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Abstract— We present an overview of current real-time massive
model visualization technology, with the goal of providing readers
with a high level understanding of the domain, as well as with
pointers to the literature.
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I. INTRODUCTION

Interactive visualization and exploration of massive 3D
models is a crucial component of many scientific and engi-
neering disciplines and is becoming increasingly important for
simulations, education, and entertainment applications such
as movies and games. In all those fields, we are observing
data explosion, i.e., information quantity is exponentially
increasing. Typical sources of rapidly increasing massive data
include the following:
• Large-scale engineering projects. Today, complete air-

crafts, ships, cars, etc. are designed purely digital. Usu-
ally, many geographically dispersed teams are involved in
such a complex process, creating thousands of different
parts that are modeled at the highest possibly accuracy.
For example, the Boeing 777 airplane seen in Figure 1a
consists of more than 13,000 individual parts.

• Scientific simulations. Numerical simulations of natural
real world effects can produce vast amounts of data
that need to visualized to be scientifically interpreted.
Examples include nuclear reactions, jet engine combus-
tion, and fluid-dynamics to mention a few. Increased
numerical accuracy as well as faster computation can lead
to datasets of gigabyte or even terabyte size (Figure 1b).

• Acquisition and measuring of real-world objects.
Apart from modeling and computing geometry, scanning
of real-world objects is a common way of acquiring
model data. Improvements in measuring equipment al-
lows scanning in sub-mm accuracy range, which can
result in millions to billions of samples per object (Fig-
ure 1c).

• Modeling natural environments. Natural landscapes
contain an incredible amount of visual detail. Even for
a limited field of view, hundreds of thousands of individ-
ual plants might be visible. Moreover, plants are made
of highly complex structures themselves, e.g., countless
leaves, complicated branchings, wrinkled bark, etc. Even
modeling only some of these effects can produce exces-
sive quantities of data. For example, the landscape model
depicted in Figure 1d measures “only” a square area of
82 km × 82 km.

Handling such massive models presents important chal-
lenges to developers. This is particularly true for highly
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(c)
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Fig. 1. Examples of highly complex scenes. (a) A Boeing 777 CAD
model, made of more than 350 million triangles (12 GByte). (b) One time-
step of a “Richtmyer-Meshkov” instability of turbulent fluids. The volumetric
representation is described by 2048 × 2048 × 1970 samples. All 270 time-
steps require 1.5 TByte. (c) A scanned model of Michelangelo’s St. Matthew
statue. The scene is represented by 372 million triangles (9.6 GByte). (d) A
model of the Puget Sound Area, where an elevation map based on satellite
data (20 GByte) has been populated with instantiated tree models, resulting
in over 90 trillion potentially visible triangles.

interactive 3D programs, such as visual simulations and virtual
environments, with their inherent focus on interactive, low-
latency, and real-time processing.
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In the last decade, the graphics community has witnessed
tremendous improvements in the performance and capabilities
of computing and graphics hardware. It therefore naturally
arises the question if such a performance boost does not
transform rendering performance problems into memories of
the past. A single standard dual-core 3 GHz Opteron processor
has roughly 20 GFlops, a Playstation 3’s CELL processor
has 180 GFlops, and recent GPUs, now fully programmable,
provide around 340 GFlops. With the increased application
of hardware parallelism, e.g., in the form of multi-core CPUs
or multi-pipe GPUs, the performance improvements, which
tend to follow, and even outpace, Gordon Moore’s exponential
growth prediction, seem to be continuing for a near future to
come. For instance, Intel has already announced an 80 core
processor capable of TeraFlop performance. Despite such an
observed and continuing increase in computing and graphics
processing power, it is however clear to the graphics commu-
nity that one cannot just rely on hardware developments to
cope with any data size within the foreseeable future. This is
not only because the increased computing power also allows
users to produce more and more complex datasets, but also
because memory bandwidth grows at a significantly slower
rate than processing power and becomes the major bottleneck
when dealing with massive datasets.

As a result, massive datasets cannot be interactively ren-
dered by brute force methods. To overcome this limitation,
researchers have proposed a wide variety of output-sensitive
rendering algorithms, i.e., rendering techniques whose runtime
and memory footprint is proportional to the number of image
pixels, not to the total model complexity. In addition to requir-
ing out-of-core data management, for handling datasets larger
than main memory or for providing applications the ability to
explore data stored on remote servers, these methods require
the integration of techniques for filtering out as efficiently as
possible the data that is not contributing to a particular image.

This article provides an overview of current massive model
rendering technology, with the goal of providing readers with
a high level understanding of the domain, as well as with
pointers to the literature. The main focus will be on rendering
of large static polygonal models, which are by far the current
main test case for massive model visualization. We will
first discuss the two main rendering techniques (Section II)
employed in rendering massive models: rasterization and ray
tracing. We will then illustrate how rendering complexity
can be reduced by employing appropriate data structures and
algorithms for visibility or detail culling, as well as by choos-
ing alternate graphics primitive representations (Section III).
We will further focus on data management (Section IV) and
parallel processing issues (Section V), which are increasingly
important on current architectures. The article concludes with
an overview of how the various techniques are integrated
into representative state-of-the-art systems (Section VI), and
a discussion of the benefits and limitations of the various
approaches (Section VII).

II. TWO MAIN RENDERING TECHNIQUES

Rendering – the image generation process that takes places
during visualization of geometric models – requires calculating

each primitive’s contribution to each pixel. It involves three
main aspects: projection, visible-surface determination, and
shading.

Projection transforms 3D objects into 2D for viewing. This
is typically a planar perspective projection, where 3D points
are projected onto a 2D image plane based on a center of
projection (see Figure 3). Visible surface determination is
necessary to compute which parts of a scene are actually
visible by an observer, and which parts are occluded by
other surfaces. Finally, shading means the computation of
the appearance of visible surface fragments. For example, in
case of photo-realistic image generation, shading can result in
complicated light transport simulations, which in turn make it
necessary to also determine visibility between surfaces.

As of today, practically only two rendering algorithms are
almost exclusively applied: rasterization and ray tracing, which
is mainly due to their robustness and simplicity.

A. Rasterization

Rasterization algorithms combined with the Z-buffer are
widely used in interactive rendering, and are implemented in
virtually all modern graphics boards in the form of highly
parallel graphics processing units (GPUs). Rasterization is an
example of an object-order rendering approach (also called
forward-mapping): Objects to be rendered are sequentially
projected onto the image plane, where they are rasterized
into pixels and shaded. Visibility is resolved with the help
of the Z-buffer, which stores for each pixel the distance of the
respective visible object fragment to the observer.

This process can be efficiently realized in a pipeline setup,
commonly known as graphics pipeline. Figure 2 illustrates
a generic graphics pipeline architecture. Early graphics
hardware was based on a hardwired implementation of this
architecture, with multiple geometry and rasterization units
made to work in parallel to further increase performance.
In recent years, graphics hardware has started to feature
extensions to the fixed-function pipeline, in a way that parts
of the geometry stage and rasterizer stage can be programmed
using vertex- and fragment-shaders. GPU designs have further
evolved, and, nowadays, instead of being based on separate
custom processors for vertex shaders, geometry shaders, and
pixel shaders, the pipeline is realized on top of a large
grid of data-parallel floating-point processors general enough
to implement shader functionalities. Vertices, triangles, and
pixels thus recirculate through the grid rather than flowing
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Fig. 2. Generic rasterization graphics pipeline. The pipeline consists of
two main parts, geometry stage and rasterizer stage. Triangles are transformed
into screen space, where they are rasterized and shaded.
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through a pipeline with stages of fixed width, and allocation
of the pool of processors to each shader type can dynamically
vary to respond to varying graphics load.

A rasterization pipeline allows for processing arbitrary num-
bers of primitives in a stream-like manner, which is especially
useful if scenes are rendered that do not fully fit into graphics
or main memory. In this basic form rasterization techniques
are limited to linear time complexity in the number of scene
primitives, which is a direct result from the employed object
order scheme. In order to enable rendering in logarithmic
time complexity, spatial index structures need to be applied
that allow for a-priori limiting the number of polygons to
be sent down the graphics pipeline. Moreover, since the gap
between GPU performance and bandwidth throughout the
memory hierarchy is growing, appropriate techniques must be
employed to carefully manage working set size and ensure
coherent access patterns. We will see how this works in the
following sections.

B. Ray Tracing

In contrast to rasterization, ray casting and its recursive
extension ray tracing are image order rendering (backward
mapping) approaches. Ray tracing closely models physical
light transport as straight lines. In their classical form, ray
tracing algorithms start by shooting imaginary (primary) rays
from the observer (i.e., the projection center) through the
pixel grid into a 3D scene (see Figure 3). For each ray the
closest intersection with the model’s surfaces is determined.
To find out if a surface hitpoint is lit, so-called shadow
rays are spawned into the direction of each light source.
If such a ray is blocked, the hitpoint lies in shadow. Light
propagation between surfaces can be computed by recursively
tracing secondary rays, which emanate from previously found
hitpoints. In Figure 3, e.g., a reflective surface has been hit,
thus, the incoming ray is mirrored and fired again to find
surfaces that are visible in the reflection.

Observer
(Center of projection)

Image (projection) plane

Primary ray
(Projector)

Primitive

Reflection ray

Light source

Shadow ray

Fig. 3. Recursive ray tracing. A primary ray is fired from the observer
through the pixel grid into a 3D scene. From the closest intersection point
with the scene geometry secondary rays are spawned. This process can be
continued recursively, e.g., in case of multiple reflections.

A basic ray tracing implementation can be very simplistic,
and can be realized with much less effort than a (software)
rasterizer. For example, all parts of the rasterizer geometry

stage (see Figure 2) are handled implicitly as result of the
backward projection property.

In a naive implementation, the closest intersection would
be calculated by sequentially testing each primitive of the
scene for each ray, which is obviously only practical for very
small models. To limit the number of primitives for which
the actual ray–primitive intersection test is performed, again
spatial index structures are necessary. In a modern ray tracer
such acceleration structures are typically considered to be
an integral part of the algorithm, and allow for an average
logarithmic time complexity with respect to the number of
primitives.

Probably, the most well-known property of ray tracing is
the ability to to generate highly photo-realistic imagery (an
example can be seen in Figure 4). While in classical ray
tracing rays are only shot into the most significant directions
(e.g., towards lights), accurately computing global lighting
(including glossiness and indirect light propagation) requires
the solution of high-dimensional integrals over the path-space
of light transport in a scene. Today, numeric Monte-Carlo
(MC) integration techniques in combination with ray tracing
are used almost exclusively for this purpose [1].

Fig. 4. Global illumination. A photo-realistic ray traced image of the Sponza
Atrium, rendered using global illumination Monte Carlo techniques. Note the
indirect lighting of the hallway.

Another advantage resulting from the recursive nature of
ray tracing algorithms is that shaders can be deployed in a
plug-and-play manner. The characteristics of different surfaces
can be described independently, and all optical effects are
automatically combined in a physically correct way. The most
eminent disadvantage of ray tracing is its high computational
complexity, especially for higher order lighting effects. Be-
cause of this, it has been employed in a real-time context only
in recent years [2]. While prototype hardware implementations
exist [3], only software ray tracing has so far been applied to
massive models.

An important ingredient that is widely applied in state-
of-the-art real-time ray tracing systems is to simultaneously
trace bundles of rays called packets. First, working on packets
allows for using SIMD (single instruction multiple data) vector
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operations of modern CPUs to perform parallel traversal and
intersection of multiple rays. Second, packets enable deferred
shading, i.e., it is not necessary to switch between intersection
and shading routines for every single ray, thus amortizing
memory accesses, function calls, etc. Third, frustum traversal
methods [4] avoid traversal steps and intersection calculations
based on the bounds of ray packets, therefore making better
use of object as well as scanline coherence.

C. Summary

Both rasterization and ray tracing algorithms can perform
rendering – and most importantly, visible-surface determina-
tion – in logarithmic time complexity with respect to scene
size. However, this is only possible if spatial index structures
and hierarchical rendering are involved (see below).

The main advantage of rasterization algorithms is the ability
to efficiently exploit scanline coherence. Only the corners of
triangles need to be explicitely projected, while the geometric
properties of the pixels enclosed by the triangle edges can be
easily interpolated during the actual rasterization step. Conse-
quently, such techniques work best in cases where large screen
space areas are covered by a few triangles. Conversely, ray
tracing and ray casting perform better if visibility needs to be
evaluated point-wise. Interestingly, hierarchical front-to-back
rasterizing in combination with occlusion culling techniques
can be interpreted as a form of beam- or frustum tracing.

When it comes to advanced shading effects, ray tracing
algorithms are usually the premier choice, mainly because of
their physical accuracy and implementation flexibility. Espe-
cially in highly complex models, the ability to perform shading
and light transport adaptively, proves to be helpful. Implement-
ing advanced global shading algorithms in rasterization archi-
tectures is more complex, because during the shading stage no
global access to the scene database is possible, and visibility
between surface points cannot explicitely be determined. The
problem can in principle be overcome by computing maps, and
applying them in successive rendering passes. However, this
does not easily allow for adaptive rendering, e.g., controlling
the reflection recursion depth on a per pixel basis.

As of today, most massive model rendering systems use
exclusively one of the two presented rendering techniques. It
is, however, likely that future systems will incorporate hybrid
approaches, in particular as graphics hardware is becoming
more and more general purpose oriented, and will allow for
executing rasterization and ray tracing side-by-side.

III. COMPLEXITY REDUCTION TECHNIQUES

In order to meet timing constraints, massive model visual-
ization applications have to employ methods for filtering out
as efficiently as possible the data that is not contributing to a
particular image.

One straightforward approach is to simplify complex models
until they become manageable by the application: if models
are too complex, make them simpler! This static “throw-
away-input-data approach” might seem simplistic, but can
be considered beneficial in a number of practical use cases.
A common application of static simplification is reducing

the complexity of very densely over-sampled models. For
instance, models generated by scanning devices and iso-
surfaces extracted by algorithms such as marching cubes are
often uniformly over-tessellated because of the nature of most
reconstruction algorithms. By adaptively simplifying meshes
so that local triangle density adapts to local curvature it is often
possible to radically reduce triangles without noticeable error.
More generally, users may want to produce an approximation
which is tailored for a specific use, e.g., viewing from a
distance. In the more general case, however, the quality loss
incurred when using off-line simplification techniques is not
acceptable, and the application must resort to more general
adaptive techniques able to filter data at run-time. These
methods can be broadly classified into view-dependent level-
of-detail algorithms and visibility culling methods. Level-of-
detail (LOD) techniques reduce memory access and rendering
complexity by exploiting multi-resolution data structures for
dynamically adapting the resolution of the dataset (the number
of required model samples per pixel), while visibility culling
techniques achieve the same goal by avoiding the processing
of parts that can be proved invisible because out of view (in
the case of view-frustum culling) or masked (in the case of
occlusion culling).

A. Geometric Simplification

Geometric simplification is a well studied subject, and a
number of high quality automatic simplification techniques
have been developed [5].

The wide majority of the methods iteratively simplifies an
input mesh by sequences of vertex removal or edge contrac-
tion (see Figure 5). In the first case of Figure 5, originally
introduced by Schroeder [6], at each simplification step, a
vertex is removed from the mesh and the resulting hole is
triangulated. In the second case, popularized by Hoppe [7],
the two endpoints of an edge are contracted to a single point
and the triangles that degenerate in the process are removed.

Fig. 5. Mesh simplification primitives and their inverses. Top: A vertex
is removed and the resulting hole triangulated. Bottom: An edge is collapsed
to a single point.

The control of the approximation accuracy is critical in
the process, if only to guide the order in which to perform
operations. The error evaluation method most frequently used
in current applications is the quadric error metrics (QEM),
originally proposed by Garland and Heckbert in [8], in which
a quadric (represented by a symmetric, positive semi-definite
matrix) is associated with each vertex, subsuming the sum
of the squared distances of the vertex to all its incident
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planes. Using quadrics has the major benefit of reducing space
overheads to storing a small symmetric matrix per vertex, and
leads to an extremely fast error metric consisting of simple
vector–matrix operations.

In most current systems, simplification is performed in
an iterative greedy fashion, which maintains a sorted list of
candidate operations and applies at each step the operation
associated to the minimal simplification error. Many variations
of this approach have been proposed, especially for dealing
with extremely large meshes not fitting in main memory. An
efficient approach recently introduced in this context is the
idea of “streaming simplification” [9]. The key insight is to
keep input and output data in streams and document, for
example, when all triangles around a vertex or all points in a
particular spatial region have arrived with ”finalization tags”.
This representation allows for streaming very large meshes
through main memory while maintaining information about
the visiting status of edges and vertices. At any time, only
a small portion of the mesh is kept in-core, with the bulk
of the mesh data residing on disk. Mesh access is restricted
to a fixed traversal order, but full connectivity and geometry
information is available for the active elements of the traversal.
For simplification, an in-core buffer is filled and simplified and
output is generated as soon as enough data is available.

Geometric simplification can be considered a mature field
for which industrial quality solution exists. However, these
methods, that repeatedly merge nearby surface points or mesh
vertices based on error minimization considerations, perform
best for highly tessellated surfaces that are otherwise rela-
tively smooth and topologically simple. However, it becomes
difficult, in other cases, to derive good “average” merged
properties. Geometric simplification is thus hard to apply when
the visual appearance of an object depends on resolving the
ordering and mutual occlusion of even very close-by surfaces,
potentially with different shading properties.

B. Level-of-Detail

A level-of-detail (LOD) model is a compact description
of multiple representations of a single shape and is the key
element for providing the necessary degrees of freedom to
achieve run-time adaptivity. LOD models can be classified as
discrete, progressive, and continuous LOD models.

Discrete LOD models simply consist of ordered sequences
of representations of a shape, representing an entity at increas-
ing resolution and accuracy. The expressive power of discrete
LODs is limited to the different models contained in the se-
quence: these are a small number and their accuracy/resolution
is predefined (in general, it is uniform in space). Thus, the
possibility of adapting to the needs of user applications is
scarce. The extraction of a mesh at a given accuracy reduces to
selecting the corresponding mesh in the sequence, whose char-
acteristics are the closest to application needs. Such models
are standard technology in graphics languages and packages,
such as VRML or X3D and are used to improve efficiency
of rendering: depending on the distance from the observer,
or a similar measure, one of the available models is selected.
The approach works well for small or distant isolated objects,

which can be found in CAD models [10]. However, it is
not efficient for large objects spanning a range of different
distances from the observer. Since there is no relation among
the different LODs, there are no constraints on how the various
detail models are constructed.

Progressive models consist of a coarse shape representation
and of a sequence of small modifications which, when applied
to the coarse representation, produce representations at inter-
mediate levels of detail. Such models lead to very compact
data structures, based on the fact that all modifications in
the sequence belong to a predefined type, and thus can be
described with a few parameters. The most notable example
is the Progressive Mesh representation [7], included in the
DirectX library since version 8. In this case, the coarsen-
ing/refinement operations are edge collapse/edge split. A mesh
at uniform accuracy can be extracted by starting from the
initial one, scanning the list of modifications and performing
modifications from the sequence until the desired accuracy
is obtained. As for discrete LODs, the approach works well
for small or distant isolated objects, but it is not efficient for
large objects spanning a range of different distances from the
observer.

Continuous LOD models improve over progressive models
by fully supporting selective refinement, i.e., the extraction
of representations with an LOD that can be variable in
different parts of the representation, and can be changed on
a virtually continuous scale. Continuous LODs are typically
created using a refinement/coarsening process similar to the
one employed in progressive models. However, rather than
just storing a totally ordered sequence of local modifications,
continuous LOD models link each local modification to the set
of modifications that block it. Thus, contrary to progressive
models, local updates can be performed without complicated
procedures to find out dependency between modifications. A
general framework for managing continuous LOD models is
the multi-triangulation [11], which is based on the idea of
encoding the partial order describing mutual dependencies
between updates as a directed acyclic graph (DAG), where
nodes represent mesh updates (removals and insertions of
triangles), and arcs represent relations among updates. An arc
a = (n1, n2) exists if a non-empty subset of the triangles
introduced by n1 are removed by n2. Selectively refined
meshes can thus be obtained from cuts of this graph, and
by sweeping the cut forward/backward through the DAG the
resolution increases/decreases. Figure 6 illustrates the concept
with an an example.

Most of the continuous LOD models can be expressed in
this framework. Many variations have been proposed. Up until
recently, however, the vast majority of view-dependent level-
of-detail methods were all based on multi-resolution structures
taking decisions at the triangle/vertex primitive level. This
kind of approach involves a constant CPU workload for each
triangle that makes detail selection the bottleneck of the whole
rendering process. This problem is particularly stringent in
rasterization approaches, because of the increasing CPU/GPU
performance gap. To overcome this bottleneck and to fully
exploit the capabilities of current hardware it is therefore
necessary to select and send batches of geometric primitives
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Fig. 6. Multi-triangulation. A sequence of local modification over a mesh is
coded as DAG over the fragments Ti; a cut of the DAG defines a conforming
triangulation that can obtained by pasting all the fragments above the cut.

to be rendered with just a few CPU instructions. To this end,
various GPU oriented multi-resolution structures have been
recently proposed, based on the idea of moving the granularity
of the representation from triangles to triangle patches [12],
[13]. Thus, instead of working directly at the triangle level,
the models are first partitioned into blocks containing many
triangles, and, then, a multi-resolution structure is constructed
among partitions. By carefully choosing appropriate subdivi-
sion structures for the partitioning and managing boundary
constraints, hole-free adaptive models can be constructed.

The benefit of these approaches is that the needed per-
triangle workload to extract a multi-resolution model reduces
by orders of magnitude. The small patches can be preprocessed
and optimized off line for a more efficient rendering, and
highly efficient retained mode graphics calls can be exploited
for caching the current adaptive model in video memory.
Recent work has shown that the vast performance increase in
CPU/GPU communication results in greatly improved frame
rates [12], [13].

C. Visibility Culling

Often, massive scenes are densely occluded or are too large
to be viewed in their entirety from a single viewpoint, which
means that in most viewing situations only a fraction of
the model geometry is actually visible. For instance, in the
Boeing 777 model in Figure 1a this can be seen in the rear
section, where the hull completely covers the internal airplane
structure. Therefore, a straightforward strategy would be to
determine the visible set, i.e., the set of objects that contribute
to the current image. The intention is to reject large parts
of the scene before the actual visible surface determination
takes place, thereby reducing the rendering complexity to the
complexity of the computed subset of the scene geometry. This
process of computing a visible subset of a scene is termed
visibility culling [14], and is the other essential ingredient,
in addition to LOD techniques, to make applications output-
sensitive.

Three typical culling examples are back-face culling, view-
frustum culling, and occlusion culling (see Figure 7). Back-
face and view-frustum culling are trivial to implement, as they
are local per-primitive operations. Occlusion culling is a far
more effective technique since it removes primitives that are
blocked by groups of other objects, but is unfortunately not
as trivial to handle as the first two culling techniques because
of its global nature. Often preprocessing needs to be involved,
usually to generate some sort of scene hierarchies to allow for
performing occlusion test in a top-down order.

Fig. 7. Visibility culling. Back-face culling, view-frustum culling, and
occlusion culling are the most typical examples of methods for computing
a visible subset of a scene.

Quite a lot of different occlusion strategies have been
proposed so far. Occlusion culling approaches are broadly
classified into from-point and from-region visibility algo-
rithms [14]. From-region algorithms compute a potentially
visible set (PVS) for cells of a fixed subdivision of the scene
and are computed offline in a preprocessing phase. During
rendering only the primitives in the PVS of the cell where
the observer is currently located, are rendered. From-region
methods are mainly used for specialized applications, e.g., like
visualization of urban scenarios or building interiors. From-
point algorithms, on the other hand, are applied online for
each particular viewpoint, and are usually better suited for
general scenes, since for general environments accurate PVSs
are hard to compute.

Visibility culling methods are typically realized with the
help of a so-called spatial index, a spatial data structure
that organizes geometry in 3D space. There are two major
approaches, bounding volume hierarchies (BVHs) and spatial
partitioning.

Bounding volume hierarchies organize geometry bottom-up.
Groups of objects are encapsulated by a larger volume, which
encloses them completely. Then bounding volumes can again
be grouped and put into even larger volumes. The resulting
tree can be rendered in a top-down order, starting with the
scene bounding box. If a bounding volume, i.e., its boundary,
is found to be fully or partially visible, rendering continues
with its child-volumes. If a volume is completely invisible,
traversal of the respective sub-tree can be discontinued, since
all children will not be visible either.

In contrast, spatial partitioning schemes subdivide the scene
top-down. The scene bounding box is split into disjoint parti-
tions, which may further be subdivided in the same fashion.
Each atomic partition holds a list of primitives it contains in
whole or in part, and which will be rasterized if the partition
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can be classified as visible. In case of ray tracing, all primitives
of such a partition are intersected sequentially with the current
ray.

Quite a number of spatial partitioning schemes have been
proposed in the past, most popular are hierarchical grids,
octrees, kd-trees. More details can, e.g., be found in [15]. An
example of a kd-tree scene partition is illustrated in Figure 8.
Kd-trees are axis-aligned binary space partitioning (BSP)
trees. Construction of a kd-tree starts with the bounding box
of the model and a list of contained primitives. The scene
bounding box is then subdivided into two sub-boxes along
one of the three primary coordinate axes, and the list of
primitives is sorted into the two halves, creating two primitive
lists, one for each half. Polygons that lie in either half are
simply replicated. The process is recursively continued for
both sub-boxes and their respective primitive lists. This way a
binary tree is constructed, where each node corresponds to a
spatial region (called voxel), and its children to a binary space
partition of their parent region. If splitting positions are chosen
to tightly enclose the scene geometry, kd-trees typically exhibit
superior culling efficiency over other acceleration structures.

When combined with ray tracing, each ray traverses the
kd-tree top-down, resulting in a linear sequence of cells (leaf-
voxels) the ray passes. In the example in Figure 8 the ray
visits cells 3, 2, and 4. Primitives contained in these cells are
tested sequentially, and traversal can be stopped if a hitpoint
is found. Using a rasterizer, kd-tree traversal is performed
similarly. However, here all cells are visited that intersect the
viewing frustum. In our example this would be cells 3, 2, 4,
and 5. Only the primitives of the respective cells are sent to
the graphics pipeline.

In order to achieve a sub-linear time complexity, employ-
ing acceleration structures alone is not sufficient. It is also
necessary to include an early traversal termination. For a ray
tracer this is trivial since visibility is evaluated independently
for each ray, and once a hitpoint has been found, it is certain
that geometry behind is not visible.

Using rasterization, the decision whether traversal of the
spatial index can be stopped can also be made in image space,
by exploiting the Z-buffer, and the most recent algorithms
exploit graphics hardware for this purpose. During rendering
– when the spatial index is traversed hierarchically in a front-
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Fig. 8. Kd-tree traversal. Top-down traversal of the kd-tree results in a
linear enumeration of the scene partitions a ray passes.

to-back order – the bounding box of each visited node is
tested against the Z-buffer and traversal is aborted as soon as
occlusion can be proved, i.e., when all Z-values of a box are
behind the corresponding stored Z-buffer’s values. An efficient
implementation of this method requires the availability of
rapid Z-queries for screen regions. A classic solution is the
hierarchical Z-buffer, which extends the traditional Z-buffer
to a hierarchical Z-pyramid maintaining for each coarser
block the farthest Z-value among the corresponding finer level
blocks, therefore allowing to quickly determine if a geometry
is visible by a top-down visit of the Z-pyramid. A pure
software implementation of this method is impractical, but to
some extent this idea is exploited in the current generation
of graphics hardware by applying early Z-tests of fragments
in the graphics pipeline (e.g., ATI’s Hyper-Z technology or
NVIDIA’s Z-cull), and providing users with so-called occlu-
sion queries. These queries define a mechanism whereby an
application can query the number of pixels (or, more precisely,
samples) drawn by a primitive or group of primitives. For
occlusion culling during scene traversal the faces of bounding
boxes are simply tested for visibility against the current Z-
buffer using the occlusion query functionality to determine
whether to continue traversal. It should be noted that, although
the query itself is processed quickly using the raw power GPU,
its result is not available immediately due to the delay between
issuing the query and its actual processing by the graphics
pipeline. A naive application of occlusion queries can thus
even decrease the overall application performance due the
associated CPU stalls and GPU starvation. For this reason,
modern methods exploit spatial and temporal coherence to
schedule the issuing of queries [16], [13], [17]. The central
idea of these method is to issue multiple queries for indepen-
dent scene parts and to avoid repeated visibility tests of interior
nodes by exploiting the coherence of visibility classification.

D. Summary

Level-of-detail and visibility culling techniques are funda-
mental ingredients for massive model rendering applications.
It is important to note that, in general, the lack of one
of these techniques limits the theoretical scalability of an
application. However, massive models arise from a number
of different domains, and the relative importance of the LOD
management and visibility culling components depends on the
widely varying geometry, appearance, and depth complexity
characteristics of the models. For instance, typical 3D scanned
models and terrain models tend to be extremely dense meshes
with very low depth complexity, favoring pure LOD tech-
niques, while architectural and engineering CAD models tend
to combine complicated geometry and appearance with a large
depth complexity, requiring applications to deal with visibility
problems.

Few approaches exist that integrate LODs with occlusion
culling both in the construction and rendering phases. More-
over, and most importantly, the off-line simplification process
that generates the multi-resolution hierarchy from which view-
dependent levels of detail are extracted at rendering time is
essentially unaware of visibility. When approximating very
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complex models, however, resolving the ordering and mutual
occlusion of even very close-by surfaces, potentially with
different shading properties, is of primary importance (see
Figure 9). Providing good multi-scale visual approximations
of general environments remains an open research problem,
and the few solutions proposed so far involve the introduction
of other primitives than triangle meshes for visibility-aware
complexity reduction.

Representations other than polygons offer significant poten-
tial for massive models visualization. In conventional polygon-
based computer graphics, models have become so complex
that for most views polygons are smaller than one pixel in
the final image. The benefits of polygons for interpolation and
multi-scale surface representation become thus questionable.
For these reasons, researchers have started investigating alter-
native approaches, that represents complex 3D environments
with sets of points, voxels, or images. At present time, how-
ever, no single best representation exists in terms of storage,
computational and implementation costs. For more informa-
tion, see the sidebars “Alternative Geometric Representations”
and “Image-Based Methods”.

IV. DATA MANAGEMENT TECHNIQUES

In the previous section, we have discussed complexity
reduction techniques in order to improve the performance of
rendering massive models. However, some of those techniques,
e.g., LOD methods, can even increase the size of external
data since we have to maintain different versions of a model.
Moreover, we may have still a huge amount of in-core data,
especially for creating high-resolution images, even after ap-
plying all those complexity reduction techniques.

Unfortunately, the computation trend during the last several
decades is the aggravating performance of data access speed
compared to that of processing speed [18]. Moreover, it is
likely that this computational trend is to persist in the near
future. Therefore, system architectures have been employing
various caches and memory hierarchies to reduce expensive
data access time and memory latency. Typically, the access
times of different levels of a memory hierarchy vary by orders
of magnitude (e.g., 10−8 s for L1/L2 caches, 10−7 s for main

Fig. 9. Boeing 777 engine details (left) and isosurface details (right). These
kinds of object, composed of many loosely connected interweaving detailed
parts of complex topological structure, are very hard to simplify effectively
using off-line geometric simplification methods that do not take into account
visibility. As seen in the insets, a single pixel gets contributions from many
mutually occluding colored surfaces.

memory, and 10−2 s for disks). Also, as ubiquitous computing
is more widely accepted, data is now accessed through the
network in many cases, where the data access time is very
expensive.

As a result, it is critical to reduce the number of cache
misses in order to maximally utilize the exponential growth
rate of computational processing power and improve the
performance of various applications including rasterization and
ray tracing. In this section we will discuss three data man-
agement techniques: out-of-core techniques, layout methods,
and compression methods, to improve the performance of
applications by reducing data access time.

A. Out-of-Core Techniques

Out-of-core or external memory techniques store the major
part of the scene database on disk, and only keep the fraction
of the data that is currently processed in main memory. Such
methods target to reduce the number of disk accesses, which
are several orders of magnitude more expensive than that
of memory and L1/L2 cache access time. In general, out-
of-core techniques require two cache parameters: the size of
available main memory and the disk block size. Since out-of-
core techniques require these explicit cache parameters, they
are also known as cache-aware techniques.

Given the known sizes of main memory and disk blocks,
out-of-core techniques keep the working set size of rendering
(or other applications) less than the size of main memory. They
achieve this property typically by using an explicit data page
system. Therefore, they avoid any I/O thrashing, where a huge
number of disk cache misses occurs, and the performance of
applications is severely degraded. Also, most out-of-core tech-
niques construct compact external representations optimized
towards disk block size to effectively reduce the number of
disk cache misses. Also, these techniques are used together
with pre-fetching methods to further reduce data access time.
For readers interested further in out-of-core techniques, we
refer to a survey of Silva et al. [19].

B. Layout Techniques

Most triangular meshes used in games and movies are
typically embedded in two or three dimensional geometric
space. However, these triangle meshes are stored on disk or in
main memory as one dimensional linear data representations.
Then, we access such data stored in the one dimensional data
sequence using a virtual address or some other index format.
An example of this mapping is shown in Figure 10. One
implication of this mapping process of 3D or 2D triangular
meshes into 1D linear layout representations is that two
vertices (or triangles) close in the original 2D or 3D geometric
space can be stored very far away in the 1D linear layout
representation. This is mainly because a 1D layout cannot
adequately represent the relationships of vertices and triangles
embedded in 2D or 3D geometric space.

Many rendering methods including rasterization and ray
tracing access vertices and triangles in a coherent manner.
For example, suppose that a triangle and its three associated
vertices are accessed for rendering. Then, it is most likely that
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SIDEBAR: Alternative Geometric
Representations

Multi-resolution hierarchies of point prim-
itives have recently emerged as a viable
alternative to the more traditional mesh re-
finement methods for interactively inspect-
ing very large geometric models. One of the
major benefits of this approach is its simplic-
ity, stemming from the fact that there is no
need to explicitly manage and maintain mesh
connectivity during both preprocessing and
rendering. The possibility of using points as
a rendering primitives was first suggested by
Levoy and Whitted [1], that pointed out that
point primitives are more appropriate than
triangles for complex, organic shapes with
high geometric and appearance detail. Since
then, a large body of work has been per-
formed in the area of point based graphics.
The reconstruction of continuous (i.e., hole-
free) images from a discrete set of sur-
face samples is the major problem faced
by point rendering approaches. It can be
done by image-space reconstruction tech-
niques [2] or by object-space resampling.
The techniques from the latter category dy-
namically adjust the sampling rate so that
the density of projected points meets the
pixel resolution, which can be done both
for rasterization and ray tracing approaches.
Since this depends on the current view-
ing parameters, the resampling has to be
done dynamically for each frame, and multi-
resolution hierarchies or specialized proce-
dural resampling techniques are exploited
for this purpose. Examples are bounding
sphere hierarchies [3], dynamic sampling of
procedural geometries [4], the randomized
Z-buffer [5], and the rendering of moving
least squares (MLS) surfaces [6]. As for
polygonal multi-resolution rendering, amor-
tizing over a large number of primitives is
essential to maximize rendering speed on
current architectures, and the highest per-
formance is currently obtained by coarse-
grained approaches [7].

Overall, peak performance of high quality
techniques is, however, currently inferior
to the performance of corresponding trian-
gle rasterization approaches, since current
graphics hardware does not natively support
essential point filtering and blending opera-
tions. This situation might change in the near
future, as novel architectures for hardware-
accelerated rendering primitives are cur-
rently being introduced [8].
Point based representations are appealing
in massive model applications not only for
rendering, but also to serve as modeling
primitives for generating LODs. Classically,
they have been used to represent surface el-
ements. More recently, they have been used
to model the appearance of small volumet-
ric portions of the environment. In the Far
Voxels approach [9], LODs are generated by
discretizing spatial regions into cubical vox-
els. Each voxel contains a compact direction
dependent approximation of the appearance
of the associated volumetric subpart of the
model when viewed from a distance. The
approximation is constructed by a visibility
aware algorithm that fits parametric shaders
to samples obtained by casting rays against
the full resolution dataset, and is rendered
using a point primitives interpreted by GPU
shaders. A similar approach to model simpli-
fication is also applicable to ray tracing [10],
[11].

References
[1] Marc Levoy and Turner Whitted. The Use

of Points as a Display Primitive. Technical
Report TR 85-022, University of North Car-
olina at Chapel Hill, 1985.

[2] J.P. Grossman and William J. Dally. Point
Sample Rendering. In Rendering Tech-
niques 1998 (Proceedings of the Eurograph-
ics Workshop on Rendering), pages 181–
192, 1998.

[3] Szymon Rusinkiewicz and Marc Levoy.
QSplat: A Multiresolution Point Render-
ing System for Large Meshes. In Com-

puter Graphics (Proceedings of ACM SIG-
GRAPH), pages 343–352, 2000.

[4] Marc Stamminger and George Drettakis. In-
teractive Sampling and Rendering for Com-
plex and Procedural Geometry. In Proceed-
ings of the Eurographics Workshop on Ren-
dering Techniques, pages 151–162, 2001.

[5] Michael Wand, Matthias Fischer, Ingmar Pe-
ter, Friedhelm Meyer auf der Heide, and
Wolfgang Straßer. The Randomized z-Buffer
Algorithm: Interactive Rendering of Highly
Complex Scenes. In Computer Graphics
(Proceedings of ACM SIGGRAPH), pages
361–370, 2001.

[6] Marc Alexa, Johannes Behr, Daniel Cohen-
Or, Shachar Fleishman, David Levin, and
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Fig. 10. One dimensional layout. This figure illustrates a layout computation
method of an input mesh. Since many modern architectures using block-based
caches assume a coherent access of runtime applications, the mesh should be
stored in the layout in a coherent manner.

neighboring triangles or vertices will be accessed for rasteriz-
ing the next triangles or performing ray–triangle intersection
tests for subsequent rays. Therefore, two vertices (or triangles)
close in original geometric space are most likely to be accessed
sequentially rather than any triangle or vertex will be equally
likely to be accessed.

Although rendering applications access data in a coherent
manner in the geometric space where triangle meshes are em-
bedded, there is no guarantee that we will have coherent data

access patterns in terms of 1D data layout representations due
to the intrinsic lower dimensionality of 1D layouts compared
to those of meshes. Particularly, this phenomenon can have
significant impact on the performance of many applications
running on modern computer architectures. This is mainly due
to I/O mechanisms of most modern computer architectures.

Most I/O architectures use hierarchies of memory levels,
where each level of memory serves as a cache for the next
level. Memory hierarchies have two major characteristics.
First, lower levels are larger in size and farther from the
processor and, thus, have lower access times. Second, data is
moved in large blocks between different memory levels. Data
is initially stored in the lowest memory level, typically the
disk or can be even accessed through the network. A transfer
is performed whenever there is a cache miss between two
adjacent levels of the memory hierarchy.

This block fetching mechanism assumes that runtime appli-
cations will access data in a coherent manner. As mentioned
earlier, most rendering methods including rasterization and ray
tracing access data in a coherent manner, only in the geometric
space where meshes are embedded. However, data accessed
in the 1D layout may be stored very far away and, thus,
can require a lot of block fetching, i.e., cache misses, during
runtime applications.
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SIDEBAR: Image-Based Methods

In the geometry-based rendering approach,
the visible component of the world is the
union of two elements: the geometric de-
scription of the objects and the color and
lighting conditions. A different approach is
to consider the world as an infinite collection
of images, one for each position, orientation
and time. Such a collection of images would
realize what is called plenoptic function, i.e.,
a function returning the color perceived from
a specified eye position, view orientation and
time. The goal of image-based rendering
(IBR) is to generate images by resampling
the plenoptic function given view parame-
ters [1]. While in the general case a fully
IBR approach is typically impractical, due
to the sheer amount of data required for
a full light field encoding of a scene, in
the last decade a set of successful hybrid
techniques have been proposed to accelerate
the rendering of portions of a complex scene,
with the replacement of complex geometry
with textures in well defined particular cases.
In most cases, the basic idea is to use a
geometry-based approach for near objects,
and switch to a radically different image-
based representation, called impostor, for
distant objects having a small, slowly chang-
ing on-screen projection.
The billboard, i.e., a textured planar polygon
whose orientation changes to always face
the viewer is possibly the most well-known
image-based representation, and is used for
replacing geometric representations of ob-
jects that have a rough cylindric symmetry,
like a tree.
Another application of IBR is in environ-
ments which are naturally subdivided in cells
with reduced mutual visibility. A typical
example is the inside of a building, where
adjacent rooms can be connected by doors
of windows and if the observer is in a room
he/she can see the inside of the adjacent cells
only through those openings. This feature
can be exploited in visibility culling, disre-
garding all the geometry which is outside the
perspective formed by the observer position
and the opening. If the observer is not too
close to the opening and/or the opening is
not too wide, it makes sense to put a texture
on the opening instead of displaying the ge-
ometry. In [2] portal textures are introduced

to this aim.
These simple approaches are limited by the
fact that a single texture provides the correct
view of the scene only from the point where
it has been sampled and not elsewhere, lead-
ing to artifacts when the observer moves.
For these reasons, a number of authors have
proposed more elaborate solutions to in-
corporate parallax effects, such as textured
depth meshes [3], in which textures are tri-
angulated and a depth value is associated to
each vertex, and layered depth images [4],
that for each pixel store all the intersections
of the view ray with the scene.
These techniques, introduced a decade ago
are enjoying a renewed interest, because of
the evolution of graphics hardware, which
is more and more programmable and ori-
ented toward massively parallel rasterization.
Such an evolution also leads to a blurring
of the boundary between geometry based
and image based representation, since more
and more geometric information is being
encoded in the various texture-based repre-
sentation to increase rendering fidelity. The
techniques used for rendering impostors are
strictly related to the issue of height field
ray tracing and displacement mapping tech-
niques, a field in which a number of special-
ized hardware accelerated techniques have
been recently presented (e.g., relief map-
ping [5], and view-dependent displacement
mapping [6]). A very recent evolution of
these methods is the BlockMap [7], that
compactly represents in a single texture a set
of textured vertical prisms with a bounded
on-screen footprint that serves as replace-
ment for a set of buildings in city ren-
dering applications. One might argue that
the BlockMap representation is more similar
to LOD than to impostor approaches, as
a BlockMap provides a view-independent,
simplified representation of the original tex-
tured geometry, provides full support to vis-
ibility queries, and, when built into a hi-
erarchy, offers multi-resolution adaptability.
Similarly, encoding shape and appearance
into a texture is also the goal of geometry
images [8], which enables the powerful GPU
rasterization architecture to process geom-
etry in addition to images. Finally, there
have been a few techniques of applying
these image-based rendering techniques to
massive models [7], [9], [10].
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Intuitively speaking, we can get fewer cache misses as we
store vertices close in the mesh to be also close in the 1D
layout. Cache-coherent layouts are layouts constructed in such
a way that they minimizes the number of cache misses.

One notable layout method to improve the performance of
rasterization is the rendering sequence, which is a sequential
list of triangles optimized to reduce the number of GPU
vertex cache misses. By computing a good rendering sequence
of a mesh, we can expect an up to six times rendering
performance improvement. This technique requires the GPU
vertex cache size as an input and optimizes the rendering
sequence according to this value [20]; therefore, the computed
rendering sequence is considered as a cache-aware layout.

Recently, cache-oblivious mesh layouts have been pro-
posed [18]. These cache-oblivious layouts do not require any
specific cache parameters such as block sizes. Instead, these
layouts are constructed in such a way that they minimize the
expected number of cache misses during accessing meshes
for block-based caches with various block sizes. Its main

advantage compared to other cache-aware layouts is that the
user does not need to specify cache parameters such as block
size and can get benefits from various levels of memory
hierarchies including disk, main memory, and L1/L2 caches.
Moreover, the implicit paging system provided by the OS can
effectively be coupled with cache-oblivious layouts. Therefore,
users can observe the performance improvements without
significant modifications on the underlying code and runtime
applications. Cache-oblivious layouts have been developed
for meshes and bounding volume hierarchies for ray tracing,
rasterization, and other geometric applications.

C. Compression Techniques

Mesh compression techniques compute compact represen-
tations by reducing redundant data of the original meshes.
Mesh compression has been widely researched and good
surveys [21] are available. Particularly, triangle strips have
been widely used to compactly encode rendering sequences.
Triangle strips consist of a list of vertices, which implicitly
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encodes a list of triangles. Also, decoding triangle strips
for rasterizing triangles can be very efficiently implemented
in graphics hardware. However, these representation cannot
be directly used for ray tracing, which access underlying
meshes in an arbitrary order, unlike the sequential order in
rasterization.

There have been efforts to design compressed meshes
that also support random accesses for various applications
including ray tracing [22], [23]. One of the concepts leading
to such techniques is to decompose a mesh into different
chunks and compress each chunk independently. Therefore,
when a mesh element is required for an application, a chunk
containing the required mesh element is decompressed, and the
decompressed mesh element can be returned to the application.
Recently, the Ray-Strips representation [23] has been proposed
for ray tracing. Ray-Strips like triangle strips consist of a list of
vertices. Moreover, this vertex list implicitly encodes a list of
triangles and a bounding volume hierarchy, which accelerates
the performance of ray–triangle intersection tests.

D. Summary

We have discussed three data management techniques, out-
of-core techniques, cache-coherent layout methods, and com-
pression techniques, to reduce expensive data access time
and, thus, improve the performance of rasterization and ray
tracing. Out-of-core techniques mainly focus on reducing disk
access time and require specific memory and disk block
sizes. Therefore, they can achieve better disk access time
compared to cache-oblivious algorithms and layouts. However,
out-of-core techniques are usually coupled with an explicit
external paging system; therefore, taking advantage of its best
performance may require more implementation efforts. On
the other hand, cache-oblivious layouts do not require any
cache-parameters and work quite well with various GPUs and
CPUs having different cache-parameters. Moreover, a user
can achieve reasonably high performance without modifying
underlying code and applications. Also, by compressing the
external data representations and layouts, storage requirements
can be drastically reduced and performance of applications is
improved.

V. PARALLEL PROCESSING TECHNIQUES

Even when applying the various complexity reduction meth-
ods we have visited in the previous sections, rendering of mas-
sively complex scenes can still be extremely computationally
expensive. Especially in the case of advanced shading, a single
CPU/GPU often cannot deliver the performance required for
interactive image generation. It becomes thus necessary to
combine the computational resources of multiple processing
units to achieve a sufficient level of computing power.

Today, parallel computing capabilities are offered at a
variety of different hardware and system levels. Examples
are SIMD (single instruction multiple data) instructions that
can perform vector operations, multiple pipelines in CPUs
and GPUs, multi-core architectures, and shared-memory and
loosely coupled cluster systems that can contain multiple
processors and/or graphics cards.

When focusing on rendering systems using distinct CPUs
and/or GPUs, we can distinguish between two main straight-
forward methods: sort-first and sort-last parallelization strate-
gies. Sort-first rendering is based on subdividing screen space
into disjoint regions that are rendered independently in parallel
by multiple processing units. In a sort-last setting, the scene
dataset is split into several parts, and is typically distributed
amongst separate computing systems individually containing
RAM, CPUs, and GPUs. The sub-scenes can be rendered
independently, and the results are composed afterwards into
the final image. For rasterization this can be accomplished by
collecting the content of the individual color and Z-buffers,
and choosing the final pixel color based on the nearest depth
value for a given pixel. A popular OpenGL oriented system
for clusters of workstations that incorporates sort-first, sort-
last, and hybrid rendering is Chromium [24]. For a ray tracer
a sort-last approach can be handled in a similar way by simply
ray tracing the sub-scene images instead of rasterizing them.
A different approach for ray tracing is to forward rays from
one rendering system to the next if no surface intersection can
be found.

A. Data Parallel Rendering

Parallel rendering of a distributed scene database is gen-
erally termed data parallel rendering (the term sort-last is
more related to the composition strategy of the final image).
Apart from reducing the complexity of visibility calculations,
splitting and distributing a scene between computing sub-
systems has another advantage; once the massive scene is
decomposed into small chunks, each of which can fit into the
available main memory of each sub-system, the overall system
can handle highly complex scenes, which would otherwise not
fit into the main memory of a single system.

A big disadvantage of such a setup is the difficulty of
dealing with advanced shading, as this would require potential
access to all parts of the 3D model. In are rasterization based
system, data parallel rendering is typically performed using
a sort-last image composing mechanism. In case of multi-
pass rasterization, various maps (e.g., for shadow calculations)
have to be rendered, assembled, and distributed to all hosts.
Using ray tracing, mainly sort-first approaches are applied,
i.e., an initial primary ray is sent to the sub-system that hosts
the region of the scene the ray enters first. Rays thereafter
have to be propagated between the individual sub-systems,
which usually results in a high communication overhead,
especially for secondary rays. In addition, using pure data
parallel scheduling of rendering tasks typically does not allow
for handling load-imbalances caused by changing viewpoints.

B. Demand Driven Rendering

When pursuing a screen space subdivision (sort-first) ap-
proach, a straightforward way is to use a static partitioning
scheme, where the image space is broken into as many fixed-
size regions as there are rendering client machines. Another
alternative is to split the image into many small, often quadran-
gular regions called tiles, which are assigned to the available
rendering clients (i.e., processing units). Depending on the part
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of a scene that is visible in a tile, computation time for each
tile can vary strongly across the image plane. This can lead
to bad client utilization, and thus result in a poor scalability
if tiles would be statically assigned to the rendering clients.
Therefore, a better alternative is to employ a demand driven
scheduling strategy, by letting the clients themselves ask for
work. As soon as a client has finished a tile, it sends its
results back to the master process (which is responsible for
assembling and displaying the image), and request the next
unassigned tile. This leads to an efficient load balancing, and
for most scenes to an almost linear scalability in the number
of rendering clients.

C. Distributed Rendering
In contrast to shared-memory environments, where a num-

ber of CPUs can simultaneously access a virtually single
contiguous chunk of main memory, distributed systems con-
tain a number of physically separated computing systems
communicating over an interconnection network. In such an
environment, typically one dedicated machine serves as host
for a master process. The master is responsible for distributing
the rendering workload among the remaining client machines,
and for assembling and displaying the generated image.

Particularly in situations where clients render massive
datasets in an out-of-core manner, it is important to consider
spatio-temporal coherence. In order to make best use of caches
on client machines, image tiles should be assigned to the same
clients in subsequent frames whenever possible.

To hide latencies, rendering, network transfer, image dis-
play, and updating scene settings should be performed asyn-
chronously. For example, while image data for frame N is
transferred, the clients already render frame N + 1, whereas
the application can specify and send updated scene settings
for frame N + 2.

D. Summary
Modern CPUs and GPUs increasingly feature parallel com-

puting capabilities. One of the most important computational
trends is the growing numbers of CPU cores and GPU
processing units, as physical limitations in stepping up clock
rates and reducing sizes of integrated circuit structures become
more and more eminent. Therefore, future hardware will make
it possible to render today’s massive models on standard
computing systems, but scene complexity is also expected to
keep rising for quite some time to come. For such extremely
complex scenes, it is required to combine the computational
power of multiple computing systems to enable interactive
rendering and sophisticated shading.

In this section we only dealt with parallel rendering. How-
ever, parallel installations described in this section can be
equally applied to speed up precomputation tasks, like, e.g.,
building spatial index structures or computing level-of-detail
representations.

VI. SYSTEM ISSUES

Rendering high-quality representations of complex models
at interactive rates requires not only to carefully craft algo-
rithms and data structures, but also to combine the different

components in an efficient way. This means that the different
solutions illustrated in the previous sections must be carefully
mixed and matched in a single coherent system able to balance
the competing requirements of realism and frame rates. No
single standard approach presently exists, and the different
solutions developed to date all have their advantages and
drawbacks. In the following, we briefly illustrate how a few
representative state-of-the-art systems work.

A. Visibility Driven Rasterization

One of the important uses for massive model rendering is
the exploration of models with a high depth complexity. These
application test cases include architectural walkthroughs and
explorations of large CAD assemblies. In these situations,
occlusion culling is often the most effective visible data
reduction techniques. A number of systems have thus been
developed around efficient visibility queries.

A system that efficiently makes use of the occlusion query
capabilities of modern graphics hardware is the Visibility
Guided Rendering [17] (VGR) system. VGR organizes the
scene in a hierarchy of axis-aligned bounding boxes. For each
internal node of the resulting tree a splitting plane along one
of the three primary axes (like in a regular kd-tree) is stored,
which is used to traverse the scene in a front-to-back order.
In a preprocessing step the tree is generated top-down, while
trying to keep the edges of boxes of equal size, to optimize
culling efficiency for different viewing angles. Recursively
subdividing the scene is terminated once a node contains about
2000 to 4000 triangles.

The faces of boxes associated with nodes are directly
used as test geometry for hardware occlusion queries. Ideally,
traversal of the bounding box hierarchy would be performed
depth-first, selecting children of a node in a front-to-back
order. However, with occlusion queries being done on the
GPU and tree traversal on the CPU, this would result in
a stop-and-go behavior. As explained in section III-C, the
solution is to carefully schedule queries by exploiting spatial
and temporal coherence. Thus, to allow for running occlusion
queries in parallel to tree traversal, VGR maintains a queue
of query requests, which can be asynchronously processed
by the GPU. Rather than carrying out visibility checks in
a depth-first order, the queue is filled based on a more
breath-first traversal order (see Figure 11a). This results in
a slightly reduced culling efficiency, since farther nodes might
be wrongly classified as visible as not all nearer nodes have
been rendered. However, it avoids introducing GPU stalls, thus
increasing overall performance.

VGR also maintains a list of leaf nodes that were visible
in the previously rendered frame. In successive frames new
visible nodes are added to the list while others become
invisible. The nodes of this list are rendered first in the
current frame. The intention is to fill the Z-buffer before the
first occlusion query takes place, thus exploiting frame-to-
frame coherence. Visibility information for leaf nodes from
the previous frame is propagated up the tree, which makes it
then possible to exclude sub-trees from traversal and visibility
testing (Figure 11b). Not every leaf is tested for visibility in
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each frame. Occlusion testing is performed every n frames for
the leaf nodes contained in the list.

Q1 Q3 Q1.1 Q1.2

View Direction

Q2 Q1

View Direction

Q2

(a) (b)

Fig. 11. Visibility Guided Rendering (VGR). (a) Scheduling VGR
occlusion queries. A query queue is maintained, and is filled with requests
based on a breadth-first traversal, in order to avoid GPU lag times. (b)
Exploiting spatio-temporal coherence. Leaf nodes visible in the previous frame
are marked white and are rendered first, invisible nodes are marked black. This
information is propagated up the tree, only black marked sub-trees need to
be tested for visibility.

For handling complex scenes, VGR can render in an out-
of-core mode. To this end, it maintains a two-level caching
architecture, where the graphics card memory (VRAM) serves
as first-level cache, and the RAM of the host machine as
second-level cache. Memory is managed using a least recently
used (LRU) cache eviction strategy. The VRAM is subdivided
into a small number of large slices containing OpenGL vertex
and index buffers. Slices are filled from the front to the back
with data from visible leaf nodes. Once no more free slices
are left, the slice least recently used is completely emptied and
refilled.

The VGR system also incorporates a simple LOD mech-
anism. Before rendering a visible node, its screen space
projection area is determined. If the area is smaller than a
pixel, the system resorts to point rendering for this node. In
addition, it is further possible to randomly thin out the point
cloud for very distant nodes.

While the VGR system employs online visibility queries,
other systems make use of visibility information computed
in a preprocessing phases and stored with the model. A
representative system of this category is iWalk, which is
constructed around a multi-threaded out-of-core rasterization
method.

iWalk can support high-resolution (4096× 3072) and multi-
tiled displays by employing sort-first parallel out-of-core ren-
dering. iWalk decomposes an input model with an octree.
For construction, since an input model typically does not fit
into the available memory, iWalk breaks the model into small
sections, each of which can fit into main memory. Then, iWalk
incrementally constructs an octree by processing each section
in a separate pass, and merges the final result into a single
octree.

iWalk can be integrated with approximate or conservative
visibility culling and employs speculate prefetching consider-
ing visibility events, which are very hard to deal with. To do
that, a visibility coefficient for each octree node is computed.
A visibility coefficient measures how much geometry in an
octree node is likely to be occluded by other geometry. At
runtime, iWalk predicts visibility events based on visibility

coefficients stored in the octree nodes. This feature allows the
system to pre-fetch the geometry which is likely to be accessed
in a next frame, and thus reduces expensive loading time of
newly visible geometry.

iWalk also uses multi-threading to concurrently perform
visibility prefetching, rendering, and out-of-core management.
Since disk operations are very expensive and have high latency,
multi-threading of different tasks achieves higher CPU utiliza-
tion and thus improves the overall performance of rendering
massive models.

B. Real-Time Ray Tracing

Another class of systems heavily relying on efficient visibil-
ity culling is that of systems built around real-time ray tracing
kernels.

A very advanced system of this kind is the OpenRT real-
time ray tracer [2], [25], a renderer originally conceived
to deliver interactive ray tracing performance on low-cost
clusters of commodity PCs. It can, however, also be run in
a shared-memory environment. OpenRT uses a two-level kd-
tree hierarchy as spatial index. A scene can consist of several
independent objects composed of geometric primitives, where
each object has its own local kd-tree. The bounding boxes
of such objects are organized in a top-level kd-tree. On the
one hand, this allows for a limited form or rigid-body motion,
since only the top-level tree needs to be rebuilt once objects
move. On the other hand, it enables efficient instancing of
objects as the top-level tree can contain multiple references
and corresponding transformation matrices to a single object.
Kd-tree construction makes use of cost prediction functions to
estimate optimal splitting plane positions.

As long as the scene description can fit completely into
main memory, even visually highly complex scenes can be
handled due to the logarithmic time complexity of ray tracing.
An example can be seen in Figure 1d. Using tile-based demand
driven rendering on multiple CPUs, the depicted landscape
scene can be interactively explored without having to incor-
porate explicit occlusion culling or level-of-detail methods.

OpenRT incorporates a custom memory management sub-
system that can deal with scenes larger than physical mem-
ory in an out-of-core fashion. The whole dataset, including
acceleration structures, etc. is mapped from disk into virtual
address space using the operating system’s memory mapping
facilities (e.g., Linux mmap()). Making use of the OS mem-
ory mapping system provides an automatic demand paging
scheme, taking care that data is loaded into main memory
as soon as it is accessed. However, in order to avoid stalling
due to page faults during ray traversal and intersection, it is
necessary to detect whether or not memory referenced by a
pointer is actually in core memory. To this end, a hash-table is
maintained that records which pages of the model have already
been loaded. In case of a potential page fault, tracing a ray is
canceled, while the missing memory page is scheduled to be
loaded by an asynchronously running fetcher thread.

In case of a canceled rays several strategies can be applied.
For smaller models (in the range of a few dozen million
triangles), where missing data can be loaded during a single
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frame, rays can be suspended and later resumed once the data
becomes available in memory. For larger models, simplified
representations that can fully fit into memory are used as a
substitute. It should be noted that this is only necessary to
bridge loading time, but not to reduce the visual complexity.
Simplified data is only used while fully-detailed data is being
loaded.

OpenRT can use different types of surface shaders in a plug-
and-play manner, which makes it possible to include different
types of shading and lighting effects, e.g. soft shadows or
transparency (see Figure 12) that can help to better visualize
the model structure.

(a) (b)

Fig. 12. Examples of surface shading effects. (a) Soft shadow effects in a
Boeing 777 cockpit providing a better impression of the relative placement of
components. (b) Adding transparency can help in understanding the complex
part arrangement in the engine nacelle.

In contrast to OpenRT, which was originally conceived
for distributed PC cluster rendering, the Manta Open Source
Interactive Ray Tracer [26] has be designed from scratch for
shared-memory multi-processor systems.

Manta’s architecture consists of two fundamental com-
ponents, a parallel pipeline executed by all threads syn-
chronously, and a set of modular components organized in
a rendering stack, which is executed by each thread asyn-
chronously. The pipeline is organized by dividing rendering
tasks based on their parallel load characteristics into inherently
balanced, imbalanced, and dynamically balanced categories.
All rendering threads perform each task on each frame in
the pipeline during a stage. Dynamically load balanced tasks
are executed last so any imbalance introduced earlier can
be smoothed out and processor stalls between stages are
avoided. A basic Manta rendering pipeline consists of ray
tracing and image display. Since image display is usually only
performed by one thread, this task is imbalanced. In the Manta
control loop, the previous frame is displayed first and then the
rendering stack is invoked to perform ray tracing of the current
frame. After the responsible thread completes display, it joins
the rendering threads.

Thread safe state changes in Manta are performed using
callbacks to simple application defined functions called trans-
actions. These transactions are stored in a queue and processed
between pipeline stages when all threads are synchronized.
Ideally, each transaction performs a very small state change,
given the high performance (relative to rendering rates) of
modern barriers, transaction performance is higher than in-
dividually locking shared state. Additionally, Manta supports
a variety of scheduling techniques that allow callbacks to be
invoked at specific times or frame numbers.

The transaction facility allows Manta to be easily embedded
in other applications. Thread safe state changes are performed
by defining callback functions and then passing the functions
to Manta using transactions. Changes can be entirely applica-
tion specific from simple camera movements to scene graph
or material property changes.

C. LOD Based Mesh Rasterization

Relying on efficient visibility determination alone is not
sufficient to ensure interactive performance for highly complex
scenes with a lot of very fine details, since, in order to bound
the amount of data required for a given frame, a prefiltered
representation of details must also be available. When dealing
with very large detailed meshes, such as those generated by
laser scanners, some of the highest performance systems to
date are based on the rasterization of multi-resolution point-
or vertex-hierarchies constructed off-line through a geometric
simplification process.

For instance, the Quick-VDR [13] system is constructed
around a dynamic LOD representation, and achieves interac-
tive performance by combining various techniques mentioned
in earlier sections. To efficiently provide view-dependent ren-
dering of massive models based on dynamic LODs, Quick-
VDR proposed a clustered hierarchy of progressive meshes
(CHPM). The CHPM consists of two parts: a cluster hi-
erarchy and progressive meshes. Quick-VDR represent the
entire dataset as a hierarchy of clusters, which are spatially
localized mesh regions. Each cluster consists of a few thou-
sand triangles. The clusters provide the capability to perform
coarse-grained view-dependent (or selective) refinement of
the model. They are also used for visibility computations
and out-of-core rendering. Then, Quick-VDR precomputes a
simplification of each cluster and represents a linear sequence
of edge collapses as a progressive mesh (PM). The PMs
are used for fine-grained local refinement and to compute an
error-bounded simplification of each cluster at runtime. Also,
explicit dependencies between clusters are maintained in order
to guarantee crack-free simplifications on the mesh. The major
benefit of the CHPM representation is its ability to provide
efficient, but effective dynamic LODs for massive models
by combining coarse-grained refinement based on clusters
and fine-grained local refinement providing smooth transitions
between different LODs.

Quick-VDR can render massive models without a significant
loss of image quality, although all the data structures cannot
fit into the available main memory. Also, conservative visibil-
ity culling implemented with hardware-accelerated occlusion
queries are integrated with rendering with the CHPM repre-
sentation. A major downside of this method is a relatively
low GPU vertex cache utilization during rendering dynamic
LODs compared to rendering static LODs. However, this low
cache utilization was addressed by employing cache-oblivious
mesh layouts for ordering of triangles and vertices of dynamic
LODs.

The Adaptive TetraPuzzles [12] (ATP) system also in-
troduced a solution based on a patch-based multi-resolution
data structure, from which view-dependent conforming mesh
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representations can be efficiently extracted by combining
precomputed patches. In the ATP case, however, the system
does not need to maintain explicit dependencies, since the
method uses a conformal hierarchy of tetrahedra generated
by recursive longest edge bisection to spatially partition the
input mesh. In this case, each tetrahedral cell contains a
precomputed simplified version of the original model, which
is constructed off-line during a fine-to-coarse parallel out-of-
core simplification of the surface contained in diamonds (sets
of tetrahedral cells sharing their longest edge). Appropriate
boundary constraints are introduced in the simplification pro-
cess to ensure that all conforming selective subdivisions of
the tetrahedron hierarchy lead to correctly matching surface
patches. At run-time, selective refinement queries based on
projected error estimation are performed on the external mem-
ory tetrahedron hierarchy to rapidly produce view-dependent
continuous mesh representations by combining precomputed
patches.

Using coarse grained LODs also serves in the Quick-VDR
and ATP systems for out-of-core management, which is done
by explicitly maintaining LRU caches of mesh patches.

D. Switching to Alternate Rendering Primitives
Adaptive meshing systems such as those discussed above

tend to perform best for highly tessellated surfaces that are
otherwise relatively smooth and topologically simple, since
it becomes difficult, in other cases, to derive good “average”
merged properties. Since performing iterative mesh simplifica-
tion does not provide visually adequate simplifications when
dealing with complicated topology, geometry and appearance,
systems have started to appear that use alternate rendering
primitives for data prefiltering.

The Far Voxels [27] system, for instance, exploits the pro-
grammability and batched rendering performance of current
GPUs, and is based on the idea of moving the grain of the
multi-resolution surface model up from points or triangles to
small volumetric clusters, which represent spatially localized
dataset regions using groups of (procedural) graphics primi-
tives. The clusters provide the capability of performing coarse-
grained view-dependent refinement of the model and are also
used for on-line visibility culling and out-of-core rendering.

Figure 13 provides an overview of the approach. To generate
the clusters, the model is hierarchically partitioned with an
axis-aligned BSP tree. Leaf nodes partition full resolution
data into fixed triangle count chunks, while inner nodes are
discretized into a fixed number of cubical voxels arranged in
a regular grid.

Finding a suitable voxel representation is challenging, since
a voxel region can contain arbitrarily complex geometry. To
simplify the problem, the method assumes that each inner node
is always viewed from the outside, and at a distance sufficient
to project each voxel to a very small screen area (say, below
one image pixel). This constraint can be met with a suitable
view-dependent refinement method, that refines the structure
until a leaf is encountered or the image of each voxel is small
enough. Under this condition, a voxel always subtends a very
small viewing angle, and a purely direction dependent repre-
sentation of shading information is thus sufficient to produce

Fig. 13. Far voxels overview. The model is hierarchically partitioned with
an axis-aligned BSP tree. Leaf nodes are rendered using the original triangles,
while inner nodes are approximated using view-dependent voxels.

accurate visual approximations of its projection. To construct
a view-dependent voxel representation, the method employs a
visibility aware sampling and reconstruction technique. First, a
set of shading information samples is acquired by ray casting
the original model from a large number of appropriately
chosen viewing positions. Each sample associates a reflectance
and a normal to a particular voxel observation direction. Then,
these samples are compressed to an analytical form that can
be compactly encoded and rapidly evaluated at run-time on
the GPU to compute voxel shading given a view direction
and light parameters. At rendering time, the volumetric struc-
ture, maintained off-core, is refined and rendered in front-
to-back order, exploiting vertex shaders for GPU evaluation
of view-dependent voxel representations rendered as point
primitives, hardware occlusion queries for culling occluded
sub-trees, and asynchronous I/O for avoiding out-of-core data
access latencies. Since the granularity of the multi-resolution
structure is coarse, data management, traversal and visibility
culling costs are amortized over many graphics primitives,
and disk/CPU/GPU communication can be optimized to fully
exploit the complex memory hierarchy of modern graphics
PCs.

The resulting technique has proven to be fully adaptive and
applicable to a wide range of model classes, that include very
detailed colored objects composed of many loosely connected
interweaving detailed parts of complex topological structure
(see Figure 14). Its major drawbacks are the large preprocess-
ing costs and the aliasing and transparency handling problems
due to the point splatting approach.

Even if it is often neglected, finding good LOD represen-
tations is also of primary importance for ray tracing systems.
Even if visibility determination in ray tracing has logarithmic
growth-rate, due to the use of acceleration hierarchies, the
runtime access pattern of massive model ray tracing can be
very incoherent. For instance, most portions of the hierarchies
and meshes can be accessed and traversed during ray–triangle
intersection tests when generating zoomed out views of very
large models. Therefore, in the absence of a suitable LOD
representation, the working set size of ray tracing can be
very high, and when it becomes bigger than the available
main memory, the performance of ray tracing is significantly
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Fig. 14. Far Voxels Rendering Example. A 1.2 billion triangles scene
interactively inspected on a large scale stereoscopic display driven by single
PC, which renders two 1024×768 images per frame with a 1 pixel tolerance.

degraded.
To address this issue, the R-LOD [28] system has intro-

duced a LOD representation for ray tracing tightly integrated
with kd-trees. Specifically, a R-LOD consists of a plane with
material attributes (e.g., color), which is a drastic simplifica-
tion of the descendant triangles contained in an inner node of
the kd-tree, as shown in Figure. 15, and is similar to one of
the shaders employed by the Far Voxels system. Each R-LOD
is also associated with a surface deviation error, which is used
to quantify the projected screen space error at runtime.

Fig. 15. R-LOD Representation. A R-LOD consists of a plane with
material attributes. It serves as a drastic simplification of triangle primitives
contained in the bounding box of the sub-tree of a kd-tree node. Its extent
is implicitly given by its containing kd-node. The plane representation makes
the intersection between a ray and a R-LOD very efficient and results in a
compact representation.

If a R-LOD representation of a kd-node has enough reso-
lution for a ray according to a LOD metric, further hierarchy
traversal for ray-triangle intersection tests stops and performs
ray-LOD intersection tests. As a major benefit of this method,
it can reduce the working set size by traversing smaller
amount of hierarchy and providing LOD representations for
the input model. As a result, it can drastically improve the
performance of ray tracing massive models. Moreover, the
R-LOD representation can improve the SIMD utilization of
ray-coherence techniques. This is mainly possible because an

LOD representation is likely to be chosen for a kd-node if
hierarchy traversals of rays in a ray packet are getting to show
low-coherence.

As a downside of this approach, this method does not
provide the full LOD solutions for arbitrary rays, especially
for non-linear transformations for refractions and reflections
off of curved surfaces. Moreover, in some cases, viewers can
observe visual artifacts, which is a very serious problem for
ray tracing.

E. Summary

Today, a broad variety of massive model rendering systems
exists that allow for the interactive display of very large
models. While this rapid survey is by no means exhaustive, the
analyzed systems provide a good sampling of today’s available
options to implementing a state-of-the-art rendering system.
From this overview it can be seen that rendering systems are
typically non-trivial frameworks that need to incorporate many
techniques, usually from all of the in the previous sections
presented categories. Today, no universal system exist that can
handle all massive models application scenarios. As it should
be clear from this brief analysis many options exists, but at
the same time, many more similarities among systems exist
than it can appear at a first look, since in the end, all systems
pick from a the same bag of techniques.

VII. CONCLUSION

In this article, we have examined various techniques of
improving rendering performance for massive 3D synthetic
environments. Such massive models are increasingly common
as a result of the phenomenon known as information explosion
in more general contexts. This trend is doomed to continue: for
instances, just consider that today’s massive model scenes have
a really small complexity compared to real live environments.

It can be argued that, while a number of applicable so-
lutions exists, efficient processing of large scale datasets for
interactive visualization is a challenging open-ended problem,
that must be continuously addressed. By learning from the
last decade of research in this field, and taking into account
the current hardware evolution, it is possible to find some
common guidelines, and draw some conclusions on how to
realize current systems and plans for the future.

We have seen that, at the broad level, current massive model
rendering approaches can be classified into rasterization or ray
tracing methods. We argue that, when it comes to dealing with
massive datasets, the underlying issues are somewhat similar.
All the methods have to deal with the same data management
and filtering problems and are converging towards proposing
similar solutions, based on spatial indexing, data reduction
techniques, and data management methods. Even though in the
past the ray tracing and rasterization fields have independently
developed their own approaches, it is likely that future systems
will incorporate hybrid approaches, in particular as graphics
hardware is becoming more and programmable and will allow
for executing rasterization and ray tracing side-by-side.

One point that is now clear in massive model visualization
is that, while large scale rendering problem cannot just be
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solved by waiting for more powerful hardware, hardware
trends dictate which methods are successful and which are
doomed to be practically inefficient. The challenge is thus in
designing methods able to capture as much as the performance
growth as possible. Current multi-core CPU systems and
GPUs excel at massively parallel tasks with good memory
locality, since the gap between computation performance and
bandwidth throughout the memory hierarchy is growing. For
this reason, we expect that methods for carefully managing
working set size, ensuring coherent access patterns, as well as
data parallel techniques will increasingly gain importance.

Up until very recently, the various problems handled by
a renderer were independently solved. It is now increasingly
clear that there are important couplings between the different
components of a massive model renderer. For instance, gener-
ating good levels of details for very complex models requires
visibility information. At the same time, the availability of
a multi-resolution model typically increases data size, but is
essential to increase memory coherence and reduce working
set size. At present time, good solutions are available for a
restricted number of situations and restricted classes of models.

Although there has been a lot of advances on massive
model rendering techniques for static models, there have been
relatively less research efforts on dealing with time-varying,
dynamic, or animated models. Since these dynamic models
are getting easier to model and capture, it is expected that
there will be higher demand for efficient dynamic model
management techniques. Currently, there is a new trend in
investigating how to rapidly build and update acceleration
structures, and how to best trade culling efficiency against
construction time. While this research is so far mainly focused
on much smaller dynamic models (see, e.g., [29]), the results
are equally important when dealing with massively complex
scenes, where such methods are not only applicable for
animation, but also for fast preprocessing. These incremental
methods need also be extended to tasks other than spatial
indexing, e.g., generating LODs.

Finally, very little research has been done on how to adapt
advanced shading and light transport simulation techniques to
massively complex scenes, especially in a real-time setting.
Although a tremendous amount of research targeting photo-
realistic image synthesis has been carried out in the last
decades, such techniques cannot easily be applied to massive
environments. While handling pure visibility in arbitrarily
sized models still remains challenging, it is likely that addi-
tional efforts will be made to also include more sophisticated
illumination effects.

ACKNOWLEDGMENTS

The authors would like to thank Fabio Marton and Abe
Stephens for their help. Source 3D datasets are provided by
and used with permission of the Boeing Company, the Digital
Michelangelo Project, the Lawrence Livermore National Labo-
ratory, the Georgia Institute of Technology, and the University
of Konstanz. The Sponza Atrium scene has been modeled
by Marko Dabrovic. This work was partially supported by
the Italian Ministry of University and Research under grant
CYBERSAR, and by a KAIST seed grant.

References

[1] Philip Dutre, Kavita Bala, and Philippe Bekaert. Advanced Global
Illumination, Second Edition. A K Peters, 2006.

[2] Ingo Wald, Timothy J. Purcell, Joerg Schmittler, Carsten Benthin, and
Philipp Slusallek. Realtime Ray Tracing and its use for Interactive
Global Illumination. In Eurographics 2003 State of the Art Reports,
2003.

[3] Sven Woop, Jörg Schmittler, and Philipp Slusallek. RPU: A Pro-
grammable Ray Processing Unit for Realtime Ray Tracing. In ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH), pages
434–444, 2005.

[4] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-Level Ray
Tracing Algorithm. In ACM Transaction of Graphics (Proceedings of
ACM SIGGRAPH), pages 1176–1185, 2005.

[5] David P. Luebke. A Developer’s Survey of Polygonal Simplification
Algorithms. IEEE Computer Graphics and Applications, 21(3):24–35,
2001.

[6] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Dec-
imation of Triangle Meshes. In ACM Computer Graphics (Proceedings
of ACM SIGGRAPH), pages 65–70, 1992.

[7] Hugues Hoppe. Progressive Meshes. In ACM Computer Graphics
(Proceedings of ACM SIGGRAPH), pages 99–108, 1996.

[8] Michael Garland and Paul S. Heckbert. Surface Simplification Using
Quadric Error Metrics. In ACM Computer Graphics (Proceedings of
ACM SIGGRAPH), pages 209–216, 1997.

[9] Martin Isenburg, Peter Lindstrom, Stefan Gumhold, and Jack Snoeyink.
Large Mesh Simplification using Processing Sequences. In Proceedings
of IEEE Visualization 2003, pages 465–472, 2003.

[10] Carl Erikson, Dinesh Manocha, and William V. Baxter III. HLODs for
Faster Display of Large Static and Dynamic Environments. In SI3D ’01:
Proceedings of the 2001 Symposium on Interactive 3D Graphics, pages
111–120, 2001.

[11] Leila De Floriani, Paola Magillo, and Enrico Puppo. Efficient Imple-
mentation of Multi-Triangulations. In Proceedings of IEEE Visualization
1998, pages 43–50, 1998.

[12] Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio Marton, Fed-
erico Ponchio, and Roberto Scopigno. Adaptive TetraPuzzles: Efficient
Out-of-Core Construction and Visualization of Gigantic Multiresolution
Polygonal Models. In ACM Transactions on Graphics (Procceedings of
ACM SIGGRAPH), pages 796–803, 2004.

[13] Sung-Eui Yoon, Brian Salomon, Russel Gayle, and Dinesh Manocha.
Quick-VDR: Interactive View-Dependent Rendering of Massive Models.
In Proceedings of IEEE Visualization 2004, pages 131–138, 2004.

[14] Daniel Cohen-Or, Yiorgos Chrysanthou, Cláudio T. Silva, and Frédo
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