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Abstract

In this paper we propose Pixel-based Random Parameter Filtering (P-RPF) for efficiently denoising images generated
from complex illuminations with a high sample count. We design various operations of our method to have time
complexity that is independent from the number of samples per pixel. We compute feature weights by measuring the
functional relationships between MC inputs and output in a sample basis. To accelerate this sample-basis process we
propose to use an upsampling method for feature weights. We have applied our method to a wide variety of models
with different rendering effects. Our method runs significantly faster than the original RPF, while maintaining visually
pleasing and numerically similar results. Furthermore the performance gap between our method and RPF increases as
we have more samples per pixel. As a result, our method shows more visually pleasing and numerically better results

of RPF in an equal-time comparison.
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1 1. Introduction

2 Monte Carlo (MC) rendering such as path tracing [1]
s is one of the most general rendering techniques for pro-
4 ducing physically-correct rendering results. It calculates
s color (i.e. radiance) of a pixel by generating and tracing
¢ random samples, ray paths, within the integration do-
7 main. Ray paths can have complex interactions with the
s scene being rendered, and are computed by considering
o various factors such as surface reflection functions, area
10 light sampling, lens sampling, time sampling, and so on.
11 Overall MC rendering is an effective method to solve a
12 multidimensional integration function taking geometry
13 and random parameters as inputs.

14 The very characteristic of MC rendering produces
15 noise, when insufficient samples are used to estimate
16 the true value. While the scene function is complex
17 and integration domain is a high-dimensional space, we
18 have only limited computation resource to sample these
19 complex functions. Many attempts have been made to
20 remove this noise in images generated by MC rendering.
21 A recent research focus is on designing effective
22 image-space reconstruction methods, since image-space
23 techniques are easy to implement, can be naturally inte-
24 grated with existing rendering systems, and are highly
25 efficient thanks to its image-space nature. Most image-
26 space denoising techniques achieve high-quality results
27 by considering various geometric features (e.g., depth,
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2s normal, and texture) within well-known filters [2, 3, 4, 5]
26 such as joint bilateral filter.

s Recently Random Parameter Filtering (RPF) [2]
a1 demonstrated impressive denoising results even with a
32 small number of samples per pixel. A key characteristic
ss that sets it apart from prior work is that it measures the
a functional relationship of colors and geometric features
s over any random parameters and then adjusts filtering
3 factors of these features during joint bilateral filtering.
a7 This property of RPF enables exceptional results, since
38 varying filtering factors can effectively deemphasize ge-
3 ometric features that are even noisy.

« Its shortcoming, however, is the lack of scalability. It
41 runs at a reasonable speed for eight samples per pixel, but
s it becomes drastically slower as the number of samples
a3 per pixel increases. This is because the time complexity
4« of RPF algorithm is dependent on the number of samples
a5 per pixel. For scenes with complex illumination it may
4 be impossible to capture most important light paths with
4«7 low samples per pixel (Fig. 1). In these scenes a high
s number of samples even with reconstruction methods
49 1s required, and the current RPF technique may lost its
so0 competitive edge because of the low scalability.

st Contributions. In this paper we propose pixel-based
s2 random parameter filtering (P-RPF) for efficiently de-
ss noising various rendering effects generated by MC ren-
s« dering. Our method consists of three main steps: 1)
ss initialization for pixel-based computation, 2) computing
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Figure 1: Filtering results of the dof-dragons scene using RPF and our
method with 8 and 32 samples per pixel (spp). All the methods with
8 spp lack the information to preserve edges on the out-of-focused
dragon’s head and in-focused texture on the floor. Our method with
32 spp achieves visually pleasing results, while it runs even faster than
RPF with 8 spp. In an equal-time comparison, our method with 32 spp
shows three times lower MSE over RPF with 8 spp.

s feature weights considering feature types with different
s7 filtering factors, and 3) performing joint bilateral filtering
ss with the computed feature weights. Our final filtering
so operation is performed in a pixel-based approach. We
e further accelerate the component of computing feature
¢t weights, the main computational bottleneck, by using an
ez upsampling technique, whose time complexity is also
e independent from the sample count. We have applied
¢« our method into a set of benchmarks that have different
es rendering effects. Overall we are able to achieve more
es than one order of magnitude improvement over the origi-
ez nal RPF when we use 32 samples per pixel (spp), and the
es performance improvement goes higher, as the input im-
e age is created by more spp. Furthermore, we numerically
70 verify that our method achieves similar denoising results
71 compared to RPF given the same spp, while our method
72 runs much faster. Specifically, the reconstruction error of
73 our method in terms of the Mean Squared Error (MSE) is
7« only within 10% to that of the original RPF. These results

75 demonstrates the scalability as well as denoising quality
76 of our method. Finally, given equal-time comparisons,
77 our method shows visually better and numerically lower
78 MSE results over RPF, because of its highly efficient and
7 effective denoising process.

s 2. Related Work

st In this section we review prior techniques directly
e related to our work.

s 2.1. MC Noise Filtering

s Reducing noise in images generated by MC rendering
s has been actively studied in the field of rendering. To
g realize this goal many techniques have been proposed
e7 for improving the reconstruction and sampling processes
s of MC rendering, mainly in two approaches: reducing
s the source of MC noise and filtering MC noise.

0 One of the well-known examples for reducing the
ot source of MC noise is multidimensional adaptive sam-
o2 pling and reconstruction method [6]. In addition, ad-
s vanced reconstruction techniques based on a frequency-
o domain analysis have been designed for specific render-
o5 ing effects such as depth-of-fields and motion blur [7, 8,
% 9].

o7 As an early example of filtering MC noise, Rush-
s meier and Ward [10] proposed an energy preserving
90 nonlinear filter that redistributes the color values of noisy
100 pixels into their neighboring pixels. Jensen and Chris-
101 tensen [11] denoised images by separating light paths
102 that are reflected diffusely two times and by then filter-
103 ing them using the median filter. Xu and Pattanaik [12]
104 pointed out that the direct application of bilateral filter-
105 ing [13] cannot remove spike noise generated by MC
16 rendering. To address this problem they used cross bi-
107 lateral filtering with an edge stopping function that is a
18 smoothed input image by Gaussian filtering. DeCoro et
109 al. [14] introduced an outlier removal technique based
110 on density estimation, which can be used as a preprocess-
11 ing for various filtering methods. This outlier removal
112 technique can be also used with our method, as a prepro-
13 cessing tool to remove outliers.

14 In MC rendering the filtering process is often guided
115 by the additional information (e.g. G-buffer) to perform
116 edge-preserving filtering. McCool [15] introduced an
17 anisotropic diffusion filter guided by additional informa-
s tion (e.g. depth, normal, and texture) easily obtained by
119 MC rendering. Dammertz et al [16] used the A-trous
120 wavelet transform, and applied cross bilateral filtering
121 using depth, normal, and texture to transformed low-
122 resolution images. Since this method uses low-resolution
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123 images, an iterative filtering performance is achieved.
124 Bauszat et al. [4] proposed a filtering process guided by
125 geometric information, which filters out noise in indi-
126 rect illumination generated by interactive path tracing.
12z Recently, Moon et al. [3] proposed a virtual flash image
128 constructed by considering a nearly noise-free part of
129 light paths, and the image is used as an edge stopping
130 function in non-local means.

131 2.2. Random Parameter Filtering (RPF)

132 Sen et al. [2] proposed RPF, which selectively uses
13 different filtering factors on features used in joint bilat-
134 eral filtering. The main idea of RPF is that MC noise
135 occurs due to point sampling the scene function with
136 various random parameters such as pixel position, lens
137 position, and time. If dependence of geometric features
13 and colors on random parameters can be evaluated, one
139 can determine appropriate weights of those features in
140 joint bilateral filtering. RPF accounts for possible cor-
1a1 ruptions of scene information due to distribution effects
122 such as motion blur or depth-of-field. They can hence
143 filter not only noise due to variance in light paths, but
144 also noise due to difference in geometry. RPF computes
1s different feature weights by measuring the mutual de-
146 pendence between pixels, colors, features and random
147 parameters.

s While RPF achieves impressive denoising results with
149 @ small number of samples per pixel, RPF requires a
150 high computation cost. This is mainly because filtering
151 each pixel requires thousands of neighboring samples
152 and relies on sample-by-sample analysis. On the other
153 hand, we perform various operations of our method in a
1s4 pixel basis, while maintaining high denoising quality.

1ss 2.3. Bilateral Upsampling

15 Image upsampling has been well studied as one of the
1s7 basic image operations [17]. In the field of rendering,
15s upsampling has been mainly used for accelerating the
159 computation of smoothly changing indirect illumination.
160 Sloan et al. [18] used bilateral upsampling [13] to inter-
161 polate indirect shading using geometry information as
12 an edge-stopping function. Ritschel et al. [5] also used
163 bilateral upsampling of indirect illumination for inter-
164 actively generating preview images. In our work, we
1es apply joint-bilateral filter based upsampling to accelerate
1ss computing feature weights that are smoothly changing
167 in large regions of images.

168 3. Overview of Our Approach

1ss  In this section we explain our motivations, followed
170 by giving the overview of our approach.

?
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Figure 2: Comparisons of our method and RPF on the pool scene
rendered by 8 samples per pixel (spp). Both our method and RPF
handle motion blur (second row) and soft shadow with edges (third
row), while our method runs five times faster and shows even a lower
MSE over RPF with 8 spp.

71 3.1. Motivations

122 RPF is a reconstruction technique that considers dif-
173 ferent importance of feature types for images generated
17+ by MC rendering. RPF consists of three stages: selecting
17s and preprocessing of neighboring samples, computing
176 feature weights for joint bilateral filtering, and perform-
177 ing filtering.

s RPF filters an input image four times in order to re-
179 duce variance as much as possible with different filtering
180 window sizes, starting with 55 and decreasing into 35,
181 17, and 7 at each filtering step. This multi-pass approach
182 of RPF effectively denoises global low-frequency noise
163 first and then gradually removes more localized noise,
1e4 thereby cleaning up noise while preserving details.

1es  In addition, RPF provides a high quality filtering re-
186 sult even with a small number of ray samples (e.g. 8).
1e7 Nonetheless, when input images are corrupted by severe
188 noise, filtering results with a small number of ray sam-
180 ples can be unsatisfactory. For example, depth-of-field
190 effects in Fig. 1 make over-blurred results on detailed
191 geometry, when 8 spp is used. As the number of ray
122 samples (e.g. 32 spp) increases, the detailed geometry
193 can be preserved. It indicates that a relatively large num-
194 ber of ray samples can be required for achieving a high
195 quality filtering result, when noise levels of input images
196 are very high.

17 Unfortunately, the computation time of RPF is highly
19s dependent on the number of ray samples. Fig. 3 shows
199 performance curves of RPF for processing different mod-
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Figure 3: Timing results of RPF and our method. Our method is
efficient even with high samples per pixel (spp). Note that the running
time of our method with 32 spp is less than or equal to that of RPF
with 8 spp.

200 els. As the number of samples per pixel increases, RPF
201 becomes prohibitively slow, losing its key advantage of
202 providing quality preview images within a short compu-
203 tation time.

24 3.2. Overall Algorithm

205 We introduce pixel-based random parameter filtering,
206 which operates on pixels rather than samples, thereby
207 efficiently producing high-quality denoised results. Its
208 key advantage is that we perform various operations of
200 our method in a pixel basis. Feature weight computation,
210 which cannot be done pixel-based, is accelerated by us-
211 ing bilateral upsampling; we sparsely evaluate feature
212 weights over the image, and estimate feature weights for
213 the rest of the image using joint bilateral interpolation.
214 We first conduct various initialization including com-
215 puting neighboring pixels and samples (Sec. 4.1), and
216 feature normalization (Sec. 4.2) for a robust denoising
217 process. We then prepare feature weights by directly
218 measuring or interpolating from nearby pixels (Sec. 4.4).
219 Based on those feature weights we finally perform joint
220 bilateral filtering (Sec. 4.3). For the sake of clarity we
221 provide a pseudocode of our pixel-based random param-
222 eter filtering in Algorithm 1, and summarize various
223 notations (Table I) that we use throughout the paper.

Algorithm 1 Pixel-based Random Parameter Filtering
Input: Input image I
Output: Final image
for pixel i/ in image I do
Precompute y; and o
end for
Divide I into two sets Iy and I; (Sec. 4)
for iteration step t = 0, 1,2,3 do
for each pixel in I; do
Construct neighboring pixels and samples (Sec. 4.1)
Compute feature weights (Sec. 4.3)
Perform filtering (Sec. 4.3)
end for
for each pixel in I; do
Construct neighboring pixels and samples (Sec. 4.1)
Interpolate feature weights (Sec. 4.4)
if interpolation is failed then
Compute feature weights
end if
Perform filtering (Sec. 4.3)
end for
end for
return final image

224 4. Our Method

225 We explain our reconstruction method in this section.
226 Before going into the main filtering loop we first cal-
227 culate the mean and standard deviations, u; and o, of
228 samples within a pixel i of an input image, I. They are
229 used for accelerating the computation of the mean and
230 standard deviation of neighboring samples, which will
231 be used for normalization of samples in Sec. 4.2.

22 We also decompose pix-

233 els of the image I into two

23 disjoint sets, I and I;. I is E ®E = =
205 a sparse set of pixels where
23 we evaluate feature weights,
257 while I; is a set containing
208 the rest of pixels, whose fea-
230 ture weights are interpolated E ®E B =
20 by their nearby neighbors

21 from Ig. In our implemen- Figure 4: I (red) and I;
242 tation pixels for I are uni- (grey).

203 formly distributed over the image such that they form a
204 sub-sampled grid from the input image (Fig. 4).

s 4.1. Neighboring Pixels and Samples

26 We derive various information including feature
27 weights from each pixel and perform reconstruction.
2s When we have only a few samples in each pixel, in-
240 formation derived from these small sets of samples can
250 be brittle and contain noise. In order to address this prob-
251 lem, given a pixel i, we define a set of neighboring pixels,
22 P;, and then derive such information robustly from the
253 neighboring pixels P;.
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Table I. Notations used in this paper

s Number of samples per pixel (spp).

w  Size of filtering window.

p; 2 X1 vector containing floating point pixel
position (X, y) of i-th pixel.

¢; 3 x 1 vector containing the mean color of i-th
pixel.

fi 15 x 1 vector containing mean geometric
features of i-th pixel.

v; 27 x 1 feature vector containing all the feature
info. including p;, ¢;, and f; of i-th sample. For
its full description, see Sec. 5. We use v;; to
denote the k-th dimension of the vector v;.

M;  Mean vector of samples within i-th pixel.

o;  Standard deviation vector of samples within

i-th pixel

X  Denotes a normalized vector for x.(e.g. p; and
i)

f;  Mean vector of neighboring samples of i-th
pixel

Jd;  Standard deviation vector of neighboring
samples of i-th pixel

zr  Tolerance parameter for selecting a neighbor

when considering k-th dimension of the feature

vector.

2« To construct neighboring pixels P; given a pixel i we
255 iterate all the pixels within its filtering windows and con-
256 sider geometric features, stored in f;. When the mean
257 of pixel j is within zz - 0 from the mean of the current
258 pixel i, we include the pixel j to the neighboring pixels
259 Pj; 0 indicates k-th dimension of the standard devia-
260 tion vector 0. i represents the relative tolerance for
261 difference of f; and f; at the k-th dimension.

22 Once we define P; we construct neighboring samples,
23 S, of the pixel i by simply adding all the samples in
264 every pixel j € P;. We will use neighboring samples S ;
265 to derive mutual information between various variables
266 for random parameter filtering.

27 Since we compute neighboring samples S; indirectly
268 from neighboring pixels P;, some samples in S; may
260 NOt be in the range of z; - 0 from the mean of pixel i.
270 Nonetheless those samples take only a minor portion on
a1 S (e.g., 5% to 10% on average). This is mainly because
272 the various statistics derived from samples follow those
273 derived from pixels well. Instead we could compute
27 S; by additionally checking whether each sample of a
275 pixel from P; is within gz - 0 from the mean of pixel
276 I, and this sample-based alternative was adopted in the
277 original RPF [2]. Fig. 5 shows feature weights and their

Feature weights Result

MSE : 8.315¢-5

Figure 5: Comparison of feature weights computed by the original
RPF and our method. The left ones of the feature weights are §;
derived from world space coordinates, and the right ones are derived
from normals. Feature weights computed in a pixel-basis are similar to
that computed in a sample-basis.

278 corresponding denoising results based on our pixel-based
270 definition of neighboring pixels/samples and that of the
20 original RPF. As can be seen, the differences between
281 our pixel-based and sample-based approaches in terms
252 of computed feature weights and denoised results are
283 Subtle.

24 4.2. Feature Normalization

25 We normalize features after we construct neighboring
256 samples §; for a pixel i. This step is required, because
257 features taken into account for filtering have different
288 scales. For example, texture values are within the range
289 [0,1], while world-space coordinate can be arbitrarily big.
200 For normalizing features associated with the pixel i, we
201 perform the statistical standardization, which subtracts
202 the mean, fi;, of neighboring samples S;, and divide
203 the resulting value by their standard deviation, &;. We
204 perform this process for each feature of every sample in
205 S i
To perform feature normalization we need to compute
[; and & for S; given a pixel i. Instead of computing
them based on samples of S ;, we can efficiently compute
them based on pre-computed u; and o ; of neighboring
pixels j € P; of the pixel i. Specifically, fi; can be com-
puted as the following:

~ ZjeP; Hj

i = 1
H P (D



We can also compute J; as the following:

Yjes, (v — fii)?
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206 where n; is a set containing indices of samples at pixel j.
> ken,»(vk - ﬁi)2 in the above equation can be reformulated

as s(j = fi)” + e, vk — ), and o =
If we plug these two equations into Eq. 2, we reach the
following equation:
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207 As a result, we can efficiently calculate ¢ and fi; from
208 07; and y; derived from each pixel i.

2900 4.3. Joint Bilateral Filtering with Feature Weights

We use joint bilateral filtering to smooth out colors of
pixels. The joint bilateral filter uses a filtering weight,
w;;, that measures a contribution of a pixel j within a
filtering window to a pixel i, as the following:

(Pz k —

wij = exp(— Z
’Pk
X exp(— ZZ >

le

P

(Clk Cjk) )

I/
X exp(— Z 218;2]((];1',]( - fi))s

=1 “Yif

=

“4)

where p, ¢, and f are normalized values of pixel, color
and geometric features. Also, o, 0j,, and o7 5 repre-
sent k-th elements corresponding to position p;, color ¢;,
and geometric features f;, respectively, within the stan-
dard deviation vector o;. @;x and §B; are two different
feature weights per pixel 7, and denote the importance of
k-th color and importance of k-th feature, respectively.
In the same manner used in the original RPF [2], we
define these two feature weights a;; and S, as follows:

@ = max(l —2(1 + 0.1nW,,0),

Bix = WL - max(1 — (1 +0.10W7,.0),
300 Where WJC © Wf ’k, and W:k represent dependence of k-th
so1 geometric feature on random parameters, dependence of
a2 color on k-th geometric feature, and dependence of k-th
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Figure 6: Comparisons between feature weights derived from normal,
etc. w/ and w/o using our upsampling method By using our upsam-
pling we achieve 8 to 10 times performance improvement in terms of
computing feature weights and about 3 times improvement in terms of
total computation time, without a significant quality drop on the final
reconstruction results.

as color on random parameters, respectively. These depen-
a0« dence relationships are estimated by measuring mutual
as information between different variables. The mutual in-
a0s formation is obtained by constructing histograms of each
ao7 variable and joint histograms of related variables [2].

as  Note that these histograms are computed based on
a0 samples of geometric features, colors, etc. that are avail-
a0 able at pixel i. As a result, computing feature weights
a1 can be a major computational bottleneck of our approach.
a2 To address this computational problem, we compute fea-
a1s ture weights on a sparse set I of pixels and interpolate
a1e feature weights of other pixels I; based on those com-
a5 puted for the sparse set. This process is explained in the
a1s NEXt section.

a7 4.4. Upsampling Feature Weights

sis  Feature weights @;; and S at each pixel i are highly
a19 likely to have correlations with geometric features fiy,
a20 colors c;, and positions p;, since those feature weights
a21 are derived from them. Exploiting this observation, we
322 approximate feature weights of a pixel i by interpolating
a23 feature weights of its nearby pixels, while considering
24 the difference in terms of features, colors, etc.

s As shown in Algorithm 1, we first compute feature
a6 weights for pixels in I;. These are used for interpolating
a27 feature weights for pixels in I;. For each pixel in I;,
a28 t-nearest pixels in I are selected for interpolation. We
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a2 have found that setting ¢ to 16 strikes a good balance in
a0 terms of the performance and quality.

We perform interpolation by using the joint bilateral
filter. In this framework, pixels that are more similar in
terms of color and geometry have higher interpolation
weights. Specifically, given a pixel i of I;, we define
interpolation weights, iw;; from nearest pixels j in I as
the following:

2
) 1
iwij = exp(— Z G P
=1 “ip,

3
1
X exp(— Z Yo (cix = cjp))
=y

i,ck

15
1 2
X exp( kZI S ik = I
a1 Note that we use unnormalized values of p;, cix, and
sz fi for computing interpolation weights, since i and j
ass can be located far away and computation based on the
s« normalized values that are standardized within each pixel
ass can be invalid in this context.

Let a ;i to be a feature weight value directly computed
for a pixel j in I;. Using computed interpolation weights,
the feature weight a;; at a pixel i in I; is computed as
follows:
2(iwi X @)

Qi = —<.. -

2 iw; j
xs B 1s defined also in a similar manner.
s In the case where } iw;; =~ 0, @ results in unaccept-
ass able values. This indicates that joint bilateral interpola-
s tion cannot approximate the feature weight of the pixel
a0 well. In this case, its feature weight should be directly
st computed. Specifically, when 3’ iw;; < 0.1, we directly
a2 compute its feature weight. Once we directly compute or
ass estimate feature weights @, and 83; per pixel based on
ass interpolation, we perform joint bilateral filtering (Eq. 4)
a5 With them.
us  Fig. 6 shows feature weights (and their corresponding
a7 reconstruction results) w/ and w/o upsampling feature
as weights. On average our joint bilateral interpolation
ass Works successfully for 85% to 94% of total pixels, which
a0 gives 8 to 10 times speedup in terms of computing fea-
as1 ture weights. MSE of feature weights computed w/ and
as2 W/o upsampling is in the range from 0.001 to 0.002. The
ass quality degradation on reconstructed images due to up-
a5« sampling in terms of MSE is minor, less than 0.00001.

ass 5. Results and Comparisons

sss  We have implemented our method and the original
ss7 RPF method [2] on top of PBRT2 [19]. To faithfully

Reference
(8192 spp)

RPF (618s)
MSE: 5.557¢-4 MSE: 7.748¢-5 MSE: 8.315¢-5

Input (8 spp) Ours (96s)

Figure 7: Comparisons under an equal sample count, i.e. 8 spp. Our
method achieves visually similar filtering results over RPF, while run-
ning five times faster.

ass implement the original RPF, we followed detailed com-
ase ments of its technical report [20]. We have tested our
a0 method and compared methods on a machine with two
a1 Intel quad-cores of Xeon X5690 3.47 GHz.

s Each sample v that we process is a 27 dimensional
ass vector containing 2D pixel coordinate, 3D color, geomet-
ae¢ ric features, and random parameters. Geometric features
aes include world-space coordinate, shading normal, and
ass texture values for the first intersection of primary rays,
a7 and world-space coordinate and shading normal of the
ass second intersection. Random parameters used for sam-
e pling include the area light information, lens positions,
a0 and time at the first and second intersections. For up-
a1 sampling, we directly compute feature weights for every
a2 5 by 5 pixels, and attempt to estimate for other pixels
azs based on joint bilateral interpolation. z; values used for
are defining neighboring pixels are set to 3 for all the fea-
a7s ture types except for the world space coordinate. We set
a6 7 to 30 for world space coordinates, since its range is
s77 much bigger than other feature types, by following the
ars guideline of RPF [2].

a9 Benchmarks.. We have tested our algorithm on vari-
aso ous scenes with different rendering effects. The buddha
ass1 model (Fig. 7) has a highly glossy material with a 720 X
a2 1280 image resolution; we pick the default image resolu-
ass tion of scenes chosen by PBRT?2 system and show it in a
s parenthesis for other models. Fig. 2 shows a pool scene
ass (512 X 512) with the motion blur effect. Fig. 8 and Fig. 1
ass show the San Miguel (1024 X 1024) and dof-dragons
37 (1000 X 424) scenes rendered with the depth-of-field
ass effect, respectively. All the scenes are rendered with path
ase tracing except for the pool scene, which is rendered by
aso direct lighting.
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sot 3.1. Qualitative Comparisons

sz The San Miguel scene (Fig. 8) is geometrically com-
aws plex and shows numerically high MC errors, when path
au tracing is used. The scene becomes an even more chal-
ass lenging benchmark with the depth-of-field effect. This is
ass evident from the fact that the reference image generated
a7 with 16 k samples per pixel (spp) still contains a large
as amount of noise. Overall both our algorithm and RPF
ase with 8 spp show over-blurring results on edge regions
a00 (the fourth zoomed region from the top of Fig. 8). These
a1 over-blurring results indicate that 8 spp is not enough to
a2 capture most of the details of the scene. Reconstructed
a0s Tesults from 64 spp preserve the boundary of shadow
a04 (the third zoomed region from the top in Fig. 8) and sub-
a0s tle details caused by the distribution effect (4th zoomed
a0s region). In this case with 64 spp, RPF takes more than
407 6 hours to process 64 spp, which is unacceptable for a
a8 preview creation purpose. Our method, however, takes
a0 707 seconds, even faster than 8 spp reconstruction of
a0 RPF and 30 times faster than RPF with 64 spp. In an
a1 equal-time comparison, our method achieves 46% lower
412 MSE over RPF, because of its higher scalability.

an The dof-dragons scene (Fig. 1) is another case tested
12 with the depth-of-field effect. There is a noticeable dif-
a1s ference between reconstruction results with 8 spp 32
416 spp on this scene. The BRDF of the dragon model is
a7 complex that 8 spp cannot capture a sufficient amount
a1 of information for a proper reconstruction. This results
a9 in over-blurring, which does not preserve subtle details
a20 caused by the depth-of-field effect. Reconstruction re-
s21 sults from 32 spp are more visually pleasing and numer-
a22 ically better, while 32 spp still produces a very noisy
s23 input. In an equal-time comparison, our method with 32
a24 Spp produces visually pleasing and numerically better
a2s results, three times lower MSE, over RPF with 8 spp,
s2s which is even two times slower than our method with 32
427 SPP.

w28 Fig. 7 shows the results of RPF and our method with
420 8 spp on the buddha scene. Noise caused by the area
a3 light and glossy material is well removed, while keeping
a1 geometric details of the buddha model. This is a scene
12 where RPF was effective even with 8 spp, where our
aas approach achieved similar results, while taking only one
s fifth of running time of RPF.

a5 Fig. 2 compares the performance of RPF and our ap-
s proach on the pool scene, where motion blur due to
«7 movement of pool balls is present. Both methods work
«s well for motion-blurred regions (the second row) and
s rather static regions exhibiting sharp edges (the third
a0 Tow) with soft shadow due to area lights. Nonetheless
a1 our algorithm filters the scene more than 5 times faster

Ours

RPF
' : Reference
.

% AR -
RPF 8spp (820 seconds)
MSE: 0.0268506

110
e

Fir

'

Ours 64spp (707 seconds)
MSE:0.014487

gy "
Reference (16384 spp)

Figure 8: Equal-time comparisons on the San Miguel scene with
the depth-of-field effect. Our method with 64 spp provides visually
pleasing and numerically lower results over RPF with 8 spp, which is
16% slower than our method with 64 spp.

w2 than RPF, while achieving a similar level of MSE.

a3 5.2. Quantitative Results

ws  Fig. 3 shows the timing result of our method com-
w5 pared with the original RPE. Our method shows a much
s faster performance than the original RPF, while the gap
w7 between our approach and RPF increases as high spp
ws 1s used for generating input images. This result comes
we mainly from performing various operations in a pixel-
ss0 basis, not in a sample-basis. On average the total com-
451 putation time of our method with 32 spp is less than that
ss2 of RPF with 8 spp. In most cases our algorithm is 4 to 6
ss3 times faster than RPF, when spp is less than or equal to
s« 16. When spp is higher than 16, our algorithm is faster
sss by a factor of more than one order of magnitude than
sss RPF.

7 We also measure a breakdown of components of our
sss method. In the case of 32 spp, computation time for 1)
450 constructing neighboring pixels and samples, 2) comput-
0 ing or estimating feature weights, and 3) filtering takes
ss1 in a ratio of 6:3:1. Constructing neighboring samples
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Figure 9: MSE results of different methods. MSE of our method is
similar to that of RPF.

a2 and pixels, the simplest part of our algorithm, is the main
s computational bottleneck, since it includes the normal-
ss4 1zation process, which is done sample-by-sample. The
a5 filtering process takes only a minor portion of computa-
sss tion time, because it is done purely on a pixel basis. As a
se7 result, filtering takes a less portion among the total com-
468 putation, as the number of samples per pixel increases.
40 In the case of RPF, on the other hand, the ratio of com-
470 putation time of similar operations is 2:4:4 on average.
a7 This is mainly because RPF computes feature weights
472 and perform filtering in a sample basis.

sz Fig. 9 shows error analysis of our method compared
a7« with RPF and MC rendering. As spp increases, errors
475 of both RPF and our method consistently decrease. In
476 general, MSE of our method is similar to that of RPF.
477 This demonstrates that our method effectively denoises
478 MC input images like RPF.

479 6. Conclusion

a0  We have introduced pixel-based random parameter
se1 filtering that processes and filters samples on the pixel
se2 basis, instead of the sample basis. Our approach accel-
a3 erates the feature computation stage, which cannot be
sss operated on the pixel basis, by using the upsampling ap-
ass proach. We have compared our method over the original
s RPF across a diverse set of models and demonstrated
se7 that our method effectively denoises input images like
sss RPF. Furthermore, given equal-time comparisons, our

ss0 method shows visually pleasing and numerically lower
490 MSE results over RPF, because of its higher efficiency.

401 60.1. Limitations and Future Work

sz Our method also has limitations. Since our work is
493 based on RPF, it inherits drawbacks of RPF. Notably,
a9« our method still has the dueling filter problem, where
s we need to use large filter bandwidths to smooth out
a6 noise while keeping sharp edges. As a failure case of
497 our method, our method leaves noise out in the second
s row of zoomed images on the right of Fig. 8, while
a90 blurring edges (the first row) generated by 32 spp. In
so0 addition, by upsampling feature weights, our method
so1 tends to generate more visually blurry results over RPF,
so2 especially when feature weights of pixels contain high-
sos frequency information.

sa  There are many interesting avenues for future research,
sos in addition to addressing the limitation of our approach.
sos Our pixel-based reconstruction method can be naturally
s07 combined with various adaptive sampling methods. Fur-
sos thermore, a low computational overhead of our method
soo makes our approach more suitable to be integrated with
s10 an adaptive sampling process. To allocate more sam-
s11 ples to where our reconstruction fails, we would like to
si2 design a new adaptive scheme tailored to our reconstruc-
s13 tion method. In order to guide more samples on high
s error regions, we would like to employ an error estima-
s1s tion process for our reconstruction method. This is a
s1s very challenging problem, but should enable an effective
si7 adaptive rendering as well as addressing the dueling filter
sie problem by considering the error during our reconstruc-
s19 tion method, as conducted in recent adaptive rendering
s20 approaches [21, 22, 23]. In addition, we would like to ap-
s21 ply the error estimation process such that it can be used to
s22 automatically select currently manually chosen filtering
s2a parameters of our reconstruction method. Specifically,
s24 Stein’s unbiased risk estimator [21] can be utilized to
s2s estimate optimal parameters so that MSE introduced by
s26 our filtering is minimized.
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