
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1

 
Abstract— A mobile 3D display processor with a subdivider is 
presented for higher visual quality on handhelds. By combining a 
subdivision technique with a 3D display, the processor can 
support viewers see realistic smooth surfaces in the air. However, 
both the subdivision and the 3D display processes require a high 
number of memory operations to mobile memory architecture. 
Therefore, we make efforts to save the bandwidth between the 
processor and off-chip memory. In the subdivider, we propose a 
re-computing based depth-first scheme that has much smaller 
working set than prior works. The proposed scheme achieves 
about 100:1 bandwidth reduction over the prior subdivision 
methods. Also the designed 3D display engine reduces the 
bandwidth to 27% by reordering the operation sequence of the 3D 
display process. This bandwidth saving translates into reductions 
of off-chip access energy and time. Consequently the overall 
bandwidth of both the subdivision and the 3D display processes is 
affordable to a commercial mobile bus. In addition to saving 
bandwidth, our work provides enough visual quality and 
performance. Overall the 3D display engine achieves 325fps for 
480×320 display resolution.  
 

Index Terms—computer graphics, microprocessors, 
multimedia systems, three-dimensional displays  
 

I. INTRODUCTION 

URING the past few years, a cellular phone has rapidly 
evolved into a powerful entertainment tool, which can be 

used as not only a phone, but also a video player, a TV, a game 
console, a camera, a navigation, etc. As many contents in 
different platforms require high-quality visual appearances, 
visual quality becomes a key differentiating factor among 
mobile devices. In order to make various and realistic effects, 
modern handhelds use two key techniques: 3D graphics and 3D 
display.  

In modern 3D graphics, subdivision surfaces have received 
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significant attentions, because they can support smooth 
surfaces, leading to high-quality rendering. Owing to the 
smoothness, the subdivision surface is now adopted as a 
representation in the latest 3D graphics API such as Direct3D 
11 [1]. Together with 3D graphics feature, a 3D display is used 
in more and more handhelds, because it can give users 
immersive feeling, which has not experienced before. In 
handhelds, an auto-stereoscopic type display is used as a 3D 
display, because it does not require additional peripherals such 
as glasses or head gear [3]. 

Although the subdivision surfaces and the 3D display 
provide realistic experiences to users, even high-end mobile 
phones (e.g., iPhone) cannot support them in real-time. This is 
mainly because the memory architecture of handhelds is 
different from that of desktop PCs [2] as shown in Fig. 1, 
whereas both the subdivision and the 3D display processes 
have many memory operations. In handhelds, many 
heterogeneous processors (e.g., a GPU and a CPU) share a 
unified memory through the same bus because of small 
physical size and limited power, where the memory is outside 
the chip. This memory architecture causes frequent off-chip 
memory accesses and bus traffic jams, significantly 
under-utilizing the computing power of mobile processors.  

This paper proposes a mobile 3D display processor with a 
bandwidth-saving subdivider that provides high visual quality 
on handhelds. In order to run both the subdivision and the 3D 
display processes given the mobile memory architecture, we 
enormously reduce the bandwidth requirement for both the 
subdivision and the 3D display processes. 

In the subdivider, we propose a re-computing based 
depth-first scheme. Most prior approaches perform subdivision 
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Fig. 1 The memory architecture of handhelds is different 
from the memory architecture of PCs. All the processors 
share the same bus and a unified memory which is outside 
the chip. 
 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

2

for all the input faces in parallel using breadth-first scheme 
[4][5]. Although they are optimized for the parallel architecture 
of modern GPUs employed in desktop PCs, they need more 
than several Gbytes for the bus bandwidth whereas the fastest 
mobile bus supports up to 625Mbytes/s [6]. The proposed 
depth-first scheme executes subdivision for just a single target 
face with its one-ring neighborhood, instead of for all the input 
faces. Since the working set of our depth-first scheme is small 
with a high data coherency, our method requires a low data 
bandwidth between the subdivider and off-chip memory, by 
utilizing a small amount of on-chip memory (e.g., 20KB 
SRAMs). In order to further reduce the bandwidth requirement, 
we propose a compact edge-less data structure that is optimized 
for our subdivision algorithm. The implemented subdivider has 
less than 1% bandwidth requirement of prior subdivision 
methods [4][5]. In addition, we propose adaptive subdivision 
scheme which can control refinement level according to depth, 
the distance from a view-position. Together with bandwidth 
saving effects, our subdivider provides enough subdivision 
quality compared with the latest prior work [4] that targets on 
desktop PCs. To the best of our knowledge, our work is the first 
attempt for a mobile subdivider.  

Also the proposed 3D display engine reduces the bandwidth 
requirement by changing operation sequence. The 3D display 
process for an auto-stereoscopic display needs to generate 
many intermediate images from a pair of stereo images by 
interpolation. Our processor produces them in an interleaving 
order instead of serial order, which makes the intermediates not 
be stored in off-chip memory. As a result, the bandwidth 
requirement of the 3D display process is reduced by 73% 
compared with a typical approach.  

The processor is implemented within 4.5mm×4.5mm die 
using 0.13μm CMOS technology. It integrates 965K gates, runs 
at 50MHz, and consumes 140mW at 1.2V. 

The remainder of this paper is arranged as follows. Section II 
briefly describes the background of subdivision surfaces and 
3D display process, and Section III overviews the processor. 
Section IV and VI explain the proposed ideas in the order of a 
subdivider, a 3D graphics engine, and a 3D display engine. 
Then, Section VII explains how this work saves power 
consumption, and Section VIII shows the improvements of this 
work compared with previous work. Section IX summarizes 
and concludes this paper. 

 

II. BACKGROUND, PRIOR WORK, AND PROBLEM 

A. Catmull-Clark Subdivision Surfaces 

Many tessellation schemes have been proposed, and they are 
classified as subdivision surfaces (e.g., Catmull-Clark 
subdivision surfaces [7] and Loop subdivision surfaces [8]) and 
parametric surfaces (e.g., NURBS and Bézier patches [9]). 
Parametric surfaces are computed by higher-order equations 
and control points, which do not tessellate geometry vertices 
itself but the parameters of surfaces such as u and v. 
Higher-order equations use the tessellated parameters as 

variables and produce the vertices of smooth surfaces. On the 
other hand, subdivision surfaces directly tessellate geometry 
vertices without any parameters. It refines an input mesh 
(LODk) by given equations, producing an output mesh 
(LODk+1) that is finer than the input mesh. Then, the output 
mesh (LODk+1) is again used as an input mesh to the next 
tessellation level (LODk+2). By performing this process 
iteratively, we can construct a series of finer meshes that 
converge to the limit surface of the subdivision surfaces. 

Among those surfaces, the Catmull-Clark Subdivision 
Surface (CCSS) has been the standard modeling tool for 
various applications because of the following two reasons: 1) 
the CCSS can be applied to two-manifold meshes that have 
arbitrary topologies without any continuity limitation and 2) 
geometry data (e.g., vertices) of the CCSS are freely modified 
without introducing artifacts. 

In the CCSS, a face with N edges is subdivided into N faces 
at every subdivision level. At each subdivision level, we create 
three kinds of points: face, edge, and vertex points as shown in 
Fig. 2. A face point for a face is computed by averaging the 
vertices of the face. Then, an edge point for an edge is 
computed by averaging two end-vertices of the edge and two 
face points of the faces sharing the edge. We also create a 
vertex point for each vertex by computing a weighted sum of 
the vertex, all the face, and edge points around the vertex. We 
then construct sub-faces by connecting these points. By 
performing this subdivision process iteratively, we can 
construct a series of finer meshes that converge to the limit 
surface of the CCSS. 

Typically, an output mesh computed at a subdivision level is 
used as an input mesh to the next subdivision level. During the 
subdivision process, we must utilize an efficient data structure 
to find and update the connectivity information of CCSSs. 
These operations are performed by various indexing operations 
[10][11]. However, a naive data structure for CCSSs requires a 
large amount of storage and a wide bus bandwidth. 

 

 
Fig. 2 (a) Catmull-Clark subdivision refines a face with N 
edges into N sub-faces by creating three kinds of points; a 
face point, an edge point, and a vertex point. (b) Each point 
is computed by the weighted sum of neighbor vertices. In 
the vertex point, N means a valence number that is the 
number of edges connected to the vertex under the 
subdivision. 
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B. Subdivision Related Works 

Most prior methods of CCSSs are designed for GPU-friendly 
parallel subdivisions [4][5][11]. Bunnell [5] and Shiue et al. 
[11] perform the subdivision of CCSSs directly on a GPU. 
They store meshes into textures and employ multi-pass 
rendering for subdivision operations. They need to perform at 
least one subdivision level on a CPU to treat the extraordinary 
vertices of initial meshes. This multi-pass rendering and the 
subdivision on the CPU can require a lot of off-chip memory 
accesses in the mobile memory architecture. Recently, Patney 
et al. [4] proposes a robust adaptive subdivision for CCSSs on a 
highly parallel GPU. This method achieves a high performance 
on the GPU, by employing the breadth-first subdivision scheme 
that performs the subdivision process for all the faces of the 
mesh in parallel. However, it is designed mainly for desktop 
PCs and is not suitable for handhelds. Since the breadth-first 
scheme in the parallel method requires a large working set, it 
can cause a significant amount of off-chip memory accesses in 
the mobile memory architecture. 

Our previous work [12] accomplished tessellation on mobile 
platforms using parametric surfaces instead of subdivision 
surfaces. It quickly tessellates parameters, (u, v), using fast 
difference, and accelerates the computations for higher-order 
equation using dual-core shaders. Although the previous work 
enables to run tessellation on mobile devices using small 
bandwidth requirement, it directly inherits the parametric 
surfaces’ limitations such as piecewise continuity and 
inconvenient topology control. Also, it executes adaptive 
tessellation by computing LODs per object, which makes 
different triangles have the same LOD. Its dual-core shaders 
provide high computing power, but consume more than 
200mW, which is still high in the mobile platform. 

 

C. 3D Display Process 

An auto-stereoscopic display refracts the light from LCD 
pixels using lens array or parallax barrier attached on an LCD 
and delivers different images to each eye of a viewer, giving 
depth-perception to the viewer. For a viewer to observe 
different images depending on his eye position (view-position), 
the auto-stereoscopic display prepares multiple images taken 
from different view-positions and mixes them according to the 
lens array pattern or the barrier pattern. If an auto-stereoscopic 
display mixes nine images, it is called as a 9-view 
auto-stereoscopic display. 

The 3D display process for the auto-stereoscopic display 
consists of a View Interpolation Process (VIP) and a 
Multiplexing Process (MP). The VIP produces intermediate 
images for in-between view-positions from a pair of stereo 
images and a depth-map, which relieves the burden of 
rendering all the images. Then, the MP allocates the sub-pixels 
of the stereo images and the intermediates into the sub-pixels of 
the auto-stereoscopic display according to the lens array pattern, 
synthesizing a 3D image. 

 

D. Mobile Memory Architecture 

The computing power of modern handhelds is enough to 
perform computation-intensive operations including the 
evaluations of CCSSs. However, handhelds have a quite 
different memory architecture compared to that of desktop PCs 
as shown in Fig. 1 [2]. In handhelds, a memory located outside 
the chip is shared between different processors, and the widths 
of bus and memory are limited within 32 or 16 bits. Thus the 
bus becomes the main performance bottleneck in the chip, 
which significantly underutilizes the high computing power of 
recent mobile GPUs and other processors. Furthermore, 
frequent memory access increases off-chip memory access time. 

 
Fig. 3 This figure describes the overall architecture of our processor. A subdivider makes smooth 
surfaces from coarse input mesh, then a 3D graphics engine renders a pair of stereo images and a 
depth-map, and finally a 3D display engine synthesizes a 3D image from the output data of the 3D 
graphics pipeline. 
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While an on-chip memory access takes only a single cycle, an 
off-chip memory access takes tens of cycles. In the aspect of 
power, each access operation drives high capacitance for the 
bus, consuming additional energy. Since handhelds are 
constrained by battery capacity, the additional energy 
consumption poses a severe burden to the overall system of 
handhelds. 

 

III. OVERALL ARCHITECTURE 

Fig. 3 shows the operation flow of our processor that consists 
of a subdivider, a 3D Graphics Engine (GE), and a 3D Display 
Engine (DE). First, the subdivider refines input meshes into 
finer meshes, producing a smooth surface. Then, the GE 
renders stereo images from the fine meshes by applying two 
different view transformations and inherently produces a 
depth-map. During the rendering process, a shader in the GE 
imposes various effects to the fine meshes, and the other units 
in the GE generate pixels within the primitives of the fine 
meshes. The DE receives the rendered stereo images and the 
depth-map and synthesizes a 3D image by accomplishing the 
VIP and the MP. The combined architecture provides 
synergetic coupling effects such that viewers can see smooth 
and realistic objects floating in the air through a 3D display.  

 

IV. BANDWIDTH-SAVING SUBDIVIDER 

In this section we provide an overview of our subdivision 
approach, followed by our compact data structure and our 
adaptive subdivision method. Throughout the paper, we use 
LODk to denote a refined mesh computed after performing k 
subdivision levels to the base mesh; LOD0 represents the base 
mesh. 

 

A. Re-Computing based Depth-First Subdivision Scheme 

To perform the CCSS in the mobile memory architecture, we 
propose a re-computing based depth-first scheme. The 
depth-first scheme iteratively subdivides a face of LOD0 until 
its refined mesh satisfies termination criteria, and then begins to 
subdivide another face of LOD0 shown in Fig. 4. This 
depth-first scheme has not been well adopted for evaluating 
CCSSs on the GPU, mainly because of the following two 
reasons: 1) it requires stack operations that do not suit well to 
the streaming architecture like GPUs and 2) it is not 
straightforward to efficiently maintain data structures that 
support crack-free adaptive subdivision and provide the 
one-ring neighborhood information of a face for CCSSs.  

We choose the depth-first subdivision scheme, mainly 
because it has a much smaller working set during the 
subdivision process than that of the breadth-first subdivision 
scheme. In our depth-first subdivision scheme, we first bring a 
target face and its one-ring neighborhood of LOD0 stored in 
off-chip memory into on-chip memory. Then, we subdivide the 
target face until its refined mesh satisfies the subdivision 
criteria. During this subdivision process, subdividing a face 

requires its one-ring neighborhood information. Therefore, as 
we subdivide the target face, we also have to refine the faces of 
the one-ring neighborhood of the target face. We store the 
refined mesh of the target face and its neighboring faces in 
on-chip memory. When the refined mesh of the target face 
satisfies the subdivision criteria, the subdivider sends them 
directly to a vertex shader, instead of storing the refined mesh 
in off-chip memory. Then, we begin to subdivide a next face of 
LOD0 in the same manner mentioned in above. Therefore, we 
can store the working set of subdividing a target face into a 
small on-chip memory and avoid expensive off-chip memory 
accesses by utilizing data stored in the on-chip memory. 

Note that we also subdivide the neighboring faces of the 
target face. There can be two different approaches for handling 
these refined meshes of those neighboring face: re-computing 
and re-loading. The re-loading method stores these refined 
meshes in off-chip memory for later use by loading them from 
off-chip memory. On the other hand, the re-computing method 
discards all the refined meshes, and allows the subdivider to 
re-compute them when we subdivide those neighboring faces 
of target faces of the base mesh. We adopt the re-computing 
method, since it performs better than the re-loading method, 
although it causes many redundant computations (e.g., 50% 
more computations than the reloading method). Note that the 
re-computing based depth-first method does not perform any 
extra off-chip memory access during the subdivision process, 
once we fetch a target face and its neighborhood from off-chip 
memory. 

To support our design decision, we estimate the performance 
of these two different methods by simulating the architecture of 
handhelds. We refer to a Mobile DDR datasheet available from 
Samsung [13] to estimate off-chip memory access time. 
However, we ignore the wire delay between on-chip memory 

 
Fig. 4 Breadth-first scheme subdivides all the faces of LODk 
and begins to subdivide the faces of LODk+1. Depth-first 
scheme subdivides a face of LOD0 up to LODk and 
subdivides a next face of LOD0. The number shown in each 
figure indicates the subdivision ordering. 
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and off-chip memory, because the wire delay is not explicitly 
exposed and can vary depending on a specific system. For the 
simulation, we perform the subdivision for a regular mesh that 
has a valence number of 4 to construct LOD3. In the re-loading 
scheme, all the refined meshes of the neighboring faces are 
transferred between on-chip memory and off-chip memory 
during every subdivision process. 

As can be seen in Table 1, the re-computing scheme has a 
shorter access time than the re-loading scheme. The 
re-computing scheme continually improves as we compute 
more refined meshes. Since we ignore the wire delay of the 
re-loading scheme, the re-computing scheme can show higher 
improvement than the re-loading scheme. 

A downside of our method is that it requires additional 
on-chip memory to contain the refined meshes of a target face 
and its neighboring faces. When we support up to LOD3 and 
use our edge-less data structure, which will be explained in a 
later section, the required size of on-chip memory is 20 KB. 
This size is affordable on recent mobile phones; for instance, 
the size of PowerVR GPU in iPhone is 64KB [14].  

 

B. Edge-less Data Structure 

We propose a compact edge-less structure, to further reduce 
the bandwidth requirement between on-chip memory and 
off-chip memory, under the re-computing based depth-first 
subdivision scheme. The edge-less data structure maintains two 
separate structures: vertex and face structures. It does not 
record any edge information and thus has a lower bandwidth 
requirement, compared to other commonly used data structures 
such as half-edge [10][11] and render-dynamic [4] data 
structures. More specifically, the edge-less data structure has 
73% and 66% lower bandwidth than the half-edge and render 
dynamic data structures respectively. Fig. 5 shows the elements 
of the edge-less data structure. 

Suppose that we plan to subdivide a target face. To do that, 

we load data of the target face and its one-ring neighboring 
faces. Hence, we first load the face element of the target face 
and then load the vertices of the face by referring to the vertex 
indices stored in the face element. For each vertex of the face, 
we also load its neighboring faces by referring to the 
neighboring face indices stored in its vertex element. Then, we 
also load the vertices of these neighboring faces. In Section 
IV-E, we will describe how to use the edge-less data structure 
on the subdivision process with an example. 

Once all the information is loaded, then we compute the face, 
edge, and vertex points of the target face and its one-ring 
neighborhood. To compute an edge point of an edge, two 
end-vertices of the edge and the two face points of the faces that 
share the edge are required. However, the edge-less structure 
does not explicitly record any edge data. Instead, we store those 
data (e.g., vertices, face points, etc.) in registers and reconstruct 
the necessary edge information based on those stored data. To 
compute the vertex point of a vertex, all the face and edge 
points around the vertex and the valence number of the vertex 
are required. The valence number is stored within the vertex 
structure. Also, we store all those points in registers and 
compute the vertex point without accessing data stored in 
off-chip memory. A detailed subdivision algorithm and these 
registers will be introduced in Section IV-E. 

Table 1 Access time of re-loading scheme and 
re-computing scheme 
Access time (μs) LOD1 LOD2 LOD3 
Re-loading 13.6 36.2 88.6 
Re-Computing 4.4 7.2 12.8 
 

 
Fig. 5 The left figure shows our edge-less data structure, 
which consists of face and vertex structures. The number 
shown in each parenthesis indicates the count of 
corresponding elements. The right figure shows different 
points computed from vertices of a face. 
  

 
(a) 

Case 1 Case 2 Case 3

Case 4 Case 5

To be refined

Not to be refined

(b) 
Fig. 6 (a) If LODs are computed per face or per edge, there 
remains crack possibility. (b)The left and right figures 
show five mesh connectivity patterns used to provide 
crack-free adaptive subdivisions and the result of such 
subdivision on a mesh respectively. 
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C. Adaptive Subdivision 

Most previous approaches [4][15] perform adaptive 
subdivision depending on view-dependent refinement criteria 
and generate crack-free adaptive meshes. These techniques 
perform such operations using all the available information 
about the refined mesh at every subdivision level, causing a 
high bandwidth requirement between the GPU and off-chip 
memory. Instead, we propose a simple adaptive subdivision 
method that does not rely on any information other than the 
information of a target face under the subdivision. Therefore, it 
can be independently applied to any faces. 

If LODs are evaluated per face, edge-shared faces might 
have different LODs as shown in Fig. 6-(a). In this case, the 
shared edges have different curvatures, making cracks. To 
prevent these cracks, LODs would be evaluated per edge. 
However, it also makes cracks when faces share a vertex as 
shown in Fig. 6-(a). In order to prevent all kinds of cracks, our 
subdivider evaluates LODs per vertex. Since cracks are 
occurred when connected vertices have different LODs, we 
draw all the cases that the vertices of a face have different 
LODs. A face of CCSSs is a quad consisting of four vertices so 
that only one, two, or three vertices can have different LODs in 
a face; it is impossible that zero or four vertices have different 
LODs in a rectangular. For example, if two vertices have 
different LODs, there come out two patterns.  Depending on 
whether or not each vertex passes the refinement criteria, we 
choose one among five different mesh connectivity patterns 
(Fig. 6-(b)) of the face.  

A user can arbitrarily configure the refinement criteria on the 
specific registers of the chip (REGLOD1, REGLOD2, and 
REGLOD3) through the chip’s host interface. Then, the judge 
unit in the subdivider compares the depth of each vertex with 
the configured values in REGLOD1, REGLOD2, and REGLOD3. For 
example, if the depth is larger than the value in REGLOD2 and 
smaller than the value in REGLOD3, the vertex should be 
subdivided up to LOD2. 

Note that our mesh connectivity patterns consist of both the 
quads and triangles. Since the GE of our processor treats only 
triangles, the subdivider splits every quad into two triangles at 
the end of the subdivision process. Our adaptive refinement can 
be independently applied to any faces.  

 

D. Subdivider Architecture 

Fig. 7 shows the subdivider architecture where two on-chip 
memories are integrated. In subdivision operations, the loaded 
vertices at LODk do not be used any more at higher LODs 
(LODk+1, LODk+2, …). Due to very low utilization of the loaded 
vertices, we design the on-chip memories as buffers not caches. 
The on-chip memories store the face and vertex data 
represented in the edge-less data structure. They store all the 
refined meshes of the target face (TF) and one-ring 
neighborhood faces (NFs) up to LOD3 with a maximum 
valence number of 8. Also the subdivider has different data 

loaders as well as different point and face generators. During 
the subdivision process, the subdivider uses various registers to 
prevent redundant computations and loading operations. 

The subdivider first loads a TF from the face memory and 
then loads its vertices from the vertex memory. Then, the judge 
unit decides whether to subdivide each vertex more or not 
according to programmed depth criteria. If a vertex to be 
subdivided, the subdivider loads the NFs of the vertex and then 
loads four vertices of each NF. By averaging four vertices of 
each NF, we make a Pf of the NF. We can make Pe from the 
second NF, because two Pf have been created. When computing 
all the face and edge points around the vertex, we make a Pv. 
Then, the subdivider processes the second vertex of the TF and 
continues to perform the same process for the third and fourth 
vertices of TF. During the subdivision process, the subdivider 
creates sub-faces and stores them in on-chip memory. After 
subdividing the TF at LODk, the subdivider begins to subdivide 
one of the sub-faces. This process is recursively performed 
until all the sub-faces of the TF satisfy smoothness criteria. 
Then, the subdivider sends only the refined meshes of the TF to 
the shader and discards those of the NFs according to the 
proposed re-computing scheme.  

When creating new points, TF, NFs, and their vertices need 
to be loaded, but they have dependency each other. As a result, 
the subdivider must wait all the geometry data to be fetched 
from off-chip memory. In order to reduce this waiting latency, 
we insert special registers (REGTF_ver0, REGTF_ver1, REGTF_ver2, 
REGTF_ver3, and REGpre) to avoid redundant off-chip memory 
accesses for the same vertices and faces. For example, A target 
face’s vertices are loaded when deciding whether to subdivide 
the target face more or not. These vertices are redundantly used 
when computing a face point, an edge point, and a vertex point. 
They are also used when connecting computed points to create 
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Fig. 7 This figure shows a block diagram of the architecture 
of our mobile subdivider. 
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new faces. To avoid the redundant accesses, we store the 
vertices of a target face in REGTF_ver0, REGTF_ver1, REGTF_ver2, 
and REGTF_ver3. Other special registers are used in similar 
purpose. When subdividing a face of regular meshes (valence 
number is 4) from LODk to LODk+1, the proposed scheme 
without the special registers loads 64 vertices and 16 faces. By 
adding the special registers, we load only 32 vertices and 9 
faces. 

 

E. Runtime Algorithm 

In this section we present a simplified explanation of our 
subdivision algorithm using an example simple mesh. Suppose 
that we subdivide a target face, fe, in the simple mesh shown in 
Fig. 4-(a). Our method performs the following steps with the 
example mesh: 
 
1) We initialize all the registers with zero. We bring a target 

face (e.g., fe in Fig. 8-(a)), its neighboring faces, and their 
vertex information from the base mesh stored at off-chip 
memory to on-chip memory. We do not perform any 
additional access to off-chip memory, while subdividing 
the target face. 

2) We load the target face, fe, from on-chip memory and store 
it in REGTF for later use. Then, we load four vertices, va, vb, 
vc, and vd in Fig. 8-(b), of fe from on-chip memory and store 
them into REGTF_ver. We process these loaded vertices 
starting from the vertex va in the order that vertices are 
loaded. For each vertex, we first check whether we have to 
subdivide it or not, by using a judge unit. The judge unit 
decides whether or not to subdivide each vertex, according 
to programmed depth criteria. Suppose that the judge unit 
decides to subdivide va. Then, we load the neighboring 
faces of va from on-chip memory in the clockwise direction 
(e.g., the order of fa, fb, fe, and fd as shown in Fig. 8-(b)). 
We load them in the clockwise direction in order to easily 
reconstruct edges that are shared by two neighboring faces. 
As we load each of them, we set it as a current face and 
process it as described below. 

3) We access the first neighboring face, fa in Fig. 8-(c), of the 
vertex va. Whenever we access a neighboring face, we 
compute its face point. To compute a face point of the face, 
we load four vertices of the face from on-chip memory in 

the clockwise direction (e.g., va, ve, vf , and vg as shown in 
Fig. 8-(d)). Whenever we load a vertex of the current face, 
we add it to REGface. After adding the fourth vertex of the 
face to REGface, we compute the face point (e.g., the blue 
circle in Fig. 8-(e)) of the face by dividing the value of 
REGface by four. Whenever the face point is computed, it is 
added to REGedge and REGvertex for computing edge and 
vertex points. Finally we initialize REGface. Note that the 
current face and its next neighboring face share an edge. 
We store the two end-vertices of the edge in registers 
during the traversal of those neighboring faces; hence, we 
avoid the need to store the edge information in the 
edge-less data structure. Note that at least one of these two 
end-vertices is one of vertices of the target face, which is 
already stored in REGTF_ver. We store another vertex in 
REGpre. By accessing these registers, we can reconstruct 
the edge information.  

4) We access the second neighboring face, fb in Fig. 8-(f), of 
the vertex va. We load four vertices of the face. Since the 
current face and its previous face share an edge, we can 
fetch two end-vertices of the edge from registers (e.g., 
REGTF_ver and REGpre) and load other two vertices from 
on-chip memory. We then perform operations with 
registers to create the face point of the face in a similar 
manner, as we did in the step (3). From the second 
neighboring face, we can compute the edge point of an 
edge that is shared between the current face and its 
previous face. In this case, the edge consists of va and vg 
and is denoted as e. To compute the edge point, we add two 
end-vertices of the edge e into REGedge. Since REGedge 
stores the sum of two face points and two end-vertices of 
the edge e, we can compute the edge point (e.g., the orange 
circle in Fig. 8-(h)) of the edge e. Whenever we compute 
an edge point, we add it to REGvertex and initialize REGedge. 

5) Whenever loading a neighboring face, we check whether 
the face is the target face. Since the third neighboring face, 
fe in Fig. 8-(i), is the target face stored in REGTF, we can get 
its vertices (e.g., white circles in Fig. 8-(j)) by accessing 
REGTF_ver. We compute the face and edge points of the 
current face in a similar manner as we did at the step (4). 
From the third neighboring face, we can construct a 
subface, the red rectangle in Fig. 8-(k), by connecting two 
edge points, a face point and a vertex point. At this time, 

 
Fig. 8 This figure shows a series of operations of our algorithm to subdivide a target face, fe shown in (a). 
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the geometry of the vertex point is not known. However, 
we create its index and space in on-chip memory, and then 
fill its content later. 

6) As we did at the step (5), we load the fourth neighboring 
face, fd in Fig. 8-(l), and perform similar operations with 
the registers to create its face point, edge point, and 
subface as shown in Fig. 8-(n). 

7) We access the next neighboring face, which is, in fact, the 
first neighboring face. We load its face point from the 
on-chip memory and perform similar operations with 
registers to create the last edge point and a sub-face in a 
similar manner, as we did at the step (6). Since all the 
points around the vertex va are accumulated in REGvertex, 
we construct a vertex point, the green circle in Fig. 8-(p), 
and produce a final sub-face as shown in Fig. 8-(q).  

8) We process the next vertex, vb in Fig. 8-(r), of the target 
face. If the judge unit decides to subdivide vb, we then 
perform the same process from the step (3) to step (7) with 
vb. Otherwise, we skip the subdivision process for vb. Then, 
we continue to perform the same procedure for the third 
and fourth vertices, vc and vd. To connect vertices of the 
target face fe and the points created from the subdivision 
process, we apply one of the five mesh connectivity 

patterns shown in Fig. 6.  
9) After subdividing the target face, different sub-faces are 

created as shown in Fig. 8-(s). We store them in the 
on-chip memory and then our depth-first subdivision 
scheme begins to subdivide one of the sub-faces (e.g., 
sub-faces with thick red lines in Fig. 8-(t)) of the target 
face. This process is recursively performed until all those 
sub-faces satisfy the programmed subdivision criteria. 
 

At the end of this subdivision process, we get the subfaces of 
the target face as well as the sub-faces of neighboring faces of 
the target face. We only send the sub-faces of the target face to 
a vertex shader. With the re-computing subdivision scheme, we 
discard all those sub-faces created from neighboring faces of 
the target face, instead of maintaining them in off-chip memory. 
Our algorithm applied to a target face of valence number 4 can 
be easily applied to target faces with different valence numbers. 

V. 3D GRAPHICS ENGINE 

The proposed 3D display processor needs a pair of stereo 
images and a depth-map to perform the 3D display process. The 
GE renders a pair of stereo images by applying two different 
view transformations and inherently produces a depth-map 
during rendering process. The GE consists of a shader, a 
triangle setup unit, a rasterizer, and a render output unit as 
shown in Fig. 9.  

The shader has a programmable architecture for a high 
degree of rendering flexibility and executes rendering 
instructions for the vertices of the finer meshes that are the 
output of the subdivider. It supports up-to-date mobile 3D 
graphics API, OpenGL|ES 2.0 [16]. The shader utilizes 4-way 
Single Instruction Multiple Data (SIMD) architecture to exploit 
data parallelism between the elements of vertex attributes. 
Together, the shader applies the multi-threading technique to 
hide the latency of other operations using the independency 
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Fig. 9 This figure shows the architecture of our 3D graphics 
rendering engine. A shader receives the vertices of refined 
meshes from the subdivider and provides various 
rendering effects. The rest units fill pixels in the rendered 
primitives and send them to the 3D display engine. To 
increase performance, the shader uses a fast vector unit, 
SIMD architecture, and multi-threading technique. 
 

 
Fig. 10 The 3D display engine consists of three identical 
units to exploit data parallelism during 3D display process. 
It reduces bandwidth requirement by reordering the 
operation sequence of 3D display process. In both the VIP 
and the MP, division-free datapath reduces the latency of 
critical paths.  
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between vertices [17][18]. There are two arithmetic units in the 
shader: a Fast Vector Unit (FVU) and a Special Function Unit 
(SFU). The FVU especially accelerates vector operations such 
as a 4-input dot product (DP-4) [19], because the most frequent 
operations in shader programs are 4×4 matrix multiplications 
for geometry transformation that are composed of DP-4. Since 
the FVU not only accelerates the DP-4, but also produces the 
results of four multiplications and two additions, it executes the 
fundamental arithmetic instructions of shader programs. In 
typical vector units, both the carry-propagated additions and 
normalizations at the end of each multiplication have critical 
latency. The FVU in this work omits or replaces them with 
carry-save additions, which reduces the latency of DP-4 by 
30% compared with prior work [17]. Trigonometric functions 
such as exponent, reciprocal, logarithm, and square root are 
hard to be executed through basic multiplications and additions. 
The SFU accelerates them using a pre-computed look-up-table. 
Both the FVU and SFU are compliant with IEEE 754 
single-precision floating-point format. 

The triangle setup unit and the rasterizer produce the pixels 
of each triangle based on a tile. The render output unit performs 
the rest of rendering process such as a depth test or an alpha 
test. 

 

VI. 3D DISPLAY ENGINE 

Fig. 10 shows the DE architecture where the DE receives the 
output of the GE, stereo images and a depth-map, and performs 
the 3D display process.  

Conventionally the VIP is executed per image; the VIP 
completely produces i th view-image and then begins to 
interpolate i+1 th view-image. After the VIP produces all the 
intermediates, the MP starts mixing operations by loading all 
the images including the intermediates and a pair of stereo 
images. During conventional 3D display process, the DE must 
store and load all the intermediates in off-chip memory, 
resulting in bandwidth waste.  

In this work, we adopt the reordered VIP idea that is 
presented in our prior work [18]. Since the typical VIP 
produces intermediates in the order of view-positions, it loads 
input pixel by changing the x- and y-coordinates of an input 
pixel while fixing the view-position. Instead the reordered VIP 
changes the view-position, while maintaining the x- and 
y-coordinates of an input pixel. It makes the DE load only 
single pixel during producing the intermediate pixels for all the 
view-positions. Consequently the reordered VIP completely 
removes the memory operations for the intermediates, and the 
bandwidth requirement for 3D display process is reduced by 
88.9% for the target 3D display. 

When designing the 3D display processor, there exist two 
critical paths. One is depth to disparity conversion, and the 
other is a modulus operation to get a remainder of division by 9 
(MOD-9). In the VIP, a disparity value is required per pixel for 
interpolation. Since the GE produces a depth instead of the 
disparity in this processor, we need to convert a depth to a 

disparity, which includes a division operation. The MP 
performs the MOD-9 operation to allocate an intermediate 
pixel to proper position on the display. Since the modulus 
operation is implemented by a divider in SYNOPSYS 
DesignWare [20], it becomes a critical path. In 0.13µm CMOS 
technology, other datapath takes less than 6.5ns, but the 
conversion process takes 14.5ns and the modulus operation 
takes 11.1ns. In our previous implementation [18], we design 
division-free datapath for both the critical paths. Using the 
division-free datapath, the conversion operation takes only 
2.8ns, and the modulus operation takes only 3.3ns. As a result, 
the DE shows even 325fps frame rate at mobile display 
resolution (e.g., 480x320 of iPhone and Android phones) for 
the target 3D display, a 9-view auto-stereoscopic display. The 
DE always produces a pixel of a 3D image per cycle, so the 
overall performance is in inverse proportion to display 
resolution. A user can configure the resolution of a 3D image 
and the number of view-positions whose maximum supporting 
ranges are SXGA resolution (1280×1024) and 9 
view-positions. 
 

VII. POWER SAVING SCHEME BY SCALING DOWN FREQUENCY 

Since handhelds are constrained by battery capacity, power 
saving technique is indispensible when designing a processor. 
Our work saves power consumption by scaling down the 
operating frequencies of each functional block. Since power 
consumption is computed by CV2f, where C is capacitance, V is 
voltage, and f is frequency, scaling down frequency makes 
power consumption to be linearly decreased.  

In this processor we scale down the frequencies of the 
subdivider and the DE, because they do not need to run at the 
maximum rate at all times. Whereas the subdivider has 

 
Fig. 11 This work scales down the operating frequencies of 
the subdivider and the DE depending on model complexity, 
LODk, resolution, and synthesis rate. Since power 
consumption is linearly proportion to operating frequency, 
the power consumption is linearly decreased by scaling 
down the frequency. 
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maximum 770K faces per second subdivision rate at 50MHz, 
the amounts of subdivided faces may be less than 770K faces 
depending on a model complexity and LODtarget. We define the 
target subdivision rate by the following metrics. First we 
compute the number of faces to be subdivided (Nsubdivided) in (1), 
and then computes the operating frequency by a proportional 
expression between Nsubdivided and the number of faces at 
50MHz (770,000 faces) in (2). 

 
 Nsubdivided = Ninitialweight 

where Nsubdivided is the number of faces to be 
subdivided, Ninitial is the number of initial faces, 
weight is a variable depending on LODtarget 
(weight is 1 at LOD1, 5 at LOD2, and 21 at 
LOD3).  
 

(1) 

 fscaling = 50MHz   (Nsubdivided / 770,000) 
 where fscaling is the target frequency to be scaled. 

(2) 

 
Also the DE may not be running at the maximum rate. 

100MHz, at all times. Depending on a target resolution and a 
target synthesis rate, we scale down the frequency of the DE as 
50MHz. 

When the operating frequency of some functional block is 
less than or equal to 50MHz, the functional block receives a 
clock signal from an external device. On the other cases, a 
clock signal is transferred from a PLL that is integrated in the 
chip and makes either 50MHz or 100MHz. Since the maximum 
operating frequency of the subdivider is 50MHz, the clock 
frequency of the subdivider is externally controlled. On the 
other hand, the DE can be running at more than 50MHz, it can 
select one of 50MHz or 100MHz from the PLL. 

 

VIII. RESULTS 

In this section we show that the designed processor 
significantly saves bandwidth requirement while conserving 
visual quality and achieving enough performance compared 
with the prior work that are optimized for desktop PCs. 

 

A. Chip Implementation 

The processor integrates 965K gates in 4.5mm×4.5mm die 
using 0.13μm CMOS technology. It consumes 140mW at 
50MHz and 1.2V. The subdivider integrates about 77K gates 
with 20 KB SRAMs. Because its small chip size, the subdivider 
can be used as a dedicated block in handhelds similarly to the 
rasterizer. Fig. 12 shows chip features and a die photo. 

B. Memory Bandwidth Result 

Subdivision operations are mainly composed of memory 
loading operations, and those memory operations are 
dependent each other. Thus, we compare our work with 
previous works based on memory related performances such as 
bandwidth, off-chip memory access time, and off-chip memory 

access energy.   
We measure the bandwidth requirement based on the 

following two conditions: 1) Use of the burst mode and 2) 
ignoring the wire delay between on-chip and off-chip memories. 
The burst mode automatically fetches the next data element 
without sending address signals, resulting in a higher transfer 
rate than the normal mode. Also, we ignore the wire delay, 
since the delay is hard to be measured and is changeable 
depending on mobile phones. Based on these two assumptions, 
we measure the bandwidth requirement by computing a 
weighted sum of the number of off-chip memory access, where 
the weights are corresponding to the sizes of data. Equation (3) 
shows how to compute bandwidth requirement. We compute 
the numbers of off-chip memory accesses for face, edge and 
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Fig. 12 The left figure shows a die photo, and the right 
figure summarizes chip features. 
 

 
(a) 

LOD0 1,292 faces LOD3 82,688 faces Adaptive Subd. : 49,463 faces  
(b) 

 
(c) 

Fig. 13 This figure shows benchmark models. Each column 
from the leftmost shows the base mesh (i.e. LOD0), LOD3, 
and adaptively subdivided mesh, where a depth, the 
distance from a view-point, is used as a refinement 
criterion; two lines in the rightmost column indicate the 
threshold where the resolution changes. 
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vertex by using a C-model simulator. The data size of face, 
edge and vertex are computed by analyzing the entries of each 
data structure. 

We also analyze off-chip memory access time and energy 
consumption using a datasheet for the commercial off-chip 
memory, mobile DDR memory [13], based on the measured 
bandwidth requirement. Equation (4) and Equation (5) show 
how to compute memory access time and energy.  
 bandwidth = (Nface_access×DataSizeface)  

+ (Nedge_access×DataSizeedge)  
+ (Nvertex_access×DataSizevertex) 

Nface_access, Nedge_access,and Nvertex_access are the 
numbers of off-chip memory accesses for face, 
edge, and vertex at each data structure, 
respectively. 
DataSizeface, DataSizeedge,and DataSizevertex are 
the data size of face, edge, and vertex at each 
data structure, respectively. 

(3) 

 
 Access time = t_RP + t_RCD + t_AC + (t_CK × 2) + 

(t_CK / 2 × BurstLength) 
-  t_RP: The minimum delay time to precharge 
memory cells. This is required for activating 
memory cells accessed by the current RAS (Row 
Address Strobe) signal. 
- t_RCD: The minimum delay time between RAS 
signal to CAS (Colum Address Strobe) signal 
(RAS latency)  
- t_AC: The minimum delay time to access output 
data from clock edge 
- t_CK: The minimum clock cycle time from rising 
edge to rising edge 
- BurstLength: In burst addressing mode, the 
number of data to be transferred per transaction 
 

(4) 

 Access energy = VDD × [ (I_DD2N × t_RP) + 
(I_DD3N × t_RCD)+ {I_DD4 × (t_AC + t_CK × 2 
+ t_CK / 2 × BurstLength)} ] 

(5) 

- I_DD2N: Precharge standby current in 
non-power down mode 
- I_DD3N: Active standby current in non-power 
down mode 
- I_DD4: Operating current in burst mode 
- VDD: Operating voltage 
- BurstLength: In burst addressing mode, the 
number of data to be transferred per transaction 

 
When Mobile DDR is activate, it takes 2 cycles to receive the 

first burst data (t_CK×2), and two burst data are transferred per 
cycle (t_CK/2×BurstLength). Access energy is estimated by 
multiplying current and time to operating voltage (VDD). The 
current is divided into I_DD2N, I_DD3N, and I_DD4 
according to operation mode. Since I_DD2N is precharging 
current, it is multiplied to t_RP. Similarly, since I_DD3N is 
standby current, it is multiplied to t_RCD. Finally, operating 
current, I_DD4, is multiplied to a total operating time including 
the delay time (t_AC + (t_CK × 2) + (t_CK / 2 × BurstLength)). 

We compare our subdivider with prior methods that evaluate 
CCSSs, which are the method of Patney et al. [4] using the 
render-dynamic data structures and the method of Bunnell [5] 
using the half-edge data structure. For the various tests and 
comparison, we use three benchmark models: Iris, Monster 
Frog, and Killeroo models shown in Fig. 13. The base meshes 
of these models have only quads with a maximum valence of 8. 

Fig. 14-(a) shows the bandwidth requirement, estimated 
off-chip access time, and estimated off-chip energy 
consumption for the most complex model, Killeroo, with 
different subdivision approaches. Other benchmarks such as 
Iris and Monster Frog show similar results. Our subdivider has 
constant memory accesses regardless of LODk, because the 
depth-first based re-computing scheme loads just the target face 
and its neighborhood of LOD0. Especially for LOD3, our work 
shows about 100:1 reduction over the prior work [4][5] for all 
the memory performances and for all the benchmarks.  

We do the same procedure for the DE as shown in Fig. 14-(b). 
When measuring the bandwidth requirement of the DE, we 
assume that the DE runs at 60fps rate for 480×320 display 
resolution. The 3D display process has a fixed bandwidth 
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Fig. 14 (a) Our subdivider has about 100:1 reduction in memory performance at LOD3 over the prior work [4][5]. The 
ratios in bars are the results of our method over those of the prior work [4][5]. (b) In 3D display process, our work 
reduces bandwidth by 73% and off-chip memory access energy and time by 67% compared with typical scheme. 
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requirement regardless of benchmarks. Our work reduces 
bandwidth requirement by 73%, and similarly reduces both the 
off-chip memory access time and energy by 67% compared 
with typical 3D display process. 

We compare the overall chip bandwidth with a commercial 
portable bus, ExpressCard 2.0 PCI [6] that has 625Mbytes/s 
bandwidth. When measuring the bandwidth, the chip 
subdivides Killeroo up to LOD3 and runs the DE at 60fps from 
the subdivided model. In this environment, the subdivider and 
the DE consume about 267Mbytes/s that is less than half of the 
ExpressCard bandwidth. We can use the rest of the 
ExpressCard bandwidth for performing other 3D graphics 
techniques. 

 

C. Performance and Quality Comparison 

The subdivider refines 770K faces per second at 50MHz. 
The subdivider’s performance cannot be shown as an absolute 
frame rate, because it is changeable depending on model 
complexity. Since there has been no mobile subdivider, we 
indirectly compare the subdivision rate with the latest 
subdivision work [4] that targets on desktop PCs. While Patney 
et al. [4] takes 31.34ms to subdivide Killeroo up to LOD5, our 
work takes 79.01ms to subdivide the same model up to LOD3. 
Considering the different LODs, the Patney et al.’s method is 
40 times faster than our work. However, the Patney et al.’s 
method requires about 100 times higher bandwidth, access time, 
and energy consumption than our method and thus is 
considered inappropriate for handhelds that have the mobile 
memory architecture. Additionally our subdivider has 520K 
transistors, whereas Nvidia GTX280 [21] used in the Patney et 
al.’s work has 1.4 billion transistors, which shows how our 
subdivider is tiny; GTX280 is about 2700 times larger. 

It has been known that LOD5 can produce a smooth surface 
[22], but our work supports up to LOD3 because we found it 
strikes a good balance between the subdivision quality given 
the typical handheld screen resolution (480×320) and the size 
of on-chip memory (e.g., 20 KB, 44 KB, and 139 KB for 
supporting up to LOD3, LOD4, and LOD5, respectively). We 
quantitatively verify our subdivider is feasible on handhelds. 
We estimate subdivision quality by the average number of 
faces per pixel in the screen space. For this test, we use Killeroo, 
and assume that only half of faces are visible due to back-face 
culling and the projected scene occupies 70% of screen space. 
Our work targets 480×320 resolution for handhelds, and the 
Patney et al.’s method assumes 1600×1200 for desktop PCs. 
Given this configuration, our work provides 0.9faces/pixel and 
the Patney et al.’s method has 1.1faces/pixel. In conclusion, our 
subdivider provides similar quality to the Patney et al.’s method 
designed for PCs. 

In 3D display processing, the DE already achieves 
impressive performance, 325fps at 480×320 resolution of a 
9-view lenticular 3D display, using the division-free datapath. 
Since 3D display processing is a kind of image processing, the 
3D display engine always shows a fixed performance 
regardless of model complexity. 

 

IX. CONCLUSION 

As visual quality becomes the key feature of handhelds, there 
are increasing demands of modern 3D graphics and 3D display 
techniques on handhelds. Unfortunately these techniques are 
memory-intensive applications, which cannot be supported 
given mobile memory architecture.  

Our mobile 3D display processor with a subdivider can 
render smooth surfaces on a mobile 3D display. The subdivider 
attempts to use on-chip memory instead of off-chip memory by 
minimizing the working set. Together the 3D display engine 
removes the bandwidth to access intermediates by reordering 
the operation sequence of the 3D display process. 
Consequently the subdivider saves memory bandwidth less 
than 1% of the prior methods [4][5], and the 3D display engine 
reduces the bandwidth requirement by 73%. This 
bandwidth-saving result translates into a significant 
improvement of off-chip access energy and time. The 
subdivider has competitive subdivision rate and quality 
considering chip area and bandwidth performance. Also the 3D 
display engine shows impressive performance such as 325fps 
on mobile resolution (480×320). We wish our research to 
contribute the state-of-art on the next-generation mobile 
devices. 
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