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Figure 1: A few snapshots of our interactive out-of-core walkthrough scene editing on The City Model (consisting of 110M triangles). The
first image from left shows part of the original scene; the second one shows the scene after selecting an object (the house shown in green in
the first image is chosen and shown in blue in the second image); the third image shows the scene after duplication of the same object and the
last one after removing the original copy of the object.

Abstract

Solid state drives (SSDs) are emerging as an alternative storage
medium to HDDs. SSDs have performance characteristics (e.g.,
fast random reads) that are very different from those of HDDs. Be-
cause of the high performance of SSDs, there are increasingly more
research efforts to redesign the established techniques that are op-
timized for HDDs, to work well with SSDs. In this paper we fo-
cus on computing cache-coherent layouts of large-scale models for
SSDs. It has been demonstrated that cache-oblivious layouts per-
form well for various applications running on HDDs. However,
computing cache-oblivious layouts for large-models is known to be
very expensive. Also these layouts cannot be maintained efficiently
for dynamically changing models. Utilizing the properties of SSDs
we propose an efficient layout computation method that produces
a page-based cache-aware layout for SSDs. We show that the per-
formance of our layout can be maintained under dynamic changes
on the model and is similar to the cache-oblivious layout optimized
for static models. We demonstrate the benefits of our method for
large-scale walkthrough scene editing and rendering, and collision
detection.
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1 Introduction

Hard disk drives (HDDs) have been a very successful storage
medium since the magnetic tape era. Thanks to their success, HDDs
have inspired numerous research studies on various essential com-
ponents of hardware and software including external data access
models for out-of-core algorithms [Vitter 2001] and virtual mem-
ory schemes [Levy and Lipman 1982] for operating systems.

In addition to the general data management community, com-
puter graphics and visualization researchers have also contributed
tremendously to the management of graphics and visualization spe-
cific data using novel data structures, cache management tech-
niques, and out-of-core algorithms for interactive rendering and
many other graphics and visualization applications [Silva et al.
2002].

Recently, solid state drives (SSDs) (i.e. flash memory) are emerg-
ing as an alternative storage medium to HDDs. SSDs are widely
adopted in mobile devices, laptops, and even desktop PCs, as the
secondary storage. This phenomenon is mainly caused by their
cheaper cost than DRAMs, and much faster access performance
than HDDs [Agrawal et al. 2008].

SSDs have performance characteristics that are very different from
those of HDDs. The random read performance of SSDs is much
faster compared to HDDs. Moreover, the random read performance
of SSDs is similar to their sequential read performance. Also, the
sequential write performance of SSDs is similar to or even faster
than their sequential and random read performance [Agrawal et al.
2008]. On the other hand, SSDs have performance that are rela-
tively similar to DRAMs, except that SSDs are three times slower
on average than DRAMs 1. However, stored data in SSDs are non-
volatile in contrast to DRAMs.

With the advent of SSDs, there are increasingly more research ef-
forts to redesign the established techniques, that are optimized for

1http://www.bitmicro.com/press resources flash ssd.php



HDDs, to work well with SSDs. Some examples include virtual
memory hierarchy [Saxena and Swift 2009] and swapping sys-
tem [Ko et al. 2008]. However, to the best of our knowledge, there
has been no attempt to redesign various out-of-core graphics algo-
rithms and external data management techniques to best leverage
the characteristics of SSDs.

Main contributions: In this paper, we propose changes to the
data management techniques from the interactive rendering stand-
point to take into account the latest trends in the secondary storage.
Especially, we reconsider the data layout problem that has been ac-
tively studied in the recent years. In summary this paper has the
following contributions:

1. For geometric data, we observe that in case of SSDs, a simple
cache-aware layout, that is easier and faster to compute than a
cache-oblivious layout, provides the same performance as the
cache-oblivious layout (Section 3).

2. Based on this observation, we propose a new dynamic cache-
aware layout algorithm to maintain the layout while changing
the data on the external drive. We adopt a simple dynamic kD-
tree partitioning to merge, divide and update the partitions that
preserve the required properties of the cache-aware layouts on
SSDs (Section 4).

3. To provide a simple interface for applications to use this
layout, we present an application-independent middleware
that utilizes our dynamic cache-aware layout to perform the
changes committed by the applications (Section 5).

In order to demonstrate the usefulness of our approach in practice,
we present two applications that use our middleware as an abstract
interface to the external drive (Section 6). The first one is an out-of-
core walkthrough scene editing and rendering system that performs
both read and write operations on the external drive through our
middleware. The other one is out-of-core collision detection that
is a read-only application with different access patterns, but uses
the same data layout through our middleware. We demonstrate that
the performance of these two applications on our dynamic cache-
aware data layout is comparable to the performance of static offline
cache-oblivious layouts on SSDs.

2 Related Work

In this section, we explain previous methods for computing cache-
coherent layouts that can reduce the number of cache misses for
various applications. However, most of these prior techniques have
not been designed for SSDs, which have different characteristics
compared to HDDs.

2.1 Data Layout Optimization

The order in which data elements are stored can have a major im-
pact on the runtime performance. Therefore, there has been con-
siderable effort on computing cache-coherent layouts of the data
to match its anticipated access pattern. In computer graphics,
rendering and processing sequences, and cache-aware and cache-
oblivious layout techniques have been proposed. However, com-
puting these layouts takes a lot of time and has not been widely
used for dynamically changing meshes.

Rendering sequences: In the context of rendering, Deering [1995]
pioneered the computation and use of layouts of triangles and ver-
tices, called rendering sequences or triangle strips. Hoppe [Hoppe
1999] cast the computation of rendering sequences as a discrete op-
timization with a cost function. In this work the cost function for

a specific vertex buffer size used in GPUs is calculated and used to
compute layout. Since the layout is optimized for a particular cache
parameter, it can be categorized as a cache-aware layout. More re-
cently, Diaz-Gutierrez et al. [2005; 2006] presented a graph based
algorithm for generalized cache-oblivious layouts of triangles for
rendering and geometry processing.

Processing sequences: Isenburg et al. [2003] proposed process-
ing sequences as a generalization of the rendering sequences for
various kinds of large-data processing. This processing sequence
can be stored as an indexed mesh, called streaming mesh. Stream-
ing meshes are represented as interleaved triangles and vertices that
can be streamed through a small buffer [Isenburg and Lindstrom
2005]. These representations are particularly useful for offline ap-
plications, e.g., simplification and compression, that can adapt their
runtime computations to a fixed ordering. We present a similar in-
dexed mesh storage format in which vertices may be duplicated
across different pages, while a triangle is represented only once.

Cache-aware data layouts: There is a significant performance dif-
ference when data is accessed from register, L1 cache, main mem-
ory, or disk. Often, data access time from disk to main memory or
main memory to cache is the major performance bottleneck of var-
ious applications. Therefore, it is natural to consider cache infor-
mation when designing specific algorithms. Cache-aware layouts
are constructed by directly using the knowledge of the cache pa-
rameters, such as cache block size, in computation of the layouts.
Yoon et al. [2006] proposed a cache-aware layout algorithm by par-
titioning the data elements into different clusters which correspond
to cache blocks in a particular cache.

Cache-oblivious data layouts: Many algorithms use space-filling
curves [Sagan 1994] to compute cache-friendly layouts of grids.
These layouts have been widely used to improve the performance of
image processing [Velho and de Miranda Gomes 1991] and terrain
visualization [Lindstrom and Pascucci 2001; Pascucci and Frank
2001]. However, space-filling curves are mainly used for grids, im-
ages, and volumes that have uniform structures. Yoon et al. [2005]
proposed a generalized cache-oblivious layout of a mesh or a graph
for efficient rendering and processing of massive models. Recently,
Sajadi et al. [2009] proposed a graph-based cache-oblivious data
layout scheme called the 2-factor layout and showed its benefits in
a rendering method.

2.2 SSD-specific Data Handling

There have been many approaches for handling data for efficient
use of the properties of the HDDs. In order to utilize the properties
of the SSDs, some of the well-established components (e.g. vir-
tual memory hierarchy [Saxena and Swift 2009]) that are designed
for HDDs are reworked for better performance with SSDs. Since
SSDs have a slow performance for random writes, write buffering
techniques [Kim and Ahn 2008] employed in SSDs have been pro-
posed. Also, because of the low write endurance in SSDs, vari-
ous wear-leveling algorithms have been proposed [Agrawal et al.
2008]. Zhou and Meng [2009] proposed a conversion method that
transforms random writes to a series of sequential writes, which are
much faster than random writes.

However, there have not been many techniques that leverage the
properties of the SSDs to enable new computer graphics algorithms.
In this paper we use various properties of the SSDs to enable out-
of-core applications to use dynamically changing data (e.g. large
scale editing of walkthrough scenes).



3 Data Layouts – Properties and Implications

It is well known that the seek time in HDDs during random
reads/writes is substantial. Given an access pattern, linearly order-
ing the entire data in order to minimize the number of seeks is done
by Cache-Oblivious Layouts (COLs). In contrast, having coherent
data within individual small blocks of memory (usually the size of
a cache page or a disk page) would reduce the number of pages
that need to be read. Computing such small data coherent blocks
is done using Cache-Aware Layouts (CALs). Since a layout that is
coherent over the entire data (COL) is also coherent within small
blocks, a COL can be used in place of a CAL, while the converse is
not true.

Since CALs are only locally optimized, they can be computed in
an efficient manner compared to COLs. Typically, COLs are com-
puted based on the global optimization of the linear ordering of
the entire data using the access pattern of the entire data. Because
of the global optimality required by COLs, these layouts are usu-
ally computed using expensive graph algorithms, while CALs can
be computed by faster clustering methods. In practice, computing
COLs for polygonal models consisting of a few hundreds of mil-
lions of triangles can take a few hours. Moreover, an incremental
layout computation for COLs is not known and thus COLs cannot
be maintained efficiently for dynamic models.

Now let us consider the implications of using COL and CAL on
specific external drive technologies when high dimensional spatial
datasets are used, as is common in computer graphics and visual-
ization applications. For such datasets, we prove in Section 3.1 that
no disk layout can guarantee the coherency of parts of the data that
are highly likely to be accessed together, when the data is stored in
a linear layout on the disk. Therefore we cannot realize efficient
access to data stored on HDDs.

On the other hand, since SSDs have no seek time constraints, the
data only needs to be coherent inside each disk page and therefore
a CAL without any global ordering performs similar to a COL. We
validate this observation in Section 3.2.

3.1 Inefficiency of HDDs for High Dimensional Spatial
Data Sets

In this section we show that any storage medium with slow random
access (e.g., HDDs) cannot guarantee efficient data access for high
dimensional spatial datasets. In order to prove this let us assume
an N-dimensional spatial regular grid with K blocks along each di-
mension, totalling KN blocks. Two blocks are considered adjacent
if they share a face. We assume that adjacent blocks are more likely
to be accessed together compared to nonadjacent blocks.

First we show that embedding a high dimensional dataset in a lower
dimensional space (e.g. linear ordering) results in several gaps be-
tween the parts of data that are adjacent in the high dimensional
space.

Lemma 1: For any N1-dimensional embedding of the blocks
where N1 < N, the ratio of the adjacent pairs of blocks in the N-
dimensional space which are also adjacent in the N1-dimensional
space to the total number of adjacent pairs in the N-dimensional
space is at most

α = (N1 × (KN −KN−N/N1))/(N × (KN −KN−1)).

Proof. Using induction we prove that the number of adjacent pairs
of blocks in any N-dimensional grid is

F(N,K) = N ×KN −N ×KN−1.

We use induction on N. The induction base is N = 1 where the
number of adjacent pairs is clearly K −1. In the inductive step we
assume that F(N,K) = N × (KN −KN−1). Now let us consider an
(N + 1)-dimensional grid; it includes K N-dimensional grids. In
addition to the adjacent pairs inside these grids, there are (K − 1)
pairs of adjacent (N − 1)-dimensional grids which include (K −
1)×KN pairs of adjacent blocks. Therefore

F(N +1,K) = K ×F(N,K)+(K −1)×KN

= (N +1)× (KN+1 −KN).

We use the function F(N,K) to compute α . The denominator of
α is F(N,K) and the numerator of α is F(N1,KN/N1) since the
number of blocks is still KN but the grid in which the blocks are
arranged is N1-dimensional. Therefore

α = (N1 × (KN −K(N/N1)∗(N1−1)))/(N × (KN −KN−1))

= (N1 × (KN −KN−N/N1))/(N × (KN −KN−1)).

When using disk layouts N1 is always equal to 1. Therefore

α = (KN −1)/(N × (KN −KN−1))

, which goes towards 1/N for large values of K. Note that even for
N = 3, α goes toward 1/3 which means most of the adjacent blocks
in the 3-dimensional space are not adjacent on the disk.

As an alternative to disk seeking from the current block to the next
requested block, one can read all the blocks between the current
block and the next requested one if their distance on the disk is
small. The following lemma proves that such an approach that
avoids the expensive disk seeking is also inefficient for high di-
mensional datasets.

Lemma 2: For any linear ordering of an N-dimensional grid of
blocks there exist a pair of blocks that are adjacent in the N-
dimensional grid but their distance in the linear ordering is greater
than

(KN −1)/(N × (K −1)).

Proof. Let us find the maximum distance of two adjacent blocks in
the linear ordering (β ). We know that in the linear ordering there
is a pair of blocks (the first and the last ones) that are KN −1 away
from each other (as there are a total of KN blocks). If these two
blocks, the first and the last one, are adjacent to each other in the N-
dimensional grid, clearly β = KN − 1. But in the N-dimensional
grid, if we have to go through a sequence of L (face-adjacent)
blocks, and these blocks are distributed between the first and the
last blocks in the linear ordering, the lower bound on the maxi-
mum distance (β ) between any two of these L adjacent faces will
be (KN − 1)/L. In order to find a lower bound on β , we compute
the maximum shortest distance between any two blocks in the N-
dimensional grid (using the Manhatten distance metric). The two
farthest blocks in any N-dimensional grid reside in the diagonally
opposite corners of the grid, and there are N×(K−1) face adjacent
blocks in the shortest path between them. Hence there exist a path
between every two blocks where

L ≤ N × (K −1).

Therefore

β ≥ (KN −1)/(N × (K −1)).



Note that since an N-dimensional grid includes K (N − 1)-
dimensional grids, we can also conclude that there are at least K
pairs with distance greater than or equal to

(KN−1 −1)/((N −1)× (K −1)).

This proves that frequent seeks on the disk is unavoidable when
dealing with high dimensional datasets. Therefore, HDDs, which
provide slow random access, are inefficient for such datasets even
though they can provide fast sequential access.

3.2 Experimental Results on Layouts

We proved that adjacency of the coherent blocks in a high dimen-
sional space can not be preserved in a linear ordering. However,
one of the main benefits of SSDs over HDDs is that the seek time
is small and therefore the performance of random data access in
SSDs is similar to that of their sequential data access, while ran-
dom access in HDDs is much slower than the sequential access. To
quantitatively verify this in a graphics application, we implement
a walkthrough navigation system and test it with a large-scale city
model (Figure 1) that consists of 110 M triangles, and occupies
3.7 GB of memory space that does not fit in the 1 GB of available
main memory of the machine used for the experiments. Therefore,
the walkthrough system runs in an out-of-core mode with the data
stored in an external drive like a HDD or a SSD.

Page-based data structure: We use a self-contained page data
structure as an atomic data access unit stored in the external drive.
Each page has a fixed size (e.g., typical 4 KB pages [Chen et al.
2002], [Graefe and Larson 2001]) and contains a small but spatially
coherent portion of the data. Each page consists of a set of trian-
gles and only the vertices (and attributes) that are referred by those
triangles. Since a vertex may be shared by multiple triangles in dif-
ferent pages, the shared vertex and its attributes may be repeated
over different pages. However, there is no duplicate triangle in this
page-based representation. This simple page-based data structure
has been shown to work well for large-scale rendering [Sajadi et al.
2009].

Cache-oblivious and cache-aware data layouts: We first con-
struct a COL of the model [Yoon and Lindstrom 2006]. From this
COL, we construct the page-based COL, which is just the given
COL organized in the page-based data structure without changing
the sequence of the primitives, i.e. triangles. We process the tri-
angles in the order they appear in the COL and group as many of
them as possible, together with their vertices, in the self-contained
fixed-size disk pages. The ordering of the triangles in the given
COL implicitly determines the ordering of the pages. As a next
step, from this page-based COL, we compute a page-based CAL by
randomly shuffling the pages of the page-based COL to destroy the
ordering of the pages. However, the primitives within each page are
ordered in a cache-coherent manner for both layouts and the layout
is considered as optimized for a particular disk page (or block) size.

Experiments on SSDs and HDDs: We measure the running time
of our walkthrough scene rendering system using the two afore-
mentioned disk layouts with a SSD and a HDD, under a fixed-path
navigation of the scene. We consider for scenarios, the COL on the
SSD, the COL on the HDD, the CAL on the SSD, and the CAL on
the HDD. In particular, we measure the maximum delay between
every two consecutive frames. The statistics are gathered in 100
frames intervals. Figure 2 shows the graphs of these tests.

Based on these graphs, we observe the following results:

1. With the HDD, the maximum delay values between the con-
secutive frames with the CAL are considerably higher com-
pared to the COL layout. Many times, the maximum delay

Figure 2: The graphs show the ratio of the maximum delays be-
tween two consecutive frames after and before shuffling of the disk
pages. The statistics are gathered in intervals of 100 frames dur-
ing a walkthrough navigation of the City model. The high values
in the graph for the HDD show that its performance degrades con-
siderably after shuffling of the disk pages while the values for the
graph for the SSD are small which show the SSD performance only
slightly degrades after shuffling of the disk pages.

using the CAL is more than three times of the maximum de-
lay using the COL, and more importantly it is never below the
maximum delay for the COL. The maximum delays values are
of high importance since long delays do not allow a smooth
navigation with a uniform speed through the scene.

2. With the SSD, the maximum delay values are almost 1.5 times
larger for the CAL compared to the COL. Further, the maxi-
mum delays values for the CAL are at most twice larger than
the ones for the COL. More importantly, these measures are
clearly better than those for HDDs. The 1.5 factor is due to
the small page size used in our experiments which is not opti-
mized for the SSD used in the experiments.

Based on these simple tests, we can conclude that the inter-page or-
der captured in the COL is not critical when dealing with SSDs and
CALs perform almost as good as COLs. This is an important obser-
vation because compared to COLs, CALs are easy to compute and
maintain when the scene geometry changes. Moreover, there is no
known incremental layout algorithm that supports efficient dynamic
modifications for COLs. As a result, COLs are nearly impossible
to be used for applications that frequently and dynamically change
the model and commit to the external drive.

Based on this observation, in this paper we propose a novel page-
based CAL for SSDs with similar performance compared to the
COL for both SSDs and HDDs. More importantly, since the pages
in the CALs can be placed anywhere on SSDs, our page-based CAL
can be easily and efficiently maintained when performing dynamic
modifications in the scene data. To show the efficiency of our lay-
out, we use it in an out-of-core interactive scene editing application
which to the best of our knowledge is the first of its kind.



4 Layout Construction Method

In order to construct the layout, we first need to compute clusters of
the spatial data such that each cluster is spatially coherent, with a
small bounding box. The clusters should be almost equal-sized and
each fit into one page of the external drive. Finally, our layout con-
struction method should run fast enough to handle dynamic changes
at runtime. Given these page-sized clusters, the final cache-aware
page-based layout is computed by concatenating the pages of the
clusters in an arbitrary order.

One can use general clustering methods like the Lloyd’s algorithm
or spatial clustering methods like octree-based methods. However,
these clustering methods do not guarantee clusters with equal size
in terms of the number of triangles. Therefore, some of the clus-
ters will end up being too large or too small to fit into a fixed-size
disk page. Further, Lloyd’s method is an iterative approach and is
too slow for our purpose of interactive scene editing. In the case
of octree, the positions of the partitioning planes and the number of
children are fixed. Therefore, the lower bound on the resulting clus-
ter size at the leaf nodes cannot be controlled precisely, resulting in
a lot of sparsely populated pages and hence wasting the disk space.
This also increases the number of pages required to store the data,
and hence the size of the associated meta-data such as the page IDs
and bounding box information, etc. As a result, this can result in
poor in-core memory management for the application that uses the
layout.

Instead, we propose to use a kD-tree to partition the data into clus-
ters with roughly equal number of triangles. We recursively divide
the kD-tree nodes until all the triangles assigned to each node of the
tree fit in a page. The divisions happen alternately in all the spatial
dimensions and the frequency of the divisions along each plane is
proportional to the extent of the bounding box of the whole model
along that dimension. Further, in order to guarantee that the pages
are at least half full, we always choose the dividing planes such that
the number of triangles on both sides are almost equal. We will
show in Section 4.1 that we can guarantee this property, even af-
ter performing dynamic changes to the dataset, resulting in fewer
pages to store the same amount of data, smaller in-core data, and
hence better performance of the applications. The same criteria can
not be guaranteed with octree subdivision and the kD-tree subdivi-
sion is also almost as fast as octree subdivision. The downside of
using kD-tree subdivision is that it may produce spatially wide clus-
ters in one dimension. However, we found that kD-tree subdivision
performs reasonably well on our large models.

Our construction method for cache-aware page-based layouts is
much faster than construction methods for cache-oblivious layouts.
For example, in our experiments, the computation time for the out-
of-core cache-oblivious data layout proposed by Yoon et al. [Yoon
and Lindstrom 2006] was about one and a half hours for the City
model consisting of 110 M triangles (Fig. 1), while the computation
time for our layout was only 10 minutes. More details of the model
are provided in Section 6.1.

4.1 Handling Dynamic Changes

In order to handle dynamic changes in a scene, we perform local
reclustering on the dataset. We consider two types of dynamic
changes: deletion and addition. Other operations such as moving or
updating parts of the scene can be considered as a sequence of dele-
tion and addition operations. As we construct an initial layout for a
mesh with kD-tree subdivision, we also use kD-tree subdivision to
handle such dynamic changes as follows.

Without loss of generality we assume that each add or delete oper-
ation is spatially local or can be divided to several such operations.
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Figure 3: Schematic view of our middleware, the layout of the un-
derlying data, and applications

In order to find the affected pages after any deletion or addition op-
eration (i.e. pages that contain the deleted triangles or pages that are
suitable to fit the new triangles) we keep an in-core kD-tree struc-
ture on the bounding boxes of the pages and check which leaf nodes
of the kD-tree contain one or more of the newly added or deleted tri-
angles. Each leaf node of the kD-tree contains pointers to a limited
number of the pages (8 to 16 in our experiments) that their bound-
ing boxes are inside, or overlap with, that node. We perform a local
reclustering with the union of all the triangles in the pages refer-
enced by these leaf nodes. A simple recursive kD-tree partitioning
is performed only on these triangles. We partition the triangles until
size of each partition is smaller than a disk page. Such a partition-
ing ensures that all the disk pages are at least half-full after local
reclustering. The portioning planes are chosen with similar crite-
ria described in Section 4 In Section 6, we demonstrate that this
simple local reclustering works well even after several addition and
deletion operations.

After local reclustering, the kD-tree structure on the bounding
boxes of the pages will be updated by removing the old bounding
boxes and adding the new ones. Also some of the sparse kD-tree
nodes will be merged and the over-populated ones will be divided
after every operation. In our experiments we chose to divide the
nodes in the lowest level of the kD-tree when the number of the
pages references by the node exceeds 16 and also we merge two
sibling nodes when the total number of pages references by both
the siblings is less than 16. Since the number of page bounding
boxes is much smaller than the number of primitives, this kD-tree
structure is small and can be stored and updated in the main mem-
ory efficiently.

5 Data Management Middleware for SSDs

In order to use the proposed disk layout for interactive graphics ap-
plications that generate interactive read and write requests on large
out-of-core 3D geometric datasets, we propose a novel data man-
agement middleware specifically designed to be an interface be-
tween the external drives (preferably SSDs) and the graphics ap-
plications. The goal of this middleware is to maintain the perfor-
mance of the graphics applications in spite of the dynamic changes
in the dataset. Therefore, various applications achieve interactive
performance without explicitly managing the underlying data. We
achieve this goal by designing the middleware that uses and main-



tains our cache-aware layout of the underlying data on the external
drive and provides an abstract interface for the applications to ac-
cess and modify it. Our middleware also maintains a garbage col-
lector in order to reuse the deleted data (i.e. pages) for later use. A
schematic view of our middleware, data layout, and applications is
shown in Figure 3.

We assume that the data is stored in the external drive in our self-
contained page format as explained in the previous section. The
middleware assigns a logical ID to each disk page and maintains
a table to map these IDs to the physical location of the pages on
the external drive. Each page also has an associated bounding box
determined by the geometric primitives contained in that page. The
bounding box information of all the pages are stored separately in
the main memory and used along with the logical page IDs to pro-
vide an abstract interface between the middleware and the applica-
tions. All queries from the application to the middleware is pro-
cessed through the identification of the logical page ID and/or the
bounding box information.

The abstract interface includes the following main functionalities:

1. GETINITIALINFO: This initialization query to the middleware
returns the list of logical IDs of all the pages together with
their bounding box information.

2. FETCHPAGE: This query to the middleware, with the pageID
as the input, finds the physical location of the page referenced
by the pageID from the mapping table, reads the content of
the page from the external drive and returns the content to the
application.

3. DELETETRIANGLES, ADDTRIANGLES: These requests to the
middleware have the input argument of the list of triangle IDs
(along with their page IDs) that have to be removed or added.
The middleware performs the edit operations on the given tri-
angles, reclusters the local geometry information to maintain
the layout, updates the kD-tree and the mapping table, and
returns to the application a list of invalidated page IDs (of
the deleted pages) and a list of new page IDs along with their
bounding box information. The middleware also performs the
garbage collection of all the deleted pages for future use in or-
der to reserve coherent pages in the physical drive for the data
from the same application.

The abstract page-based interface helps the applications to access
the data efficiently without dealing with the arrangement of the data
on the disk. Further, use of the bounding boxes of the pages instead
of the triangles as the basic geometric elements keeps the number
of elements small making it possible for the applications to manage
the data with in-core data structures. Applications can use acceler-
ation hierarchies such as octrees or kD-trees on the bounding boxes
of the pages. Since each page has triangles from a spatially coher-
ent part of the mesh, the bounding box of the triangles in a page is
expected to be tight.

6 Applications and Results

We presented a middleware that provides an abstract interface for
computer graphics and visualization applications and enables more
applications to run interactively with dynamic large-scale models
on SSDs using our novel CAL. To show the benefits of our method,
we implemented two different applications that use the abstract in-
terface of the middleware to interact with the model: out-of-core
interactive walkthrough scene editing system and out-of-core colli-
sion detection system.

For all the experiments we used a Western digital HDD, model
number WD1600HLFS, with 160 GB capacity, 16 MB cache

space, 10000 RPM rotational speed, and SATA II 3.0 Gbps inter-
face. We also used a Patriot SSD, model number PE64GS25SSD,
with 64 GB capacity, 64 MB cache space, 210 MB/s read speed,
150 MB/s write speed, and SATA II 3.0 Gbps interface. In all the
experiments we only measure the performance of different disk lay-
outs on either the SSD or the HDD. The performance of the SSD is
not directly evaluated against the HDD because of the differences
between the speed and cache size of the drives.

6.1 Walkthrough Scene Rendering and Editing

We have developed an out-of-core interactive walkthrough scene
rendering and editing system that allows the user to interactively
delete, insert, copy, cut, and paste objects into and from the walk-
through scene. This was not possible earlier since editing a scene
would destroy a good cache-oblivious layout that is required to
achieve high performance with HDDs. Dynamically updating the
layout while maintaining the cache-obliviousness is shown to be
very difficult, if not impossible [Yoon and Lindstrom 2006]. Such a
scene editing application is possible with SSDs since cache-aware
layouts without any global ordering can be used efficiently with
SSDs, and our novel layout computation method can update the
layout at interactive rates while maintaining the cache-coherence.
Hence to the best of our knowledge, this is the first interactive scene
editing system for gigantic walkthrough models.

In addition to handling operations in the triangle level our scene
editing application also provides the concept of objects in the scene,
hence users can interact with such objects (e.g., a building or a
bike). Each object is defined as a connected set of triangles. The
scene editing operations can be applied similarly on an object or a
set of triangles. Figure 1 shows results of copy/paste, and delete
operations with the city model that consists of over 110 million tri-
angles and occupies over 3.5 GB of the secondary storage in an
uncompressed binary format and 3.7 GB in the page-based format.
The total number of vertices is over 117 million in the original for-
mat and over 124 million after conversion to the page-based format.
More details about the model and the page format can be found in
our previous work [Sajadi et al. 2009].

6.1.1 Interacting with the Middleware

We use the abstract interface of the middleware in order to read and
write the information from and to the disk. Initially the application
uses the GETINITIALINFO function to get the bounding box infor-
mation and page IDs from the middleware. The application con-
structs an in-core spatial acceleration hierarchy (i.e. an octree) on
the bounding boxes of the disk pages. This acceleration hierarchy
is used in each frame, to find the IDs of the disk pages visible in the
view-frustum. After finding the page IDs, the pages are requested
from the middleware using the FETCHPAGE function. The prim-
itives inside the pages, returned by the middleware, are rendered
and used for scene editing.

When a scene editing operation is performed, the application com-
putes the affected triangles and the IDs of the pages that contain
those triangles. Then, the editing operations are executed using
the DELETETRIANGLES function or the ADDTRIANGLES function.
The middleware performs the modification request and updates the
data on the disk and returns the IDs of the invalidated pages and also
the IDs and bounding box information of the new pages. The ap-
plication updates its acceleration hierarchy by removing the invalid
IDs and bounding boxes and adding the new ones.



Figure 4: The graphs show the ratio of the maximum delays between consecutive frames before and after interactive modification of 20%,
40%, and 60% of the scene from top to bottom. The statistics are gathered in time intervals of 100 frames during a walkthrough navigation
on the City model. The dashed red graphs demonstrate that the performance of our dynamic CAL on the HDD degrades as more parts of the
scene are modified; the maximum and variation of the values of the dashed red curves increase from the left graph for 20% modification to
the right graph for 60% modification. However, the green curves demonstrate that on the SSD the performance changes very slightly and is
comparable with the original COL, evident from the mean of the green curve which is only slightly above 1 and the maximum of it which is
less than 1.5, even after modifying 60% of the scene.

6.1.2 Performance Analysis

To demonstrate the efficiency of our CAL and middleware in han-
dling dynamic changes for out-of-core scene rendering and editing,
we started from a page-based COL of the city model and progres-
sively modified 20%, 40% and 60% of the model using our scene
editing tool to ensure that most of the data is ordered on the exter-
nal drive using our dynamic CAL. We also made sure that the total
number of triangles after the scene editing is similar to the origi-
nal model. We gathered statistical information for the walkthrough
rendering performance on the new scene while the data is stored
on the SSD. We also copied the original and modified data to the
HDD and gathered the same statistics. The results are shown in
Figure 4. These experiments demonstrate that the performance of
the application with our page-based CAL on the SSD does not de-
grade significantly even after changing 60% of the scene. However,
with the HDD, the performance of the application progressively de-
grades with increasing changes from the original layout (please see
the accompanying video). This confirms that our layout can handle
dynamic changes in the data without significant degradation of the
performance when used on SSDs but the same is not possible with
HDDs. It is important to note that cache-oblivious layouts work
well with both HDDs and SSDs, but are hard to maintain in an ef-
ficient manner during interactive scene editing. Therefore, using
cache-oblivious layouts is not a practical solution for scene editing
applications irrespective of whether it is for HDDs or SSDs.

6.2 Collision Detection

We also implemented a collision detection application to show the
wide applicability of our method. We simulate the collision of sev-
eral rocks falling on top of a castle and perform collision detection
between each rock and the model (please see the accompanying
video). The scene consists of over 30 million triangles and occu-
pies more than 1.2 GB on the secondary storage. A picture of the
model is shown in Figure 5.

In order to perform collision detection, we compute spatial hier-
archical data structures (e.g., octree) for each model. We check
whether there is an overlap between bounding boxes of two root
nodes of two models. If there are overlaps, we traverse the hi-
erarchy to localize the collisions. Once we reach the leaf nodes,
we perform triangle-level collision detection [Ericson 2004]. Since
contacts among objects occur in localized regions of those objects,
only small portions of the hierarchy are accessed during the hierar-
chical traversal.

Figure 5: A view of the castle model during collision simulation.

The collision detection application uses the data management layer
to read the pages from the SSD. We perform collision detection on
our benchmark scene after performing several scene editing opera-
tions on the model using our out-of-core scene editing application
described previously. The detailed performances of the HDD and
the SSD before and after modification of the scene is demonstrated
in Figure 6. In this chart, the average collision detection time for
every 100 frames is used to gather the statistics.

This confirms that the performance of our dynamic layout does not
degrade with several modification operations on the scene when
used with SSDs but again performs poorly on HDDs. Therefore
our layout can be used for other applications such as collision de-
tection without any reordering of the data when using SSDs.

7 Conclusion

In conclusion, the impartial performance of SSDs with respect to
cache-aware and cache-oblivious layouts has opened up new types
of graphics applications which were inefficient or even impossible
with HDDs. Specifically, to the best of our knowledge, we have
demonstrated the first out-of-core interactive walkthrough scene
editing tool which is not possible with HDDs since computing dy-
namic cache-oblivious layout of the data at interactive rates is dif-



Figure 6: The graphs show the ratio of the average collision detec-
tion times every 100 frames before and after interactive modifica-
tion of 60% of the scene.

ficult, if not impossible. In the process, the characteristics of SSDs
have also lead us to the investigation of new techniques for dy-
namic clustering for cache-aware page-based layouts. We hope to
see more novel applications and algorithms inspired by the charac-
teristics of SSDs. In future we would like to try more applications
on our data management middleware. We also want to try different
clustering methods and more sophisticated techniques to achieve
higher disk access performance on SSDs.
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