniques of this sort tende@aths' Alternatively, it can first make offline calculations

to find zigzag paths when the goal was not located on%Yen precomputed parameters, including the initial angeta
horizontal, a vertical, or a 45-slope to the starting position. POSitions and orientations of the vehicle, and then traesiad

Moreover, most techniques perform their procedures withoiptate to account for configurations that are not precontpute

using information from nodes already searched, even when fR” the other hand, the second_ heuristic is .computed online
obstacles move slightly. using a Voro_n0| graph or dynamlc programming regardlgss of
To overcome these problems, techniques that identify feV\}gle kinematics of the car-like veh_lcle_. The above-mentlb_ne_
grid edges (Field D[16] and Theta [17]) and replanning by researchers showed that a combination of the two heuristics
using information from nodes already searched (L22] and effectively reduces the sear_ch t|me-fc_)r the path .to goal.
D* Lite [23]) have been proposed. However, these techniql}égwever' these complementing heuristics cannot simultane

do not take into account the kinematics, shape, and turniﬁtjsIy acco_mmodatt_e kme’\r?atlcs, thuti reSUIt'n% 'E exp?_ssmn
space of car-like vehicles. O unpromising regions. Moreover, the second heuristic can

require longer to compute a solution because of the Voronoi
graph or dynamic programming used.

B. Heuristic Our proposed method uses the two types of heuristics

In general, Euclidean distance is used as the heuristic ftgscribed above. Unlike prior approaches, however, both ou
several types of Aalgorithms. However, this often results inonline obstacle-free and obstacle-aware kinematic hersris
the algorithm performing poorly because the quality of theonsider the kinematics of the car-like vehicle. Furthemmo
heuristic function affects the search time for goal [31]. our obstacle-aware kinematic heuristic can be efficientb}-e

Ziegler et al. [18], Likhachevet al. [19], and Dolgovet uated online within the Aframework, since it is based on the
al. [20] proposed methods that use two kinds of complgeometric concept of the Dubins model [32]. Our obstacle-
menting heuristics such that the one yielding the maximufree kinematic heuristic computes the shortest distaroma f
value is chosen as the final heuristic. The first heurista@rrent position to goal while considering the kinematitthe



car-like vehicle by assuming an obstacle-free environment TABLE I: Legend for boxes and triangles used in the grid
it is more aggressive and focuses on identifying the shiortédaP- The line used in a _tnangle |r?d|cates 'Fhe orientation of
path to goal, whereas our obstacle-aware kinematic hiuridf'® vehicle. See the pdf file for their color difference.

computes the obstacle distance while considering its kittem

. . . L. . Type  Meaning
ics in the presence of obstacles, i.e., it is more conseprati B sarinode
and focuses on identifying paths that avoid obstacles. B coal nod
oal noae
C. Narrow Passages W Opstacle
' . .. . . . [ | Node in a discovered path
Computing a collision-free path in environments with many B Eoanded node
obstacles and narrow passages poses significant techinétal ¢ > P ,
lenges for path planners. To address them, many variants of Node expanded Wfth forward movement
PRM [25], [26], RRT [27], and RRT[28] have been proposed. D= Node expanded with reverse movement
At a high level of abstraction, the probability of finding atlpa P>~ Node expanded with orientation

through narrow passages depends upon the sampling density
and the sampling strategies. A few prior techniques empgloye . . - .
adaptive sampling [33], hybrid approaches using approMm&ompUteq path is conf_lrmed to be coII|S|0n-fre_e. Thl_s apgioa
cell decomposition [34], free-space information [35], anlf rather time-consuming due to the nature of |terat|v_e@$ec _
retraction techniques that utilize the boundary of the adist On the other hgnd, our methoql represents a car-like V?h'de
space [36]. Nonetheless, finding paths to goal by taking in a ref:tangle msteaq of a C|rc_le, and directly consudgrs
account the kinematics of car-like vehicles has not be%| c f[ur.nlng space, while expanding nodes_gnd ev_aluat.mg
extensively researched for environments with narrow [pessa eur|s_t|_cs. As a result, our a_pproach can eff|C|entIy_ idgnti

A few approaches for Atechniques have been proposea coII|S|0n-free pth considering the shape and turningepa
for finding a collision-free path in narrow passages. On%f the car-like vehicle.
proposed method [37] for PRM techniques used a kind of
regular structure, i.e., an adaptive grid structure comynon )
generated by approximate cell decomposition, and captured” this paper, we focus on a path planner that generates
the connectivity of free space between the cells of the geguft collision-free path by considering the kinematics, shape
structure in a manner used for roadmap construction. Théd¥ tumning space of car-like vehicles. We then assume that
techniques are not primarily designed for use inmethods, @utonomous ground vehicles follow such paths by smoothing
but can be applied to Atechniques. However, such technique§'® Paths for better driving conditions and using patheiwing
do not consider the kinematics of car-like vehicles. methods. Many approaches have been developed for path fol-

By contrast, our method directly handles the narrow passd§#ing of this sort [4], [12], [39]. A path-following conti@r
problem within the A framework. When our method cannot$ responsible for tracking the generated path with minimal
compute a collision-free path to goal in an initial attempgor- _ _ _
we treat it as involving narrow passages, and recursivelyWe Will show examples and images of paths in a grid
compute intermediate goals and nodes by utilizing expand®@P representing obstacles. Throughout this paper, wehase t
node information extracted from our prior attempts to cotepul®gend for such plots described in Table I, unless otherwise
a path to goal. indicated.

I1l. OVERVIEW

A. Notations

. e . Our work utilizes the conventional *Aalgorithm. In this
Ground vehicles can be broadly classified into tank-like and . . .
. . . : . subsection, we define terms used throughout this paper.
car-like vehicles. A tank-like vehicle can rotate on a ppin

. ) . As in the common A algorithm, a node be in one of the

whereas a car-like vehicle driven by front or rear wheel§ . a2 . ow »
the focus of this paper, has nonholonomic constraints on |5”OW'ng. statuses: unV|_S|ted,_ open, “or clc_)sed [14vhen
' a noden is expanded to its child nod#, the distance between

movement [38]. As a result, we need to consider its tumir{ﬁem is associated with aarc cost If the current noden is

space as well as its shape. . .
In their research, Likhachev and Ferguson treated the ve Hlved at through several expansions from the start mee

: . e sum of the arc costs of those expansions from the staet nod
cle as a point, and generated two kinds of obstacle maps by, . .
o . N . . ng'to the current node is defined as theath cost Further, a
considering the inner and outer radii of the circle surrangd . .
. : . conservatively estimated cost from the current nade the
the vehicle [19]. This method tends to be expensive because . -
oal nodeng is called the cost-to-gbeuristic In general, the

we need to expand obstacles with the inner and outer ra Guristic used by conventional*As the Euclidean distance.

Additionally, it does not consider the turning space an.?he sum of the path cost and the heuristic for a node is

thus cannot make a tight turn. Recently Dolgew al. find Hgfined as thevaluation costWhen a heuristic isonsistent

a collision-free path with a largest clearance based on t . .
. . o It s unnecessary to reopen nodes that are “closed” [40]. The
center of the rear axle of the vehicle without considering th

turning space [20]. It then smooths a collision-free pathilev consistency condition is defined as follows:
checking the turning space. This process is repeated tetil t h(n) < c¢(n, n')+h(n), Q)

D. Shape and Turning Space of Vehicles



whereh(n) andh(n’) are the heuristics of the current node method allows node expansion in three forward directions:

and its child nodeY, respectively, and(n, n') is the arc cost straightforward, and left/right forward turns. We alsoouil

from noden to n'. three reversing directions corresponding to each forward e
When the heuristic function satisfies the following threpansion.

conditions and there exists a path to the goal, thal§orithm It is easy to expand nodes straight forward. To efficiently

is guaranteed to find the optimal path to goal [41]. Thedmndle left and right turning cases, we discretize a ciréle o

conditions are calleédmissibility conditions and defined asthe minimum turning radius for the vehicle using grid edges.

follows: 1) each node in a grid (or a graph) has a finite numbkr particular, we approximate the circle by a series of gtrai

of successors, 2) all arc costs are positive, and 3) the steurilines consisting ofy; straight edgestajectory modulese.g.,

is conservative, i.e., for all nodes, the heuristic mustenevry; = 2 and 5 in Fig. 3).

overestimate the actual value. When the vehicle aims to turn left or right with its minimum

turning radiusrmnin, we allow an orientation change (e.g., fol-

lowing a diagonal edge from the horizontal edge) in the same

direction (forward/reverse) as the vehicle only after exgiag

To accommodate the kinematics of car-like vehicles and find o 4es with the same orientation and the same direction. To
paths even for narrow passages, we propose our KinematicRserse the vehicle, we use a similar constraint. If the alehi

and Shape-aware’AKSA”) algorithm. We define the state ofy, s |eft, it is always allowed to turn right irrespectivetbe

each node_to re_present informaﬁpn related _to the_z kinematiG, ditions for expanding,; straight edges (Fig. 4), since this
of the vehicle, including a position, an orientation, and Ring of turning always satisfies the minimum turning radius.

forward/reverse direction. For the state of a search spacerhe yehicle is also permitted to turn left immediately afiter

order to construct trees for each node, however, we consi%zrrns right

only an x-y position among the available states for greaterq, gimple kinematics-aware node expansion technique can

efficiency; other state information, such as orientationl asily support U-turns, one-point turns, and two-poinfsur
direction, is derived from the position of the node relative gy 5y \when the goal is located inside the minimum turning
neighboring nodes. Moreover, we only consider x-y pos#lion,qjs a one-point turn requires less space than a U-tutn an

to check whether each node is duplicated in the search spacey, ;s preferred. To check whether a one-point turn (in chse
Fig. 2 shows the flow of our recursive path-planning algonith e\ erse movement following forward movement) is possible,

which is introduced_ in Sec.-IV-H apd IV-I. interference against obstacles with regard to subseqoent f
We propose using a kinematics-aware node expansipl:q movement is gauged by turning halfmf child nodes
method (Sec. IV-A) to construct a collision-free path that t by 45 (the red circle in Fig. 5(b)). For simply expanding

vehicle can follow at a minimum turning radius. Our nodg,qes however, the gauged child nodes are only generated
expansion method is based on our orientation-driven ans cos, 5 final path when there are changes in the direction of
(Sec. 1V-B) to provide a comfortable driving experience by, ement in the final path, although the nodes are checked

regulating the steering action of the vehicle. These methadl, jnterference against obstacles during node expansions
are combined with our online kinematic heuristics (SecOV- Tha circular arc created by such ac4furning pattern is

IV-D and IV-E) that consider both obstacle-free and obstaclye,metrically sufficient to accomplish such maneuvering. W
ridden environments to effectively reduce search timertieo compute a similar circular arc for the reverse movement.

to generate more realistic collision-free paths, we take in e inematics-aware node expansion described above is
account the turning space of the vehicle as well as its Sh‘"‘%‘?"ﬁcient, since we can perform numerous maneuvers based

For complex environments with several obstacles or narr(a/my on six grid edges. However, when the grid resolution
passages, our KSAalgorithm consisting of the aforemen-s g ficient, our discretized trajectory module, given a

tioned components may not find a path. In this case, we reCfiyimum turning radius, can also realize a low resolution.
sively find a path by identifying intermediate goals or nodqﬁ practice, we can use one meter or less as the width of

using either our shape-aware" Ar heuristic-driven search o501 cell, by virtue of the efficiency of kinematics-awarel@o
(Sec. IV-H and IV-I). We finally smooth the computed paﬂéxpansion.

to provide a comfortable driving experience and better -path
following performance (Sec. IV-G), and pass this inforroati

B. Overview of Our Approach

on to the path-following module. B. Orientation-driven Arc Cost
We propose orientation-driven arc costs that depend on the
IV. PROPOSEDALGORITHMS orientation of the current node. This method is designeth suc

In this section, we explain each component of our methotfiat it provides a comfortable driving experience by resing
the steering actions of the vehicle. We also show how to make

) ) . our arc costs adhere to the consistency condition that felluse
A. Kinematics-aware Node Expansion for avoiding the reopening procedure in thé Algorithm.

It is critical to respect the kinematics of a car-like vehi- We assign different values of arc costs to eight possible
cle during node expansions in order to compute paths tledpansion nodes, depending on the orientation of the durren
can be easily taken by such vehicles. For this, we propasede (Fig. 6). For movement straight forward where a child
a kinematics-aware node expansion method. Our expansimie has the same orientation as the current node, we can
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Fig. 2: This figure shows the overall flow of our method, wittaeples and the running sequence represented using numbers.
We first run our KSA algorithm given the start and goal positions (F1). If it firdpath (F2), we return the path to the path-

following control module in the autonomous vehicle. OthiseMF3), we then recursively attempt to find a path by idgimigf
intermediate goals (F4) and nodes (F6).
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ﬁig. 4: These figures show that we can turn left while sat-
isfying the minimum turning radius and can then turn right,
irrespective of the conditions for orientation change (&

the red circle).

Fig. 3: Kinematics-aware node expansion. (a) shows straig
edge patterns witly; = 2, which approximates the minimum
turning radius. (b) shows node expansions with= 5.

assign an arc cost equal to the diagonal grid width, say lgtc costs satisfy the consistency condition becausg <
which approximates,/2 (not 1.0 for the movement straightc(n, ') +h(') < (n, n') +h(n’) from (1). Since arc costs for
forward), to the expansion between the current node and égpansion in the same orientation are smaller than those for
expanded child node. This cost is chosen mainly because tigansion in different orientations, we can reduce unrsacgs
cost should be valid when we have different orientations (Surns and construct a smooth trajectory. To movement indhte
the right side of Fig. 6). For a 45eft or right turn, the arc directions from the current orientation we assign an irdinit
cost can have a value greater than that for the straight farwaost, thus blocking expansion to nodes that makes suctalater
movement, i.e., 1.4 to restrain the steering action. Given tchanges.
constraint, we choose the value 2.0. Unlike for forward movement, we restrain reverse move-
In order to show the consistency condition, I&n, n') ment when a vehicle is far from its goal. Specifically, the
andc(n, ') be arc costs defined by the Euclidean distan@c cost associated with reverse movement is multiplied by
and our proposed method, respectively. By the aforemenh-the Euclidean distance between the current node and the
tioned definitionc(n, n') < c/(n, n'). Therefore, our proposedgoal node. As a result, expansions for reverse movements are



configurations, we generate five different cases and caéula
trajectories in an obstacle-free environment (Fig. 7).

0 _ " 4 w0 . We can use a straight line for the trajectory in the following
. u . ": . “:'i. two cases: 1) when the movement vector of the current node
hs is identical to the vector from the current node to the goal
orom® coeoEom poeoE o nodehg, or 2) when the angle between the two vectiysand
(a) U-turn (b) One-point turn () Two-point turn hy is 45 or 13%, and we can expand nodes with diagonal
edges.

Fig. 5: Our method supports different turning maneuverg Th _ )
red circles represent the point of change in the direction of Otherwise, we check the following three cases to calculate a

movement of the vehicle. The child nodes in red circles afjectory based on a combination of a circular arc and a line
only included when determining the final path by checkinfP’ two lines): 3) the goal is located beyond the minimum
if there exist changes in the direction of movement in thgming radius of the vehicle in its current position, 4) st i
final path to goal but not when expanding nodes. Howevépcated on a trajectory with the minimum turning radius, pr 5
interference against obstacles is checked in the child siodi'S inside the minimum turning radius. These five condision

when expanding nodesmin is set to 4.5 m and; to 3. ;nd 7the corresponding computed paths are summarized in
ig. 7.

N x|t |~ The latter three cases are determined by considering geo-
= forward 20:d LINE L 2094—arccost :fwe | 2o | 14 metric relations, as shown in the condition at the bottom of
= reverse = | = | = orientation; | = A —> Fig. 7. Given the minimum turning radiug,, and the distance
- I(itoetrzlnowed) A N HE N h between the turning center and the goal, these three cases ar

2.0xd | INF_| 20 I lLaxd z.gxd INE determined whenm, < h, rmin = h, andrmin > h, respectively.

The trajectory computed for the third and fourth cases & si
of a circular arc followed by a line, while two lines are used
for the fifth case.

Fig. 6: Our consistent orientation-driven arc costs for tlife

ferent directions given the center node. INF indicates it&in

values to prevent expansion in the lateral directi@hss the

Euclidean distance from a current node to a goal node. To identify such conditions, we need to compute the center,
(X, Ye), of the circular trajectory (Fig. 7). When a node ex-
pands from its parent node, we have the following relatignsh

reduced because of higher arc costs. However, we cahcehetween the positiorixs, ys) of the current node and the

when its values becomes less than 1.5 times the Iengthp@fsition (Xst, Yst) Where it begins to turn:

the vehicle in order to equitably treat reverse and forward

movements close to the goal. One can easily show that our

orientation-driven arc costs are consistent.

_>
: : - Xst, Yst) = (X, ¥s) +(0.5m1 — ) hg,
C. Obstacle-free Kinematic Heuristic ( vah(:re (% ¥) + s
Euclidean distance as a heuristic does not do well to i
represent a variety of situations, especially cases thaeruk Ny = M 1M > T 2)
on whether the goal is attainable within the turning radius N, otherwise

of the vehicle, and ones where it is located in a direction
lateral to that of the vehicle. In order to overcome these
problems, we propose aabstacle-free kinematic heuristic

Hiree, designed to compute the shortest path o goal withoybre 1 is the number of nodes that continuously have the

considering obstacles but taking into account the kInGIBatlsame orientation and direction (e.g., forward or reversg),

of the vehicle. The heuristic also supports efficient onliqg the unit movement vector of the current node, andis

computlnlg. b le-free ki ic heuristi the number of straight edges of our trajectory module for the
To evaluate our obstacle-free kinematic heuristic, we co Irning circle. These geometric quantities are shown at the

pute the IelngTh of thhe shc_)rtelst p‘f"th based_on the_DL:b|Ir_1$ r,go %lttom condition of Fig. 7. We can easily derive the above
l.e., we calculate the optimal trajectory using a single,an qguation by examining the location of the current node in

the combination of a circular arc .and one or two lines [42 he trajectory module while respecting the definition of our
We then use the length of the trajectory for the ObStade'frFrajectory module (Fig. 3), and the orientation of the catre

kinematic heurlsth-h,ee. ) _node as tangential to the circular arc.
Let us first define a movement vector as the orientation

toward forward movement, or as its negative for the reverseWe observe that the centéx., yc) of the circular trajec-
movement. Different trajectory types can be constructed byry is on a normal vectorV), heading inside the circle
considering the movement vector and whether the goal (end toward the goal) computed @ts, yst). Based on this
within the turning radius of the vehicle. Based on thesgbservation, the centex., yc) of the circular trajectory is



Situation Condition Trajectory
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1) L s movement vector of current node
EEEES hy: vector from the current to the goal
i”” | H o
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Fig. 7: Conditions and types of trajectories for each siturain our obstacle-free kinematic heuristic.

then obtained as follows: 251
(X, Ye) = rminvﬁﬁ' (Xst, Yst), ok
where
0 -1 I
7[] = Zl: ﬁ& 15
1 0
v o= ar%Tir(llrminVnJr (Xst, Yst) — (Xg; yg)ll)- |
3)
Here, (xg, Yg) is the position of the goal node. 5 10 15 20 25

Fig. 8 shows the estimated center of the circular trajectopjg. 8: This figure shows estimated centers of the circular
from the current expanded node. The centers are well estgjectory. (st, Yst) begins the turn in each group (T1, T1
mated on the whole. In particular, the center of the trajgctoT2  and T3) and are represented ®y The estimated center
is correctly computed on the horizontal or the vertical lngn of each circular trajectory is placed @a for T1 and T1, ¢,
pattern, whereas it is less accurately computed for didgofgr T2, andc; for T3. Lines shown in the figure represenin

edges. This is mainly because the approximation of thelarcucomputed in each groupmi, is set to 7.5 m n to 5, and
trajectory based on our trajectory module is less accurate @e grid size to 1 m.

diagonal edges. Note that the estimation of the center id use
for the heuristic and not the calculation of the final path.

The fifth case represents a maneuver such as a one-point
turn at (ax, gy) (shown in Fig. 5(b)) for the situation wherewnhile the path costs of them are same, whereas the obstacle-
the goal is located inside the turning radius. We can simyplifree kinematic heuristic of the first is smaller than that hué t
it by using two lines (the bottom trajectory in Fig. 7). Thissecond. In this situation, the second node can be selectad as
simplified approach satisfies the admissibility criteria fioee parent if we use the Euclidean distance as a heuristic. Hemvev
heuristic, since the length of the lines is shorter than¢ingth the first node can be selected as a parent using the obstaele-f
of a path generated in a grid spaceyx, gy) is determined at kinematic heuristic. It is desirable to select the node gvi
a position where the current node can change its orientati@maller obstacle-free kinematic heuristic as the parecase

The cost estimated by our obstacle-free kinematic hearisthe obstacle-free kinematic heuristic reflects the kinésat
is larger than or equal to that estimated by Euclidean distarof the vehicle. As a result, it is more informative than the
and is also admissible, which will be discussed in Sec. IV-Beuristic that uses Euclidean distance [40]. Fig. 9 shows th
our obstacle-free kinematic heuristic makes nodes exmhnaxpanded nodes to find a path to goal using Euclidean distance
fewer. Let two nodes exist. We assume that the Euclideas well as our obstacle-free kinematic heuristic. As exgubct
distance of the first node is larger than that of the secondr heuristic identifies the path with fewer expanded nodes.



E. Admissibility of Our Heuristics

< The proposed heuristics naturally satisfy the first andséco

conditions (finite successors and positive costs) of theethr

conditions of admissibility. We now discuss the conserva-
D> tiveness of the proposed heuristics. The obstacle-free-kin
matic heuristic is based on the optimal path to goal while
(Ea incorporating the kinematics of the car-like vehicle. It is
admissible because it guarantees an estimated distandersma
than an actual distance to goal in the grid space. The obstacl
aware kinematic heuristic is also admissible because i onl
reduces the distance of the obstacle-free kinematic hiuris

Intuitively, if a distance estimated by any heuristic isglar

Fig. 9: Our obstacle-free kinematic heuristic (b) is morfan an actual distance, the evaluation cést(g+h) at goal

informative than one that uses Euclidean distance rig)% 1S higher than the cost of optimal patg*(ng)) because the
2). In this example, a one-point turn is preferred to forwargStimated heuristic at goah(pg)) is higher than an actual
movement because space for forward movement is insufficiefitance I6"(ng)), i.e., zero. As a result, if any heuristic is not
The child nodes in red circles are included when calculatirdfiMissible, the found path is not optimal (see [40] for a fairm

the final path, as shown in Fig. 5(b). proof). S
The search procedures can be more efficient if they are

combined. In general, a simple method for satisfying the
admissibility of a heuristic is to compute a weighted sum
of multiple admissible heuristics. When the sum of weights

Although the obstacle-free kinematic heuristic takes ini§ less than or equal to 1, the combined heuristic is also
account the kinematics of the car-like vehicle, it does ngdmissible [44]. N o
reflect obstacles in the environment and thus can fail to find aln the path finding problem, however, combining heuristics
path to goal (Fig. 10(a)). In order to overcome this problera, With @ sum of weights of less than 1 has been known to
propose arobstacle-aware kinematic heuristidlgps, Obtained P€ inefficient because the output of the combined heuristic i

by computing the obstacle distance used in the geometfignificantly smaller than the actual distance. To increase
approach [43]. search efficiency, we combine the two heuristics to form a new

combined heuristicHg, .., with a weight factor as follows:
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D. Obstacle-aware Kinematic Heuristic

Hops IS simply computed by modulating the obstacle-fre com

kinematic heuristicH¢ee With the inverse of the trajectory Homp = kn(Hfreet Hobs), (5)

length (or obstacle distance)jing, from the current node to

» . g . ) hereky, is an amplification factor for the sum of the two
a position at which the vehicle collides with obstacles. V\)%/ n P

. . [Teuristics. Note that we use superscripto indicate that
use the inverse of the trajectory length because the veh|5£ P ®

4 id obstacl i hes th T lculat & compute a path tracking the current orientation. We will
must avoid obstacies as It approaches them. 10 caicuiate élgo subsequently introduce a heuristic vafg,,, computed
position of the vehicle at collision, we use the trajectsrie

. . ' 1using an orientation opposite the current orientation iteor
computed to calculate the obstacle-free kinematic hem:lrls{

. . . . o handle narrow passages.
.(F'g' 7). Fig. 1.1 shows an example of a trajectory anidy When Hgps is 0, i.e., there are no obstacles along the
in the test environment.

. e ] ) ~ computed trajectory, we sé¢, to 1 to prevent the heuris-
Given the minimum distancening between the colliding ic from overestimating the distance to goal. Otherwise, we
points of potential obstacles, the obstacle-aware kinemaiggressively sek, to be higher than 1 because it is more

heuristicHobs is defined as follows: important in our problem to find paths of reasonable quality
in an efficient manner than to find the optimal path. In pragtic
:j{ee, if ming >1 a range of 1.0 to 2.0, especially 1.5, fky works well, and
g : - .
H _ H i min < 1 4) strikes a good balance between efficient search and high-
obs free, =L - quality paths. Fig. 12 shows search patterns with varying
0, no collisions in a simple environment with obstacles. Moreover, Fig. 13

shows that whelk, is higher than 1, our combined heuristic
tends to be overestimated to a greater extent as we have a
The first equation of (4) can overestimate the distance td g@aaller value of the minimum turning radius. Nonetheldss, i
on the grid map wheminy is too small, i.e., less than 1. Wemore effective in environments containing complex obstscl
therefore limit its estimation withiree Whenming is less than as shown in Fig. 10(c). In Sec. V-A, we show that our proposed
one. method is more efficient than prior methods [19], [20].
Figs. 10(a) and 10(b) show expanded nodes for finding the
path to goal. Compared tBlfree, Hops finds the path more F- Shape-aware Collision Checking
effectively, especially when it needs to be computed in theWe have thus far discussed techniques considering the
presence of obstacles. kinematics of car-like vehicles. In this subsection, wespre
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(c) shows the result combined with both. By using both héiceswe can effectively find a path to goal. To test our method
ny1 is set to 2, and the weight factor of the combined heurigtics set to 1.5.
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a shape-aware collision checking technique that takes ini 1o meses | SRCc4cicic 10 Esees MEIICiCicl
account the shape of the vehicle. This method is based on o Al Il A il
previous work that employs a graphical method [45]. Asintha s “ZZJ 5 4“'2';
study, we approximate the shape of a vehicle as an oriente
rectangle (Fig. 14), since it tightly approximates the €hap 5 0 5 2 s 10 5 20
many types of vehicles. Unlike in our previous work, however
this method checks collisions along trajectories follovsd () kn=1.5 (63) (d) ky = 2.0 (63)

or estimated by our kinematics-aware node expansion and o
heuristics while considering the shape and turning space fd@- 12: Search patterns with different values@fThe values

vehicles in order to reflect the kinematics of car-like végsc N parentheses indicate the number of expanded noges

We consider two cases, moving in a straight line or makir1'sget to 2.
a turn, where the shape of the vehicle is taken in accounewhil
following trajectories (Fig. 7). Checking interferenceaatst

SN . radii of each of these inner and outer circular arcs is sefto
obstacles along a line is easily checked on each node dur

rout, respectively, based on the center of the rear axle, as

node expansion and on trajectories estimated by our hiesrist ollows:
as shown in Fig. 14(a), by translating the box of the vehicfe '
in the direction of movement. fin = TImin—0.5ay
When a car-like vehicle makes a turn, i.e., follows a circula fout = \/(rmin+0.5aw)2+a2 : (6)

arc, our approach considers the width and length of the ieghic

assuming that each node is placed on the center of the rederea, anda; are the width and the front overhang of the
axle of the vehicle (Fig. 15). We then generate inner androuteshicle, respectively. Once we construct these inner amer ou
circular arcs that cover the turning vehicle [46]. The tani circular arcs, we check for interference against obstdidssd
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Fig. 16: Collision checking by considering the shape and
turning space of the car-like vehicle. The solid line repres
the trajectory for the vehicle while dashed lines represeat
space required for a vehicle to turn.

Fig. 14: Procedure for checking interference against cheta
when the vehicle moves straightforward or makes a turn.

on them (Fig. 16) with a higher accuracy irrespective of the

resolution of the grids [47]. are applied to narrow passages for a car-like vehicle. This
is mainly because the vehicle needs to repeatedly make a
G. Path Smoothing forward/reverse movement to find a path to goal. Fig. 17(a)

shows an example where it is difficult to find a path through
: ; _ S%arrow passage owing to the kinematics of the vehicle.
the turning center of circular arcs and placing the nodeghir

path on the circular arcs along their normal direction. 8inc In this k'nd_ of complex _enwro_nment, we may ne_ed to pass
tg],e same region multiple times, i.e., have a node with theesam

of the nodes, these turning centers may be computed a ligfgte (we now use only a state of the search space that encodes

differently, even from neighboring nodes, while making entu a position for the efficiency of the search time) multipleesn
as shown’in Fig. 8 ' in a found path. Having a node with same state multiple

To compute the turning center of the circular arcs, we accetggIes n a found path, unfortunately, IS not a_llowe_d m_the
ventional A. To allow this feature and effectively identify

each node in the path and use the same turning center wﬁgﬂ] ¢ . thdindi
making a consistent turn without any change of angle. We cBR'S TOF NAITOW passages, We propose a recursive pa dindi
roach in multiple steps by introducingermediate goals

assume that nodes prior to and following one that changes" : -
orientation make consistent turns. From the above proaess, lle using the reducgd §tates of .the search_ shace. Finding
Fig. 8, we set the center of the circular aracjovhen nodes at Intermediate paths using mter_medlate_ goals is a d|V|®-gn
T1 begin to turn. Fig. 17(c) shows the circular arcs of tugninConquer strategy _for challenging environments. The dw!de
nodes and a smoothed path from an initial path (Fig. 17(b§Ed-conqueralgorlthm WOka by breaking down a problem Into
during our node expansion method. b-_problems._The solutlon_s Fo the sub-problems are ca_afdbm
to give a solution to the original problem. One may think of
) an alternative approach that uses higher-dimensionaisstt
H. Intermediate Goals for Narrow Passages the search space, such as ones encoding orientations as well
Computing a collision-free path in environments with namas positions to allow multiple nodes at the same position as
row passages poses a significant challenge for path plannémsg as they have different orientations. We attempted this
Similar problems arise when most prevalent Algorithms alternative, but found that our current approach, whictswse
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Fig. 18: Our heuristic-driven search method checks a path
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i T . ITT1 along the identified path as intermediate goals for our KSA
FeEasy et £s ;| E H algorithm. In particular, we choose the node from the ideati

20 ! Q ‘;‘g | 2 o B path that is closest to expanded nodes of the prior operafion

it es sl 5T our KSA* algorithm. We choose the node (on the path found

o &h ‘ o by the shape-aware*Aclosest to expanded nodes among other
possible candidates because there is a smaller probahgity

obstacles are encountered in regions close to nodes exgppande
tH by the KSA* algorithm.

Given the intermediate goal, we try to find a path to it

(© (d) by re-executing our KSA algorithm. If we can find a path
to the intermediate goal, we attempt to find a path from

Fig. 17: We only use a state of the search space that encogiesintermediate goal to the final goal by running the KSA
a position for the efficiency of search time. (a) shows agigorithm again. Fig. 17(a) shows the identified intermeia

identified intermediate goal (shown in the red box) and (pindoal in an environment with a narrow passage.
colored) path segments computed by our shape-awarerA

a narrow passageayf is set to 4). (b) shows a path foundI
by the intermediate goal (coordinates (17, 16)) and nodes _ _ .
(coordinates (6, 16) and (25, 17)). (c) shows a smoothed pathV& may not even find a path to an intermediate goal
Dashed circles represent the minimum turning radius of tifientified by our shape-aware®smethod. In this case, we
vehicle. Numbers shown near the paths represent manegvefifemMpt to find a path to the intermediate goal by computing
sequence. (d) shows a path (shown in gray) tracked by dmermedlate nodes. Unlike in the*Aramework, we sort and

vehicle given a perfect obstacle map. Our path planner takg@"ch nodes based on heuristic values rather than eealuati
91 ms on an Intel i7 computer to calculate the path. costs similar to the best-first seardte(ristic-driven search
This method is known to be very effective at expanding the

most promising node to goal [40], i.e., it is suitable when
. . . we find a collision-free path for these difficult environment
simple state of the search space and recursive path'fm'dmgl\lonetheless, we could not prove the completeness of our

more efficient (Sec. V'A).' . ] heuristic-driven search due to using the most promisingesod
For our method, we first run our KSAalgorithm to find f.om the searching layers as shown in Fig. 18.

a collision-free path. When we cannot find such a path, ts far, we have computedS (n) for a node using

we assume that the environment has a narrow passage. (W current orientation of node. To increase a probability
perform two procedures to pass through the narrow passagefinding a path to goal, we check to see whether we can
1) we find an intermediate goaiyig, near the narrow passagecompute a path to the node using the opposite orientation to
and 2) then find a path by passing from the intermediate gqgak cyrrent one. The heuristic value of the reverse oriemtat
to the final goa_ll. _ . is denoted byH!,(n).

In order to find intermediate goals, we apply an &lgo- |n our heuristic-driven search, each node is associated wit
rithm, calledshape-aware Aalgorithm that considers only the minimum valued® _ (n) betweerHS () andH! ().

com com
(n), if

the shape of the vehicle (Sec. IV-F). This shape-aware Siven two componentsifree(n) and Hops(n) of H™

algorithm does not consider the kinematics of the car-likg, (n) is zero, it indicates a high probability that a collision

vehicle because we are interested mainly in checking whethgll not occur on a path to goal.

the vehicle can pass through the narrow passage. A visual flowro use this information, we sort values % (n) for all

of the different components is shown in Fig. 2. expanded nodes in ascending order into two cases, depend-
The path computed by the shape-awareafgorithm is used ing on whether the value oflops(n) is zero. We prioritize

only to compute intermediate goals for our KSAlgorithm, the HJ . (n) for which the value ofHgns(n) is zero over

com
not as a path for the vehicle. We can then choose noded .(n) for which the value ofHgss(n) is non-zero. We

Heuristic-driven Search for Narrow Passage
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call HR (n) sorted in this manneHsort(n). Note that this
approach is different from that of A since we search nodes
based only on heuristic values, not on evaluation costs. A 2
a result, our heuristic-driven search cannot guarantek pa
optimality. Nonetheless, the environment that we are hagdl
in this context is complex, and we thus focus on computing i
collision-free path even though it is not optimal. 10
In this approach we choose a node with the minimum valu
of Hsort(n) and treat it as an intermediate nodg, Note that Eemea
we already have a path from the start nodenig since the 5 10
node is chosen from expanded nodes from an earlier invacatio
of our KSA* algorithm. We then re-run the KSAalgorithm to @ (0)
find a path from the intermediate nodg to the intermediate

goal nig. eeSshown in black circles) using our proposed heuristic valiad

thg ilr?tgfrﬁzggetéhr?;&eairg f;gl ilri?eartr)rlféé(i)a{?d :a?a&r;gemelea%d evaluation cost (b) to the intermediate goal (shownén th
. . . goal. thy fed box). The use of our heuristic values makes it possible to
we have more information by now. First, we have expand

node information used to choose,: second, we have infor- ind a path to an intermediate goal with fewer expanded nodes

. . or intermediate nodes than the method that uses evaluation
mation about expanded nodes acquired to compute a path fr((:)m

nin. We call nodes with the minimum value for eaklgot(Nn) ost.

from the first and second pieces of informatiop and nge,

respe(_:ti.vely. Of the npdersfi andnge we chqose the one with A Simulation Results
the minimum evaluation cost as the next intermediate node.

Intuitively, if we pick nsj, we changens; to ni, and search ~ We tested our method against a complex scenario involving
another path from the start node (Fig. 18). If we otherwis& pi moving from a small region toward a goal in another tight
Nse W€ changense to nip and continue to find a path startingregion (Fig. 20). Our proposed method can find paths for such
from the prior intermediate node. We continue this processmplex scenarios because of our recursive approachngxiti
until we no longer have nodes Hsort(n). In other words, our a constricted space to reach the goal by passing a narrow
recursive method terminates when no candidate nodes existssage, as shown in Fig. 20, is a difficult case because it
As a result, our heuristic-driven search can efficientlyuesd requires for a node to repeatedly be in the same state in the
the number of intermediate nodes by using promising nodisind path, due to repetitive forward and reverse movements
instead of all nodes expanded from each intermediate naafethe vehicle in limited space.
every time. In order to show the benefits of our proposed heuristics, we

In order to show the benefits of our heuristic-driven seartasted two versions, both of which use only our kinematics-
algorithm, we compared the expansion results of a methadiare node expansion. However, the first version uses previ-
that uses our proposed heuristic values with one that cerssidously proposed heuristics [19], [20] whereas the second one
evaluations costs (Fig. 19) in an environment with a narrouses our heuristics. We performed these comparisons in two
passage. As shown in the figure, our method finds a path toenvironments without and with obstacles (Fig. 21).
intermediate goal with fewer expanded nodes or intermediat Table 1l shows the number of node expansions and the
nodes. When evaluation cost is used as a heuristic, the thetoomputation time required to evaluate them. Our method
finds intermediate nodes close to the start node accordipgrforms significantly better than the method that uses pre-
to the common expansion pattern for any Algorithm. viously proposed heuristics across two benchmarks. This is
Furthermore, there are cases where the comnioaldorithm primarily because our method is very efficient in computing
fails to find paths, whereas our recursive method succeedsir heuristics. On the other hand, the previously proposed
finding a path (Fig. 25). These results prove the efficienay aheuristic functions, against which ours were compared; rel
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Fig. 19: Results of methods that compute intermediate nodes

robustness of our method. on expensive dynamic programming techniques for computing
a heuristic for environments with obstacles. Our method als
V. RESULTS entails a smaller number of node expansions for environment

Thus far, we have shown the effectiveness of differemiith obstacles than the prior method. However, for a simple
components of our proposed algorithm through examples. énvironment without obstacles (Fig. 21(a)), the prior meth
this section, we prove the efficiency of our two proposedranli has a smaller number of expansions than ours. This is because
heuristics and the recursive path-planning method, fakbw the prior method uses dynamic programming that directly con
by experimental results obtained by using an autonomasigers node expansions but does not consider the kinematics
vehicle. The simulations and experiments are conductedjuspf the vehicle. As a result, in an empty environment, such as
MATLAB, and our autonomous vehicle is equipped witlour test environment, dynamic programming can generate a
controllers and a path planner, which are integrated usipgth with a small number of node expansions. Nonetheless,
LabVIEW on an i7 computer with a 3.4 GHz CPU and 3n practice, there can exist many obstacles in a path, and the
GB DRAM. computation time for dynamic programming in such cases can
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Fig. 20: (a) to (0), show how our recursive method computesta given a complex environment. (p) shows the final path.
Nodes in purple, in the red box, and in the black circle regmesa path found by our shape-awarg Atermediate goals, and
intermediate nodes, respectively. Arrows indicate thealion of movement.

be very expensive, as shown in this simulation. recursive path planning. However, we found that this alter-

Detailed state representations:One can represent stated1ative is much slower than our proposed method. In order
of the search space for nodes by using position and orientatit® Show the efficiency of our recursive method in a simple
not only by using position as we did for our method. In thifePresentation of the state of the search space encodigg onl
case, one may think that we can naturally allow mump@osnmnal information, we compared _the computation t_|n‘|e 0
nodes at the same position as long as they have differ@f proposed method with an alternative method encodiny bot

orientations. As a result, we can avoid using the proposgesition and orientation and not executing the recursita-pa
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L e M= we used states encoding positions and orientations withaut
P ammmmmmmmci ccamuunnMRTERREE G EEEE R naa recursive method.
7| [ > 7
EICiC = o
wh e o ﬁ;kg HHHH TABLE IlI: Average computation time for 10 trials using
iﬁggi" 3;@@1 MATLAB in order to evaluate our recursive path-planning
AR T BT[] method. P and O represent a position and an orientation,
B 5 respectively.
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Fig. 21: (a) and (b) show expanded nodes and paths obtained method sive method
by applying the maximum value of two heuristics proposed in
[19], [20], and (c) and (d) are obtained by applying our two Cpmputation 1258 42 04
heuristics.ny; is set to 2. time (s) ' '

TABLE II: The number of node expansions and average
computation times for 10 trials using MATLAB in order tosteering condition, the minimum turning radius of the véhic

evaluate our heuristic. is computed as follows [46]:
, : wheelbase
Figs. 21(a) & 21(c) Figs. 21(b) & 21(d) I min - . (7)
Prior [19], [20] Ours| Prior [19], [20] Ours tan(average tire ang}e
- From (7),rmin IS approximately 5.2 m.
Computation vimin 1= ) )
time (s) 58.87 131 7544 1.23 For all experimental results, we set the size of the grid cell
Num. of node 63 0 105 o4 in each dimension to 1 m. In this grid resolution, we sgt
expansions to 4 and the turning radiusyin to 6 m. In order to achieve

a more realistic turning radius for the test vehicle, we can

. . . i o use a higher-resolution grid map, i.e., figsin = 5.2 m, the
planning algorithm in the environment shown in Fig. 17. Thﬁatio between the minimum turning radius in a 1-m grid and

runtimes of thes_e methods are summarized in Table ”_I' FA9. $hat of the real vehicle can be selected as the grid resalutio
shows a path with expanded nodes when we differentiatesstqi§ g7 m per grid). However, we finally set the resolution to 1 m
of the search space by using position and orientation WithQi, -5 ,se it worked well in our experiments. Further, Dolgbv

executing the recursive planning algorithm. Our method cap opained good results with a 1-m resolution in the DARPA
efficiently find feasible paths while expanding fewer nodqg, 4, Challenge [20].

than the alternative method, which encodes both positieh an o 5 tonomous driving, the vehicle is installed with laser

orientation without executing recursive planning. scanners, cameras, an inertial navigation system (INS3, PC

_ and actuators (Fig. 1). The in-vehicle actuators consilere
B. Experimental Results here included a motor-driven power steering wheel (MDPS),
We performed experiments on a ground vehicle (Fig. 13. gas pedal, brakes, transmission controlled by a controlle
The ground vehicle was equipped with a gasoline engine afea network (CAN), a cruise control box, a rotary direct
1591 cn¥, a four-speed automatic transmission, a front-wheelirrent (DC) motor, and a linear DC motor. Note that the
drive, and an anti-lock braking system (ABS). Its wheelbasaser scanners installed in the vehicle could detect olestac
was 2.55 m long (total length : 4.105 m) and the average tiire front of it and in a small lateral ranget-(135° from the
angle for the two wheels was 26Based on the Ackermanlongitudinal axis) of the vehicle. We chose its field of view
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because it is sufficient to avoid obstacles placed in front of
the vehicle while driving. In the case of reverse parking, we 30 H HHH
can sufficiently scan obstacles by moving forward and detect ”s ,ﬁ
them using rear ultrasonic sensors while making a parking. H EEun
Moreover, we acquired the position, steering angle, anddpe 20 ,,H
of the vehicle using a differential global positioning ®yrst
(DGPS) with a Pacific Crest Positioning Data Link Low-power
base (PDL LPB) and sensors installed by the car manufacturer 10
(Kia Motors Corp.). 0
We first tested how well our autonomous ground vehicle
could compute and track a collision-free path. We placed the ‘
vehicle in an open space but used a perfect obstacle map
of a virtually created complex environment with a narrow @
passage, as shown in Fig. 17(a). The path tracked by our
vehicle given the perfect obstacle map is shown in Fig. 17(d)
Our autonomous ground vehicle followed the computed path
consisting of combinations of forward and reverse movesent
The computation time taken by our path planner, installed
in the autonomous ground vehicle, for a virtual but complex 400r
environment was 91 ms using an i7 computer. 5 10 15 20 25 30 35
Environment with narrow passage: We also tested 10
our method in a real environment with a narrow passage.
Fig. 23 shows that our vehicle passed the narrow passage by
making a tight turn. Note that such a tight turn was made by

5l | gear‘ shift | | | | |
A
taking into account the shape and turning space of the \ehicl -5 ]

The driving in this environment required reversing because -10; s o 15 20 2 30 3
obstacles were placed inside the minimum turning radius of time (s)
the vehicle. Fig. 24 shows still images of this scenario. (b)

Recursive path planning: We have pointed out that by
encoding more information regarding the state of the seartig. 23: (@) Our method generated a trajectory by making a
space of each node, we can find paths without using dight turn and passing through a narrow passage. The number
recursive path planning as mentioned above. To show theside each path indicates the time (in seconds) when the
significant benefits of our recursive path planning, we test¥ehicle passed a designated point on the path. (b) Steering
our method in another constricted region (i.e., parking in &hgle and speed of the vehicle over time. The computation
narrow region) (Fig. 25). In this environment our recursivéme was 4 ms.
path planner found feasible paths while only using a simple
state of the search space, i.e., encoding a position for each
node. On the other hand, we could not find a path evilpen proposed two online kinematic heuristics with obstacl
though we used states of the search space encoding positft#€ and obstacle-aware approaches for efficient sear¢imnwit
orientation, and direction of the vehicle. In this alteivat Oour KSA" algorithm. For complex environments with many
method, we found paths for three sequences from 1 to apstacles and narrow passages, our method attempts to find a
since the states of the nodes in these sequences are diffeR#h by recursively identifying intermediate goals and emd
However, the nodes in the sequence 4 have the same state d8 Verify the benefits of our method, we tested each compo-
the nodes in the sequence 2 because the reverse moveri€it of our method using various simulations, and proved tha
in those sequences occurs two times. This result shows €& planner can support complex maneuvering, such as two-

efficiency and robustness of our method for the plannifint turns in constricted space. Further, we tested ouhookt
problem of car-like vehicles. in environments with narrow passages and confirmed that it

satisfactorily handles such cases. Moreover, we compared o
heuristics with state-of-the-art heuristics to exhibé guperior
efficiency of our techniques. We also tested our path-ptanni

In this paper, we proposed a holistic approach, the KSAnethod with an autonomous vehicle that captures obstacle
algorithm, to find a collision-free path to goal by takingdnt maps in real time. Our results showed that the vehicle can
account the kinematics, shape, and turning space of a daflow paths generated by our method, which can compute
like vehicle. Our grid-based path planner used only a sthte gaths even for environments with narrow passages.
the search space encoding a position, without orientatioh a Our research here open several interesting research avenue
direction for the sake of efficiency. Specifically, we desidra for future work. In this paper, we have not taken into account
kinematics-aware node expansion algorithm with orieatati the speed of the vehicle. For situations such as a lane change
driven arc costs for considering the kinematics of vehidlégs during high-speed driving, the speed of the vehicle should
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Fig. 24: An image sequence of passing through the narronagasshown in Fig. 23. The vehicle made a reverse movement
of up to 10 s, followed by a forward movement with a left turn.

30

@ (b) (©

Fig. 25: These figures show that our recursive path plannér avistate of search space encoding the position of each node
can find feasible paths. It is difficult to find a feasible patien though we used states of search space encoding ppsition
orientation, and direction of the vehicle within the Algorithm without running our recursive path planning. Tisamainly
because the sequence in 4 passes the nodes with the sam® sings of the sequence generated in 2. In other words, the
reverse movement in that sequence occurred two times. Theuwation time of the path planner installed on our autonasno
vehicle was 9 ms.
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