
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1


Abstract— A mobile 3D display processor with a subdivider is
presented for higher visual quality on handhelds. By combining a
subdivision technique with a 3D display, the processor can
support viewers see realistic smooth surfaces in the air. However,
both the subdivision and the 3D display processes require a high
number of memory operations to mobile memory architecture.
Therefore, we make efforts to save the bandwidth between the
processor and off-chip memory. In the subdivider, we propose a
re-computing based depth-first scheme that has much smaller
working set than prior works. The proposed scheme achieves
about 100:1 bandwidth reduction over the prior subdivision
methods. Also the designed 3D display engine reduces the
bandwidth to 27% by reordering the operation sequence of the 3D
display process. This bandwidth saving translates into reductions
of off-chip access energy and time. Consequently the overall
bandwidth of both the subdivision and the 3D display processes is
affordable to a commercial mobile bus. In addition to saving
bandwidth, our work provides enough visual quality and
performance. Overall the 3D display engine achieves 325fps for
480×320 display resolution.

Index Terms—computer graphics, microprocessors,
multimedia systems, three-dimensional displays

I. INTRODUCTION

URING the past few years, a cellular phone has rapidly
evolved into a powerful entertainment tool, which can be

used as not only a phone, but also a video player, a TV, a game
console, a camera, a navigation, etc. As many contents in
different platforms require high-quality visual appearances,
visual quality becomes a key differentiating factor among
mobile devices. In order to make various and realistic effects,
modern handhelds use two key techniques: 3D graphics and 3D
display.

In modern 3D graphics, subdivision surfaces have received

Manuscript received October 9, 2001.
S.-H. Kim and K. Chung were with Department of Electrical Engineering,

Korea Advanced Institute of Science & Technology, Daejeon, 305-701
Republic of Korea. They are now with Samsung Electronics, Giheung, Gyunggi,
Republic of Korea (e-mail: hool84@mvlsi.kaist.ac.kr).

S.-H. Chung, Y.-J. Kim, H.-Y. Kim, and L.-S. Kim are with Department of
Electrical Engineering, Korea Advanced Institute of Science & Technology,
Daejeon, 305-701 Republic of Korea.

S.-E. Yoon is with Division of Web Science and Technology and
Department of Computer Science, Korea Advanced Institute of Science &
Technology, Daejeon, 305-701 Republic of Korea.

significant attentions, because they can support smooth
surfaces, leading to high-quality rendering. Owing to the
smoothness, the subdivision surface is now adopted as a
representation in the latest 3D graphics API such as Direct3D
11 [1]. Together with 3D graphics feature, a 3D display is used
in more and more handhelds, because it can give users
immersive feeling, which has not experienced before. In
handhelds, an auto-stereoscopic type display is used as a 3D
display, because it does not require additional peripherals such
as glasses or head gear [3].

Although the subdivision surfaces and the 3D display
provide realistic experiences to users, even high-end mobile
phones (e.g., iPhone) cannot support them in real-time. This is
mainly because the memory architecture of handhelds is
different from that of desktop PCs [2] as shown in Fig. 1,
whereas both the subdivision and the 3D display processes
have many memory operations. In handhelds, many
heterogeneous processors (e.g., a GPU and a CPU) share a
unified memory through the same bus because of small
physical size and limited power, where the memory is outside
the chip. This memory architecture causes frequent off-chip
memory accesses and bus traffic jams, significantly
under-utilizing the computing power of mobile processors.

This paper proposes a mobile 3D display processor with a
bandwidth-saving subdivider that provides high visual quality
on handhelds. In order to run both the subdivision and the 3D
display processes given the mobile memory architecture, we
enormously reduce the bandwidth requirement for both the
subdivision and the 3D display processes.

In the subdivider, we propose a re-computing based
depth-first scheme. Most prior approaches perform subdivision

A Mobile 3D Display Processor
with A Bandwidth-Saving Subdivider

Seok-Hoon Kim, Sung-Eui Yoon, Sang-Hye Chung, Young-Jun Kim,
Hong-Yun Kim, Kyusik Chung, and Lee-Sup Kim

D

Fig. 1 The memory architecture of handhelds is different
from the memory architecture of PCs. All the processors
share the same bus and a unified memory which is outside
the chip.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

for all the input faces in parallel using breadth-first scheme
[4][5]. Although they are optimized for the parallel architecture
of modern GPUs employed in desktop PCs, they need more
than several Gbytes for the bus bandwidth whereas the fastest
mobile bus supports up to 625Mbytes/s [6]. The proposed
depth-first scheme executes subdivision for just a single target
face with its one-ring neighborhood, instead of for all the input
faces. Since the working set of our depth-first scheme is small
with a high data coherency, our method requires a low data
bandwidth between the subdivider and off-chip memory, by
utilizing a small amount of on-chip memory (e.g., 20KB
SRAMs). In order to further reduce the bandwidth requirement,
we propose a compact edge-less data structure that is optimized
for our subdivision algorithm. The implemented subdivider has
less than 1% bandwidth requirement of prior subdivision
methods [4][5]. In addition, we propose adaptive subdivision
scheme which can control refinement level according to depth,
the distance from a view-position. Together with bandwidth
saving effects, our subdivider provides enough subdivision
quality compared with the latest prior work [4] that targets on
desktop PCs. To the best of our knowledge, our work is the first
attempt for a mobile subdivider.

Also the proposed 3D display engine reduces the bandwidth
requirement by changing operation sequence. The 3D display
process for an auto-stereoscopic display needs to generate
many intermediate images from a pair of stereo images by
interpolation. Our processor produces them in an interleaving
order instead of serial order, which makes the intermediates not
be stored in off-chip memory. As a result, the bandwidth
requirement of the 3D display process is reduced by 73%
compared with a typical approach.

The processor is implemented within 4.5mm×4.5mm die
using 0.13μm CMOS technology. It integrates 965K gates, runs
at 50MHz, and consumes 140mW at 1.2V.

The remainder of this paper is arranged as follows. Section II
briefly describes the background of subdivision surfaces and
3D display process, and Section III overviews the processor.
Section IV and VI explain the proposed ideas in the order of a
subdivider, a 3D graphics engine, and a 3D display engine.
Then, Section VII explains how this work saves power
consumption, and Section VIII shows the improvements of this
work compared with previous work. Section IX summarizes
and concludes this paper.

II. BACKGROUND, PRIOR WORK, AND PROBLEM

A. Catmull-Clark Subdivision Surfaces

Many tessellation schemes have been proposed, and they are
classified as subdivision surfaces (e.g., Catmull-Clark
subdivision surfaces [7] and Loop subdivision surfaces [8]) and
parametric surfaces (e.g., NURBS and Bézier patches [9]).
Parametric surfaces are computed by higher-order equations
and control points, which do not tessellate geometry vertices
itself but the parameters of surfaces such as u and v.
Higher-order equations use the tessellated parameters as

variables and produce the vertices of smooth surfaces. On the
other hand, subdivision surfaces directly tessellate geometry
vertices without any parameters. It refines an input mesh
(LODk) by given equations, producing an output mesh
(LODk+1) that is finer than the input mesh. Then, the output
mesh (LODk+1) is again used as an input mesh to the next
tessellation level (LODk+2). By performing this process
iteratively, we can construct a series of finer meshes that
converge to the limit surface of the subdivision surfaces.

Among those surfaces, the Catmull-Clark Subdivision
Surface (CCSS) has been the standard modeling tool for
various applications because of the following two reasons: 1)
the CCSS can be applied to two-manifold meshes that have
arbitrary topologies without any continuity limitation and 2)
geometry data (e.g., vertices) of the CCSS are freely modified
without introducing artifacts.

In the CCSS, a face with N edges is subdivided into N faces
at every subdivision level. At each subdivision level, we create
three kinds of points: face, edge, and vertex points as shown in
Fig. 2. A face point for a face is computed by averaging the
vertices of the face. Then, an edge point for an edge is
computed by averaging two end-vertices of the edge and two
face points of the faces sharing the edge. We also create a
vertex point for each vertex by computing a weighted sum of
the vertex, all the face, and edge points around the vertex. We
then construct sub-faces by connecting these points. By
performing this subdivision process iteratively, we can
construct a series of finer meshes that converge to the limit
surface of the CCSS.

Typically, an output mesh computed at a subdivision level is
used as an input mesh to the next subdivision level. During the
subdivision process, we must utilize an efficient data structure
to find and update the connectivity information of CCSSs.
These operations are performed by various indexing operations
[10][11]. However, a naive data structure for CCSSs requires a
large amount of storage and a wide bus bandwidth.

Fig. 2 (a) Catmull-Clark subdivision refines a face with N
edges into N sub-faces by creating three kinds of points; a
face point, an edge point, and a vertex point. (b) Each point
is computed by the weighted sum of neighbor vertices. In
the vertex point, N means a valence number that is the
number of edges connected to the vertex under the
subdivision.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

B. Subdivision Related Works

Most prior methods of CCSSs are designed for GPU-friendly
parallel subdivisions [4][5][11]. Bunnell [5] and Shiue et al.
[11] perform the subdivision of CCSSs directly on a GPU.
They store meshes into textures and employ multi-pass
rendering for subdivision operations. They need to perform at
least one subdivision level on a CPU to treat the extraordinary
vertices of initial meshes. This multi-pass rendering and the
subdivision on the CPU can require a lot of off-chip memory
accesses in the mobile memory architecture. Recently, Patney
et al. [4] proposes a robust adaptive subdivision for CCSSs on a
highly parallel GPU. This method achieves a high performance
on the GPU, by employing the breadth-first subdivision scheme
that performs the subdivision process for all the faces of the
mesh in parallel. However, it is designed mainly for desktop
PCs and is not suitable for handhelds. Since the breadth-first
scheme in the parallel method requires a large working set, it
can cause a significant amount of off-chip memory accesses in
the mobile memory architecture.

Our previous work [12] accomplished tessellation on mobile
platforms using parametric surfaces instead of subdivision
surfaces. It quickly tessellates parameters, (u, v), using fast
difference, and accelerates the computations for higher-order
equation using dual-core shaders. Although the previous work
enables to run tessellation on mobile devices using small
bandwidth requirement, it directly inherits the parametric
surfaces’ limitations such as piecewise continuity and
inconvenient topology control. Also, it executes adaptive
tessellation by computing LODs per object, which makes
different triangles have the same LOD. Its dual-core shaders
provide high computing power, but consume more than
200mW, which is still high in the mobile platform.

C. 3D Display Process

An auto-stereoscopic display refracts the light from LCD
pixels using lens array or parallax barrier attached on an LCD
and delivers different images to each eye of a viewer, giving
depth-perception to the viewer. For a viewer to observe
different images depending on his eye position (view-position),
the auto-stereoscopic display prepares multiple images taken
from different view-positions and mixes them according to the
lens array pattern or the barrier pattern. If an auto-stereoscopic
display mixes nine images, it is called as a 9-view
auto-stereoscopic display.

The 3D display process for the auto-stereoscopic display
consists of a View Interpolation Process (VIP) and a
Multiplexing Process (MP). The VIP produces intermediate
images for in-between view-positions from a pair of stereo
images and a depth-map, which relieves the burden of
rendering all the images. Then, the MP allocates the sub-pixels
of the stereo images and the intermediates into the sub-pixels of
the auto-stereoscopic display according to the lens array pattern,
synthesizing a 3D image.

D. Mobile Memory Architecture

The computing power of modern handhelds is enough to
perform computation-intensive operations including the
evaluations of CCSSs. However, handhelds have a quite
different memory architecture compared to that of desktop PCs
as shown in Fig. 1 [2]. In handhelds, a memory located outside
the chip is shared between different processors, and the widths
of bus and memory are limited within 32 or 16 bits. Thus the
bus becomes the main performance bottleneck in the chip,
which significantly underutilizes the high computing power of
recent mobile GPUs and other processors. Furthermore,
frequent memory access increases off-chip memory access time.

Fig. 3 This figure describes the overall architecture of our processor. A subdivider makes smooth
surfaces from coarse input mesh, then a 3D graphics engine renders a pair of stereo images and a
depth-map, and finally a 3D display engine synthesizes a 3D image from the output data of the 3D
graphics pipeline.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

While an on-chip memory access takes only a single cycle, an
off-chip memory access takes tens of cycles. In the aspect of
power, each access operation drives high capacitance for the
bus, consuming additional energy. Since handhelds are
constrained by battery capacity, the additional energy
consumption poses a severe burden to the overall system of
handhelds.

III. OVERALL ARCHITECTURE

Fig. 3 shows the operation flow of our processor that consists
of a subdivider, a 3D Graphics Engine (GE), and a 3D Display
Engine (DE). First, the subdivider refines input meshes into
finer meshes, producing a smooth surface. Then, the GE
renders stereo images from the fine meshes by applying two
different view transformations and inherently produces a
depth-map. During the rendering process, a shader in the GE
imposes various effects to the fine meshes, and the other units
in the GE generate pixels within the primitives of the fine
meshes. The DE receives the rendered stereo images and the
depth-map and synthesizes a 3D image by accomplishing the
VIP and the MP. The combined architecture provides
synergetic coupling effects such that viewers can see smooth
and realistic objects floating in the air through a 3D display.

IV. BANDWIDTH-SAVING SUBDIVIDER

In this section we provide an overview of our subdivision
approach, followed by our compact data structure and our
adaptive subdivision method. Throughout the paper, we use
LODk to denote a refined mesh computed after performing k
subdivision levels to the base mesh; LOD0 represents the base
mesh.

A. Re-Computing based Depth-First Subdivision Scheme

To perform the CCSS in the mobile memory architecture, we
propose a re-computing based depth-first scheme. The
depth-first scheme iteratively subdivides a face of LOD0 until
its refined mesh satisfies termination criteria, and then begins to
subdivide another face of LOD0 shown in Fig. 4. This
depth-first scheme has not been well adopted for evaluating
CCSSs on the GPU, mainly because of the following two
reasons: 1) it requires stack operations that do not suit well to
the streaming architecture like GPUs and 2) it is not
straightforward to efficiently maintain data structures that
support crack-free adaptive subdivision and provide the
one-ring neighborhood information of a face for CCSSs.

We choose the depth-first subdivision scheme, mainly
because it has a much smaller working set during the
subdivision process than that of the breadth-first subdivision
scheme. In our depth-first subdivision scheme, we first bring a
target face and its one-ring neighborhood of LOD0 stored in
off-chip memory into on-chip memory. Then, we subdivide the
target face until its refined mesh satisfies the subdivision
criteria. During this subdivision process, subdividing a face

requires its one-ring neighborhood information. Therefore, as
we subdivide the target face, we also have to refine the faces of
the one-ring neighborhood of the target face. We store the
refined mesh of the target face and its neighboring faces in
on-chip memory. When the refined mesh of the target face
satisfies the subdivision criteria, the subdivider sends them
directly to a vertex shader, instead of storing the refined mesh
in off-chip memory. Then, we begin to subdivide a next face of
LOD0 in the same manner mentioned in above. Therefore, we
can store the working set of subdividing a target face into a
small on-chip memory and avoid expensive off-chip memory
accesses by utilizing data stored in the on-chip memory.

Note that we also subdivide the neighboring faces of the
target face. There can be two different approaches for handling
these refined meshes of those neighboring face: re-computing
and re-loading. The re-loading method stores these refined
meshes in off-chip memory for later use by loading them from
off-chip memory. On the other hand, the re-computing method
discards all the refined meshes, and allows the subdivider to
re-compute them when we subdivide those neighboring faces
of target faces of the base mesh. We adopt the re-computing
method, since it performs better than the re-loading method,
although it causes many redundant computations (e.g., 50%
more computations than the reloading method). Note that the
re-computing based depth-first method does not perform any
extra off-chip memory access during the subdivision process,
once we fetch a target face and its neighborhood from off-chip
memory.

To support our design decision, we estimate the performance
of these two different methods by simulating the architecture of
handhelds. We refer to a Mobile DDR datasheet available from
Samsung [13] to estimate off-chip memory access time.
However, we ignore the wire delay between on-chip memory

Fig. 4 Breadth-first scheme subdivides all the faces of LODk
and begins to subdivide the faces of LODk+1. Depth-first
scheme subdivides a face of LOD0 up to LODk and
subdivides a next face of LOD0. The number shown in each
figure indicates the subdivision ordering.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

and off-chip memory, because the wire delay is not explicitly
exposed and can vary depending on a specific system. For the
simulation, we perform the subdivision for a regular mesh that
has a valence number of 4 to construct LOD3. In the re-loading
scheme, all the refined meshes of the neighboring faces are
transferred between on-chip memory and off-chip memory
during every subdivision process.

As can be seen in Table 1, the re-computing scheme has a
shorter access time than the re-loading scheme. The
re-computing scheme continually improves as we compute
more refined meshes. Since we ignore the wire delay of the
re-loading scheme, the re-computing scheme can show higher
improvement than the re-loading scheme.

A downside of our method is that it requires additional
on-chip memory to contain the refined meshes of a target face
and its neighboring faces. When we support up to LOD3 and
use our edge-less data structure, which will be explained in a
later section, the required size of on-chip memory is 20 KB.
This size is affordable on recent mobile phones; for instance,
the size of PowerVR GPU in iPhone is 64KB [14].

B. Edge-less Data Structure

We propose a compact edge-less structure, to further reduce
the bandwidth requirement between on-chip memory and
off-chip memory, under the re-computing based depth-first
subdivision scheme. The edge-less data structure maintains two
separate structures: vertex and face structures. It does not
record any edge information and thus has a lower bandwidth
requirement, compared to other commonly used data structures
such as half-edge [10][11] and render-dynamic [4] data
structures. More specifically, the edge-less data structure has
73% and 66% lower bandwidth than the half-edge and render
dynamic data structures respectively. Fig. 5 shows the elements
of the edge-less data structure.

Suppose that we plan to subdivide a target face. To do that,

we load data of the target face and its one-ring neighboring
faces. Hence, we first load the face element of the target face
and then load the vertices of the face by referring to the vertex
indices stored in the face element. For each vertex of the face,
we also load its neighboring faces by referring to the
neighboring face indices stored in its vertex element. Then, we
also load the vertices of these neighboring faces. In Section
IV-E, we will describe how to use the edge-less data structure
on the subdivision process with an example.

Once all the information is loaded, then we compute the face,
edge, and vertex points of the target face and its one-ring
neighborhood. To compute an edge point of an edge, two
end-vertices of the edge and the two face points of the faces that
share the edge are required. However, the edge-less structure
does not explicitly record any edge data. Instead, we store those
data (e.g., vertices, face points, etc.) in registers and reconstruct
the necessary edge information based on those stored data. To
compute the vertex point of a vertex, all the face and edge
points around the vertex and the valence number of the vertex
are required. The valence number is stored within the vertex
structure. Also, we store all those points in registers and
compute the vertex point without accessing data stored in
off-chip memory. A detailed subdivision algorithm and these
registers will be introduced in Section IV-E.

Table 1 Access time of re-loading scheme and
re-computing scheme
Access time (μs) LOD1 LOD2 LOD3
Re-loading 13.6 36.2 88.6
Re-Computing 4.4 7.2 12.8

Fig. 5 The left figure shows our edge-less data structure,
which consists of face and vertex structures. The number
shown in each parenthesis indicates the count of
corresponding elements. The right figure shows different
points computed from vertices of a face.

(a)

Case 1 Case 2 Case 3

Case 4 Case 5

To be refined

Not to be refined

(b)
Fig. 6 (a) If LODs are computed per face or per edge, there
remains crack possibility. (b)The left and right figures
show five mesh connectivity patterns used to provide
crack-free adaptive subdivisions and the result of such
subdivision on a mesh respectively.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

C. Adaptive Subdivision

Most previous approaches [4][15] perform adaptive
subdivision depending on view-dependent refinement criteria
and generate crack-free adaptive meshes. These techniques
perform such operations using all the available information
about the refined mesh at every subdivision level, causing a
high bandwidth requirement between the GPU and off-chip
memory. Instead, we propose a simple adaptive subdivision
method that does not rely on any information other than the
information of a target face under the subdivision. Therefore, it
can be independently applied to any faces.

If LODs are evaluated per face, edge-shared faces might
have different LODs as shown in Fig. 6-(a). In this case, the
shared edges have different curvatures, making cracks. To
prevent these cracks, LODs would be evaluated per edge.
However, it also makes cracks when faces share a vertex as
shown in Fig. 6-(a). In order to prevent all kinds of cracks, our
subdivider evaluates LODs per vertex. Since cracks are
occurred when connected vertices have different LODs, we
draw all the cases that the vertices of a face have different
LODs. A face of CCSSs is a quad consisting of four vertices so
that only one, two, or three vertices can have different LODs in
a face; it is impossible that zero or four vertices have different
LODs in a rectangular. For example, if two vertices have
different LODs, there come out two patterns. Depending on
whether or not each vertex passes the refinement criteria, we
choose one among five different mesh connectivity patterns
(Fig. 6-(b)) of the face.

A user can arbitrarily configure the refinement criteria on the
specific registers of the chip (REGLOD1, REGLOD2, and
REGLOD3) through the chip’s host interface. Then, the judge
unit in the subdivider compares the depth of each vertex with
the configured values in REGLOD1, REGLOD2, and REGLOD3. For
example, if the depth is larger than the value in REGLOD2 and
smaller than the value in REGLOD3, the vertex should be
subdivided up to LOD2.

Note that our mesh connectivity patterns consist of both the
quads and triangles. Since the GE of our processor treats only
triangles, the subdivider splits every quad into two triangles at
the end of the subdivision process. Our adaptive refinement can
be independently applied to any faces.

D. Subdivider Architecture

Fig. 7 shows the subdivider architecture where two on-chip
memories are integrated. In subdivision operations, the loaded
vertices at LODk do not be used any more at higher LODs
(LODk+1, LODk+2, …). Due to very low utilization of the loaded
vertices, we design the on-chip memories as buffers not caches.
The on-chip memories store the face and vertex data
represented in the edge-less data structure. They store all the
refined meshes of the target face (TF) and one-ring
neighborhood faces (NFs) up to LOD3 with a maximum
valence number of 8. Also the subdivider has different data

loaders as well as different point and face generators. During
the subdivision process, the subdivider uses various registers to
prevent redundant computations and loading operations.

The subdivider first loads a TF from the face memory and
then loads its vertices from the vertex memory. Then, the judge
unit decides whether to subdivide each vertex more or not
according to programmed depth criteria. If a vertex to be
subdivided, the subdivider loads the NFs of the vertex and then
loads four vertices of each NF. By averaging four vertices of
each NF, we make a Pf of the NF. We can make Pe from the
second NF, because two Pf have been created. When computing
all the face and edge points around the vertex, we make a Pv.
Then, the subdivider processes the second vertex of the TF and
continues to perform the same process for the third and fourth
vertices of TF. During the subdivision process, the subdivider
creates sub-faces and stores them in on-chip memory. After
subdividing the TF at LODk, the subdivider begins to subdivide
one of the sub-faces. This process is recursively performed
until all the sub-faces of the TF satisfy smoothness criteria.
Then, the subdivider sends only the refined meshes of the TF to
the shader and discards those of the NFs according to the
proposed re-computing scheme.

When creating new points, TF, NFs, and their vertices need
to be loaded, but they have dependency each other. As a result,
the subdivider must wait all the geometry data to be fetched
from off-chip memory. In order to reduce this waiting latency,
we insert special registers (REGTF_ver0, REGTF_ver1, REGTF_ver2,
REGTF_ver3, and REGpre) to avoid redundant off-chip memory
accesses for the same vertices and faces. For example, A target
face’s vertices are loaded when deciding whether to subdivide
the target face more or not. These vertices are redundantly used
when computing a face point, an edge point, and a vertex point.
They are also used when connecting computed points to create

New face generator

Quad to triangles splitter

F
ac

e
O

n
-C

h
ip

 M
em

or
y

V
er

te
x

O
n-

C
hi

p
M

em
or

y

Loader for a target face (TF)

Loader for the vertices of TF

Judge unit

Loader for a neighboring face (NF)

Loader for the vertices of NF

REG TF

REG TF_ver0

REG TF_ver1

REG TF_ver2

REG TF_ver3

REG vertex

REG edge

REG pre

REG face

New point generator
Face point generator Edge point generator

Vertex point generator

To a vertex shader

Triangles
Vertex indices Vertex attributes

Bus
Faces of the base mesh Vertices of the base mesh

Fig. 7 This figure shows a block diagram of the architecture
of our mobile subdivider.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

new faces. To avoid the redundant accesses, we store the
vertices of a target face in REGTF_ver0, REGTF_ver1, REGTF_ver2,
and REGTF_ver3. Other special registers are used in similar
purpose. When subdividing a face of regular meshes (valence
number is 4) from LODk to LODk+1, the proposed scheme
without the special registers loads 64 vertices and 16 faces. By
adding the special registers, we load only 32 vertices and 9
faces.

E. Runtime Algorithm

In this section we present a simplified explanation of our
subdivision algorithm using an example simple mesh. Suppose
that we subdivide a target face, fe, in the simple mesh shown in
Fig. 4-(a). Our method performs the following steps with the
example mesh:

1) We initialize all the registers with zero. We bring a target

face (e.g., fe in Fig. 8-(a)), its neighboring faces, and their
vertex information from the base mesh stored at off-chip
memory to on-chip memory. We do not perform any
additional access to off-chip memory, while subdividing
the target face.

2) We load the target face, fe, from on-chip memory and store
it in REGTF for later use. Then, we load four vertices, va, vb,
vc, and vd in Fig. 8-(b), of fe from on-chip memory and store
them into REGTF_ver. We process these loaded vertices
starting from the vertex va in the order that vertices are
loaded. For each vertex, we first check whether we have to
subdivide it or not, by using a judge unit. The judge unit
decides whether or not to subdivide each vertex, according
to programmed depth criteria. Suppose that the judge unit
decides to subdivide va. Then, we load the neighboring
faces of va from on-chip memory in the clockwise direction
(e.g., the order of fa, fb, fe, and fd as shown in Fig. 8-(b)).
We load them in the clockwise direction in order to easily
reconstruct edges that are shared by two neighboring faces.
As we load each of them, we set it as a current face and
process it as described below.

3) We access the first neighboring face, fa in Fig. 8-(c), of the
vertex va. Whenever we access a neighboring face, we
compute its face point. To compute a face point of the face,
we load four vertices of the face from on-chip memory in

the clockwise direction (e.g., va, ve, vf , and vg as shown in
Fig. 8-(d)). Whenever we load a vertex of the current face,
we add it to REGface. After adding the fourth vertex of the
face to REGface, we compute the face point (e.g., the blue
circle in Fig. 8-(e)) of the face by dividing the value of
REGface by four. Whenever the face point is computed, it is
added to REGedge and REGvertex for computing edge and
vertex points. Finally we initialize REGface. Note that the
current face and its next neighboring face share an edge.
We store the two end-vertices of the edge in registers
during the traversal of those neighboring faces; hence, we
avoid the need to store the edge information in the
edge-less data structure. Note that at least one of these two
end-vertices is one of vertices of the target face, which is
already stored in REGTF_ver. We store another vertex in
REGpre. By accessing these registers, we can reconstruct
the edge information.

4) We access the second neighboring face, fb in Fig. 8-(f), of
the vertex va. We load four vertices of the face. Since the
current face and its previous face share an edge, we can
fetch two end-vertices of the edge from registers (e.g.,
REGTF_ver and REGpre) and load other two vertices from
on-chip memory. We then perform operations with
registers to create the face point of the face in a similar
manner, as we did in the step (3). From the second
neighboring face, we can compute the edge point of an
edge that is shared between the current face and its
previous face. In this case, the edge consists of va and vg
and is denoted as e. To compute the edge point, we add two
end-vertices of the edge e into REGedge. Since REGedge
stores the sum of two face points and two end-vertices of
the edge e, we can compute the edge point (e.g., the orange
circle in Fig. 8-(h)) of the edge e. Whenever we compute
an edge point, we add it to REGvertex and initialize REGedge.

5) Whenever loading a neighboring face, we check whether
the face is the target face. Since the third neighboring face,
fe in Fig. 8-(i), is the target face stored in REGTF, we can get
its vertices (e.g., white circles in Fig. 8-(j)) by accessing
REGTF_ver. We compute the face and edge points of the
current face in a similar manner as we did at the step (4).
From the third neighboring face, we can construct a
subface, the red rectangle in Fig. 8-(k), by connecting two
edge points, a face point and a vertex point. At this time,

Fig. 8 This figure shows a series of operations of our algorithm to subdivide a target face, fe shown in (a).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

the geometry of the vertex point is not known. However,
we create its index and space in on-chip memory, and then
fill its content later.

6) As we did at the step (5), we load the fourth neighboring
face, fd in Fig. 8-(l), and perform similar operations with
the registers to create its face point, edge point, and
subface as shown in Fig. 8-(n).

7) We access the next neighboring face, which is, in fact, the
first neighboring face. We load its face point from the
on-chip memory and perform similar operations with
registers to create the last edge point and a sub-face in a
similar manner, as we did at the step (6). Since all the
points around the vertex va are accumulated in REGvertex,
we construct a vertex point, the green circle in Fig. 8-(p),
and produce a final sub-face as shown in Fig. 8-(q).

8) We process the next vertex, vb in Fig. 8-(r), of the target
face. If the judge unit decides to subdivide vb, we then
perform the same process from the step (3) to step (7) with
vb. Otherwise, we skip the subdivision process for vb. Then,
we continue to perform the same procedure for the third
and fourth vertices, vc and vd. To connect vertices of the
target face fe and the points created from the subdivision
process, we apply one of the five mesh connectivity

patterns shown in Fig. 6.
9) After subdividing the target face, different sub-faces are

created as shown in Fig. 8-(s). We store them in the
on-chip memory and then our depth-first subdivision
scheme begins to subdivide one of the sub-faces (e.g.,
sub-faces with thick red lines in Fig. 8-(t)) of the target
face. This process is recursively performed until all those
sub-faces satisfy the programmed subdivision criteria.

At the end of this subdivision process, we get the subfaces of
the target face as well as the sub-faces of neighboring faces of
the target face. We only send the sub-faces of the target face to
a vertex shader. With the re-computing subdivision scheme, we
discard all those sub-faces created from neighboring faces of
the target face, instead of maintaining them in off-chip memory.
Our algorithm applied to a target face of valence number 4 can
be easily applied to target faces with different valence numbers.

V. 3D GRAPHICS ENGINE

The proposed 3D display processor needs a pair of stereo
images and a depth-map to perform the 3D display process. The
GE renders a pair of stereo images by applying two different
view transformations and inherently produces a depth-map
during rendering process. The GE consists of a shader, a
triangle setup unit, a rasterizer, and a render output unit as
shown in Fig. 9.

The shader has a programmable architecture for a high
degree of rendering flexibility and executes rendering
instructions for the vertices of the finer meshes that are the
output of the subdivider. It supports up-to-date mobile 3D
graphics API, OpenGL|ES 2.0 [16]. The shader utilizes 4-way
Single Instruction Multiple Data (SIMD) architecture to exploit
data parallelism between the elements of vertex attributes.
Together, the shader applies the multi-threading technique to
hide the latency of other operations using the independency

Special
function

unit
Mul

Triangle
setup unit

IMEM (4KB)

Inst. fetching

Inst. decoding

Temporal reg.

Absolute/Negation/Swizzle

Fast vector unit

Write mask

Output buffer Predicate reg.

Vertex shader

Add

9
512

128

128

128

128 128

128

128

128

1

128

Look up
table

(2KB)

Mul

Add

128

Rasterizer
Render

output unit128 128

CMEM (3.5KB)

Mul
Mul

Add

128

Vertex buffer

from
subdivider

128

Fig. 9 This figure shows the architecture of our 3D graphics
rendering engine. A shader receives the vertices of refined
meshes from the subdivider and provides various
rendering effects. The rest units fill pixels in the rendered
primitives and send them to the 3D display engine. To
increase performance, the shader uses a fast vector unit,
SIMD architecture, and multi-threading technique.

Fig. 10 The 3D display engine consists of three identical
units to exploit data parallelism during 3D display process.
It reduces bandwidth requirement by reordering the
operation sequence of 3D display process. In both the VIP
and the MP, division-free datapath reduces the latency of
critical paths.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

between vertices [17][18]. There are two arithmetic units in the
shader: a Fast Vector Unit (FVU) and a Special Function Unit
(SFU). The FVU especially accelerates vector operations such
as a 4-input dot product (DP-4) [19], because the most frequent
operations in shader programs are 4×4 matrix multiplications
for geometry transformation that are composed of DP-4. Since
the FVU not only accelerates the DP-4, but also produces the
results of four multiplications and two additions, it executes the
fundamental arithmetic instructions of shader programs. In
typical vector units, both the carry-propagated additions and
normalizations at the end of each multiplication have critical
latency. The FVU in this work omits or replaces them with
carry-save additions, which reduces the latency of DP-4 by
30% compared with prior work [17]. Trigonometric functions
such as exponent, reciprocal, logarithm, and square root are
hard to be executed through basic multiplications and additions.
The SFU accelerates them using a pre-computed look-up-table.
Both the FVU and SFU are compliant with IEEE 754
single-precision floating-point format.

The triangle setup unit and the rasterizer produce the pixels
of each triangle based on a tile. The render output unit performs
the rest of rendering process such as a depth test or an alpha
test.

VI. 3D DISPLAY ENGINE

Fig. 10 shows the DE architecture where the DE receives the
output of the GE, stereo images and a depth-map, and performs
the 3D display process.

Conventionally the VIP is executed per image; the VIP
completely produces i th view-image and then begins to
interpolate i+1 th view-image. After the VIP produces all the
intermediates, the MP starts mixing operations by loading all
the images including the intermediates and a pair of stereo
images. During conventional 3D display process, the DE must
store and load all the intermediates in off-chip memory,
resulting in bandwidth waste.

In this work, we adopt the reordered VIP idea that is
presented in our prior work [18]. Since the typical VIP
produces intermediates in the order of view-positions, it loads
input pixel by changing the x- and y-coordinates of an input
pixel while fixing the view-position. Instead the reordered VIP
changes the view-position, while maintaining the x- and
y-coordinates of an input pixel. It makes the DE load only
single pixel during producing the intermediate pixels for all the
view-positions. Consequently the reordered VIP completely
removes the memory operations for the intermediates, and the
bandwidth requirement for 3D display process is reduced by
88.9% for the target 3D display.

When designing the 3D display processor, there exist two
critical paths. One is depth to disparity conversion, and the
other is a modulus operation to get a remainder of division by 9
(MOD-9). In the VIP, a disparity value is required per pixel for
interpolation. Since the GE produces a depth instead of the
disparity in this processor, we need to convert a depth to a

disparity, which includes a division operation. The MP
performs the MOD-9 operation to allocate an intermediate
pixel to proper position on the display. Since the modulus
operation is implemented by a divider in SYNOPSYS
DesignWare [20], it becomes a critical path. In 0.13µm CMOS
technology, other datapath takes less than 6.5ns, but the
conversion process takes 14.5ns and the modulus operation
takes 11.1ns. In our previous implementation [18], we design
division-free datapath for both the critical paths. Using the
division-free datapath, the conversion operation takes only
2.8ns, and the modulus operation takes only 3.3ns. As a result,
the DE shows even 325fps frame rate at mobile display
resolution (e.g., 480x320 of iPhone and Android phones) for
the target 3D display, a 9-view auto-stereoscopic display. The
DE always produces a pixel of a 3D image per cycle, so the
overall performance is in inverse proportion to display
resolution. A user can configure the resolution of a 3D image
and the number of view-positions whose maximum supporting
ranges are SXGA resolution (1280×1024) and 9
view-positions.

VII. POWER SAVING SCHEME BY SCALING DOWN FREQUENCY

Since handhelds are constrained by battery capacity, power
saving technique is indispensible when designing a processor.
Our work saves power consumption by scaling down the
operating frequencies of each functional block. Since power
consumption is computed by CV2f, where C is capacitance, V is
voltage, and f is frequency, scaling down frequency makes
power consumption to be linearly decreased.

In this processor we scale down the frequencies of the
subdivider and the DE, because they do not need to run at the
maximum rate at all times. Whereas the subdivider has

Fig. 11 This work scales down the operating frequencies of
the subdivider and the DE depending on model complexity,
LODk, resolution, and synthesis rate. Since power
consumption is linearly proportion to operating frequency,
the power consumption is linearly decreased by scaling
down the frequency.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

maximum 770K faces per second subdivision rate at 50MHz,
the amounts of subdivided faces may be less than 770K faces
depending on a model complexity and LODtarget. We define the
target subdivision rate by the following metrics. First we
compute the number of faces to be subdivided (Nsubdivided) in (1),
and then computes the operating frequency by a proportional
expression between Nsubdivided and the number of faces at
50MHz (770,000 faces) in (2).

 Nsubdivided = Ninitialweight

where Nsubdivided is the number of faces to be
subdivided, Ninitial is the number of initial faces,
weight is a variable depending on LODtarget
(weight is 1 at LOD1, 5 at LOD2, and 21 at
LOD3).

(1)

 fscaling = 50MHz  (Nsubdivided / 770,000)
 where fscaling is the target frequency to be scaled.

(2)

Also the DE may not be running at the maximum rate.

100MHz, at all times. Depending on a target resolution and a
target synthesis rate, we scale down the frequency of the DE as
50MHz.

When the operating frequency of some functional block is
less than or equal to 50MHz, the functional block receives a
clock signal from an external device. On the other cases, a
clock signal is transferred from a PLL that is integrated in the
chip and makes either 50MHz or 100MHz. Since the maximum
operating frequency of the subdivider is 50MHz, the clock
frequency of the subdivider is externally controlled. On the
other hand, the DE can be running at more than 50MHz, it can
select one of 50MHz or 100MHz from the PLL.

VIII. RESULTS

In this section we show that the designed processor
significantly saves bandwidth requirement while conserving
visual quality and achieving enough performance compared
with the prior work that are optimized for desktop PCs.

A. Chip Implementation

The processor integrates 965K gates in 4.5mm×4.5mm die
using 0.13μm CMOS technology. It consumes 140mW at
50MHz and 1.2V. The subdivider integrates about 77K gates
with 20 KB SRAMs. Because its small chip size, the subdivider
can be used as a dedicated block in handhelds similarly to the
rasterizer. Fig. 12 shows chip features and a die photo.

B. Memory Bandwidth Result

Subdivision operations are mainly composed of memory
loading operations, and those memory operations are
dependent each other. Thus, we compare our work with
previous works based on memory related performances such as
bandwidth, off-chip memory access time, and off-chip memory

access energy.
We measure the bandwidth requirement based on the

following two conditions: 1) Use of the burst mode and 2)
ignoring the wire delay between on-chip and off-chip memories.
The burst mode automatically fetches the next data element
without sending address signals, resulting in a higher transfer
rate than the normal mode. Also, we ignore the wire delay,
since the delay is hard to be measured and is changeable
depending on mobile phones. Based on these two assumptions,
we measure the bandwidth requirement by computing a
weighted sum of the number of off-chip memory access, where
the weights are corresponding to the sizes of data. Equation (3)
shows how to compute bandwidth requirement. We compute
the numbers of off-chip memory accesses for face, edge and

Technology 0.13μm 1P6M CMOS

Voltage 1.2V(core), 3.3V(I/O)

Die Size
965K gates in 4.5mm x
4.5mm

Subdivision
Catmull-Clark subdivision
Subdivide 770K faces/s
1/100 B/W saving

3D Graphics
SIMD & multi-threading
Tiling rasterization
OpenGL|ES 2.0

3D Display
9-view lenticular display
326fps at 480x320

Frequency 50MHz

Power 140mW

3D Display
Engine

Frame
Buffer

Stereo
&

Depth
Buffer

Shader
Shader Memory

(IMEM,
CMEM, Etc.)

Subdivider
Memory

Subdivider

PLL

Rasterizer

Triangle
Setup

I/
F

s

Fig. 12 The left figure shows a die photo, and the right
figure summarizes chip features.

(a)

LOD0 1,292 faces LOD3 82,688 faces Adaptive Subd. : 49,463 faces
(b)

(c)

Fig. 13 This figure shows benchmark models. Each column
from the leftmost shows the base mesh (i.e. LOD0), LOD3,
and adaptively subdivided mesh, where a depth, the
distance from a view-point, is used as a refinement
criterion; two lines in the rightmost column indicate the
threshold where the resolution changes.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

vertex by using a C-model simulator. The data size of face,
edge and vertex are computed by analyzing the entries of each
data structure.

We also analyze off-chip memory access time and energy
consumption using a datasheet for the commercial off-chip
memory, mobile DDR memory [13], based on the measured
bandwidth requirement. Equation (4) and Equation (5) show
how to compute memory access time and energy.
 bandwidth = (Nface_access×DataSizeface)

+ (Nedge_access×DataSizeedge)
+ (Nvertex_access×DataSizevertex)

Nface_access, Nedge_access,and Nvertex_access are the
numbers of off-chip memory accesses for face,
edge, and vertex at each data structure,
respectively.
DataSizeface, DataSizeedge,and DataSizevertex are
the data size of face, edge, and vertex at each
data structure, respectively.

(3)

 Access time = t_RP + t_RCD + t_AC + (t_CK × 2) +

(t_CK / 2 × BurstLength)
- t_RP: The minimum delay time to precharge
memory cells. This is required for activating
memory cells accessed by the current RAS (Row
Address Strobe) signal.
- t_RCD: The minimum delay time between RAS
signal to CAS (Colum Address Strobe) signal
(RAS latency)
- t_AC: The minimum delay time to access output
data from clock edge
- t_CK: The minimum clock cycle time from rising
edge to rising edge
- BurstLength: In burst addressing mode, the
number of data to be transferred per transaction

(4)

 Access energy = VDD × [(I_DD2N × t_RP) +
(I_DD3N × t_RCD)+ {I_DD4 × (t_AC + t_CK × 2
+ t_CK / 2 × BurstLength)}]

(5)

- I_DD2N: Precharge standby current in
non-power down mode
- I_DD3N: Active standby current in non-power
down mode
- I_DD4: Operating current in burst mode
- VDD: Operating voltage
- BurstLength: In burst addressing mode, the
number of data to be transferred per transaction

When Mobile DDR is activate, it takes 2 cycles to receive the

first burst data (t_CK×2), and two burst data are transferred per
cycle (t_CK/2×BurstLength). Access energy is estimated by
multiplying current and time to operating voltage (VDD). The
current is divided into I_DD2N, I_DD3N, and I_DD4
according to operation mode. Since I_DD2N is precharging
current, it is multiplied to t_RP. Similarly, since I_DD3N is
standby current, it is multiplied to t_RCD. Finally, operating
current, I_DD4, is multiplied to a total operating time including
the delay time (t_AC + (t_CK × 2) + (t_CK / 2 × BurstLength)).

We compare our subdivider with prior methods that evaluate
CCSSs, which are the method of Patney et al. [4] using the
render-dynamic data structures and the method of Bunnell [5]
using the half-edge data structure. For the various tests and
comparison, we use three benchmark models: Iris, Monster
Frog, and Killeroo models shown in Fig. 13. The base meshes
of these models have only quads with a maximum valence of 8.

Fig. 14-(a) shows the bandwidth requirement, estimated
off-chip access time, and estimated off-chip energy
consumption for the most complex model, Killeroo, with
different subdivision approaches. Other benchmarks such as
Iris and Monster Frog show similar results. Our subdivider has
constant memory accesses regardless of LODk, because the
depth-first based re-computing scheme loads just the target face
and its neighborhood of LOD0. Especially for LOD3, our work
shows about 100:1 reduction over the prior work [4][5] for all
the memory performances and for all the benchmarks.

We do the same procedure for the DE as shown in Fig. 14-(b).
When measuring the bandwidth requirement of the DE, we
assume that the DE runs at 60fps rate for 480×320 display
resolution. The 3D display process has a fixed bandwidth

1

101

102

103

104

LOD1 LOD2 LOD3
1

101

102

LOD1 LOD2 LOD3

Bandwidth (Mbytes/model)
in log scale

Access time (ms)
in log scale

Bunnell [5] Patney [4] Ours

1/
4

1/
22

1/
95

1/
5

1/
29

1/
12

4

1/
5

1/
3

1/
27

1/
18

1/
11

6

1/
80

Bandwidth
(Mbytes/s)

Access time
(ms)

Typical Ours

(a) Subdivision Process Results (b) 3D Display Process Results

1

101

102

103

104

LOD1 LOD2 LOD3

Access energy (μJ)
in log scale

1/
4

1/
3

1/
23

1/
16

1/
99

1/
72

Access
energy (μJ)

Ours Ours
0

20

40

60

80

100

120

140

100

200

300

400

500

600

0.5

1

1.5

2

2.5

3

3.5

4

Typical Typical

73%↓

67%↓
67%↓

Fig. 14 (a) Our subdivider has about 100:1 reduction in memory performance at LOD3 over the prior work [4][5]. The
ratios in bars are the results of our method over those of the prior work [4][5]. (b) In 3D display process, our work
reduces bandwidth by 73% and off-chip memory access energy and time by 67% compared with typical scheme.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

requirement regardless of benchmarks. Our work reduces
bandwidth requirement by 73%, and similarly reduces both the
off-chip memory access time and energy by 67% compared
with typical 3D display process.

We compare the overall chip bandwidth with a commercial
portable bus, ExpressCard 2.0 PCI [6] that has 625Mbytes/s
bandwidth. When measuring the bandwidth, the chip
subdivides Killeroo up to LOD3 and runs the DE at 60fps from
the subdivided model. In this environment, the subdivider and
the DE consume about 267Mbytes/s that is less than half of the
ExpressCard bandwidth. We can use the rest of the
ExpressCard bandwidth for performing other 3D graphics
techniques.

C. Performance and Quality Comparison

The subdivider refines 770K faces per second at 50MHz.
The subdivider’s performance cannot be shown as an absolute
frame rate, because it is changeable depending on model
complexity. Since there has been no mobile subdivider, we
indirectly compare the subdivision rate with the latest
subdivision work [4] that targets on desktop PCs. While Patney
et al. [4] takes 31.34ms to subdivide Killeroo up to LOD5, our
work takes 79.01ms to subdivide the same model up to LOD3.
Considering the different LODs, the Patney et al.’s method is
40 times faster than our work. However, the Patney et al.’s
method requires about 100 times higher bandwidth, access time,
and energy consumption than our method and thus is
considered inappropriate for handhelds that have the mobile
memory architecture. Additionally our subdivider has 520K
transistors, whereas Nvidia GTX280 [21] used in the Patney et
al.’s work has 1.4 billion transistors, which shows how our
subdivider is tiny; GTX280 is about 2700 times larger.

It has been known that LOD5 can produce a smooth surface
[22], but our work supports up to LOD3 because we found it
strikes a good balance between the subdivision quality given
the typical handheld screen resolution (480×320) and the size
of on-chip memory (e.g., 20 KB, 44 KB, and 139 KB for
supporting up to LOD3, LOD4, and LOD5, respectively). We
quantitatively verify our subdivider is feasible on handhelds.
We estimate subdivision quality by the average number of
faces per pixel in the screen space. For this test, we use Killeroo,
and assume that only half of faces are visible due to back-face
culling and the projected scene occupies 70% of screen space.
Our work targets 480×320 resolution for handhelds, and the
Patney et al.’s method assumes 1600×1200 for desktop PCs.
Given this configuration, our work provides 0.9faces/pixel and
the Patney et al.’s method has 1.1faces/pixel. In conclusion, our
subdivider provides similar quality to the Patney et al.’s method
designed for PCs.

In 3D display processing, the DE already achieves
impressive performance, 325fps at 480×320 resolution of a
9-view lenticular 3D display, using the division-free datapath.
Since 3D display processing is a kind of image processing, the
3D display engine always shows a fixed performance
regardless of model complexity.

IX. CONCLUSION

As visual quality becomes the key feature of handhelds, there
are increasing demands of modern 3D graphics and 3D display
techniques on handhelds. Unfortunately these techniques are
memory-intensive applications, which cannot be supported
given mobile memory architecture.

Our mobile 3D display processor with a subdivider can
render smooth surfaces on a mobile 3D display. The subdivider
attempts to use on-chip memory instead of off-chip memory by
minimizing the working set. Together the 3D display engine
removes the bandwidth to access intermediates by reordering
the operation sequence of the 3D display process.
Consequently the subdivider saves memory bandwidth less
than 1% of the prior methods [4][5], and the 3D display engine
reduces the bandwidth requirement by 73%. This
bandwidth-saving result translates into a significant
improvement of off-chip access energy and time. The
subdivider has competitive subdivision rate and quality
considering chip area and bandwidth performance. Also the 3D
display engine shows impressive performance such as 325fps
on mobile resolution (480×320). We wish our research to
contribute the state-of-art on the next-generation mobile
devices.

ACKNOWLEDGMENT

The chip was fabricated through the MPW of IC Design
Education Center (IDEC). This work was supported by the IT
R&D program of MKE/[KI002134, Wafer Level 3D IC Design
and Integration] and by Basic Science Research Program
through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology
(2011-0000320). We would like to thank Killeroo model of
Headus Inc (http://www.headus.com.au).

REFERENCES
[1] Gee K., “Direct3D 11 tessellation,” Presentation, Gamefest (2008)
[2] Akenine-Moller T., Strom J., “Graphics processing units for handhelds,”

Proc. of the IEEE (2008), pp.779–789
[3] P. Benzie, et al., “A survey of 3DTV displays: techniques and

technologies,” IEEE Transactions on Circuits and Systems for Video
Technology (2007), 17

[4] Patney A., Ebeida M.S. and Owens J. D., “Parallel view-dependent
tessellation of Catmull-Clark subdivision surfaces,” ACM High
Performance Graphics (2009), pp. 99–108

[5] Bunnell M., “Adaptive tessellation of subdivision surfaces with
displacement mapping,” GPU Gems 2 (2005), pp.109–122

[6] Wikipedia, List of device bit rates (2010) [Online] Available:
http://en.wikipedia.org/wiki/List_of_device_bit_rates

[7] Catmull E., Clark J., “Recursively generated B-spline surfaces on
arbitrary topological meshes,” Computer Aided Design (1978)

[8] Zorin D., “Subdivision for modeling and animation,” SIGGRAPH Course
Notes (2000)

[9] Farin G., “Curves and surfaces for computer aided geometric design a
practical guide (5th ed.),” Academic Press Professional Inc. (2002)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

[10] Kettner L., “Using generic programming for designing a data structure for
polyhedral surfaces,” Elsevier Comput. Geom. Theory Appl. (1999) 13, 1,
pp.65–90

[11] Shiue L. J., Jones I., Peters J., “A realtime GPU subdivision kernel,” ACM
Trans. Graph. (2005), 24, 3 pp.1010–1015

[12] Kyusik Chung, Chang-Hyo Yu, Donghyun Kim, and Lee-Sup Kim,
“Shader-based tessellation to save memory bandwidth in a mobile
multimedia processor,” Elsevier Computer & Graphics (2009)

[13] Samsung, Mobile DDR k4x56323pg, datasheet (2007) [Online]
Available: http://www.samsung.com/global/business/semiconductor

[14] Imagination, PowerVR SGX, datasheet (2010) [Online] Available:
http://www.imgtec.com/powervr/sgx_series5.asp.

[15] Lorenz H., Doellner J., “Dynamic mesh refinement on GPU using
geometry shaders,” WSCG (2008), pp.97–104.

[16] OpenGL|ES 2.0 [Online] Available: http://www.khronos.org/opengles/
[17] Seok-Hoon Kim, et al., “A 36fps SXGA 3-D display processor

embedding a programmable 3-D graphics rendering engine,” IEEE
Journal of Solid State Circuits (2008), 43, 5, pp.1247-1259

[18] Seok-Hoon Kim, Hong-Yun Kim, Kyusik Chung, Donghyun Kim,
Lee-Sup Kim, “A 116fps/74mW heterogeneous 3D-media processor for
3D display applications,” IEEE Journal of Solid State Circuits (2010)45, 3,
pp.652-667

[19] Donghyun Kim, Lee-Sup Kim, “A floating-point unit for 4D vector inner
product with reduced latency,” IEEE Trans. Computers (2009), 58, 7,
pp.890-901

[20] Synopsys, Designware [Online] Available: http://www.synopsys.com
[21] Nvidia, GTX280, datasheet (2010) [Online] Available:

http://www.nvidia.com/docs/IO/55506/GPU_Datasheet.pdf.
[22] Loop C., Schaefer S., “Approximating Catmull-Clark subdivision

surfaces with bicubic patches,” ACM Trans. Graph. (2008), 27, 1,
pp.1–11

