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Abstract

In this paper we propose Pixel-based Random Parameter Filtering (P-RPF) for efficiently denoising images generated
from complex illuminations with a high sample count. We design various operations of our method to have time
complexity that is independent from the number of samples per pixel. We compute feature weights by measuring the
functional relationships between MC inputs and output in a sample basis. To accelerate this sample-basis process we
propose to use an upsampling method for feature weights. We have applied our method to a wide variety of models
with different rendering effects. Our method runs significantly faster than the original RPF, while maintaining visually
pleasing and numerically similar results. Furthermore the performance gap between our method and RPF increases as
we have more samples per pixel. As a result, our method shows more visually pleasing and numerically better results
of RPF in an equal-time comparison.
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1. Introduction1

Monte Carlo (MC) rendering such as path tracing [1]2

is one of the most general rendering techniques for pro-3

ducing physically-correct rendering results. It calculates4

color (i.e. radiance) of a pixel by generating and tracing5

random samples, ray paths, within the integration do-6

main. Ray paths can have complex interactions with the7

scene being rendered, and are computed by considering8

various factors such as surface reflection functions, area9

light sampling, lens sampling, time sampling, and so on.10

Overall MC rendering is an effective method to solve a11

multidimensional integration function taking geometry12

and random parameters as inputs.13

The very characteristic of MC rendering produces14

noise, when insufficient samples are used to estimate15

the true value. While the scene function is complex16

and integration domain is a high-dimensional space, we17

have only limited computation resource to sample these18

complex functions. Many attempts have been made to19

remove this noise in images generated by MC rendering.20

A recent research focus is on designing effective21

image-space reconstruction methods, since image-space22

techniques are easy to implement, can be naturally inte-23

grated with existing rendering systems, and are highly24

efficient thanks to its image-space nature. Most image-25

space denoising techniques achieve high-quality results26

by considering various geometric features (e.g., depth,27

normal, and texture) within well-known filters [2, 3, 4, 5]28

such as joint bilateral filter.29

Recently Random Parameter Filtering (RPF) [2]30

demonstrated impressive denoising results even with a31

small number of samples per pixel. A key characteristic32

that sets it apart from prior work is that it measures the33

functional relationship of colors and geometric features34

over any random parameters and then adjusts filtering35

factors of these features during joint bilateral filtering.36

This property of RPF enables exceptional results, since37

varying filtering factors can effectively deemphasize ge-38

ometric features that are even noisy.39

Its shortcoming, however, is the lack of scalability. It40

runs at a reasonable speed for eight samples per pixel, but41

it becomes drastically slower as the number of samples42

per pixel increases. This is because the time complexity43

of RPF algorithm is dependent on the number of samples44

per pixel. For scenes with complex illumination it may45

be impossible to capture most important light paths with46

low samples per pixel (Fig. 1). In these scenes a high47

number of samples even with reconstruction methods48

is required, and the current RPF technique may lost its49

competitive edge because of the low scalability.50

Contributions. In this paper we propose pixel-based51

random parameter filtering (P-RPF) for efficiently de-52

noising various rendering effects generated by MC ren-53

dering. Our method consists of three main steps: 1)54

initialization for pixel-based computation, 2) computing55

Preprint submitted to Computers & Graphics September 12, 2013



Figure 1: Filtering results of the dof-dragons scene using RPF and our
method with 8 and 32 samples per pixel (spp). All the methods with
8 spp lack the information to preserve edges on the out-of-focused
dragon’s head and in-focused texture on the floor. Our method with
32 spp achieves visually pleasing results, while it runs even faster than
RPF with 8 spp. In an equal-time comparison, our method with 32 spp
shows three times lower MSE over RPF with 8 spp.

feature weights considering feature types with different56

filtering factors, and 3) performing joint bilateral filtering57

with the computed feature weights. Our final filtering58

operation is performed in a pixel-based approach. We59

further accelerate the component of computing feature60

weights, the main computational bottleneck, by using an61

upsampling technique, whose time complexity is also62

independent from the sample count. We have applied63

our method into a set of benchmarks that have different64

rendering effects. Overall we are able to achieve more65

than one order of magnitude improvement over the origi-66

nal RPF when we use 32 samples per pixel (spp), and the67

performance improvement goes higher, as the input im-68

age is created by more spp. Furthermore, we numerically69

verify that our method achieves similar denoising results70

compared to RPF given the same spp, while our method71

runs much faster. Specifically, the reconstruction error of72

our method in terms of the Mean Squared Error (MSE) is73

only within 10% to that of the original RPF. These results74

demonstrates the scalability as well as denoising quality75

of our method. Finally, given equal-time comparisons,76

our method shows visually better and numerically lower77

MSE results over RPF, because of its highly efficient and78

effective denoising process.79

2. Related Work80

In this section we review prior techniques directly81

related to our work.82

2.1. MC Noise Filtering83

Reducing noise in images generated by MC rendering84

has been actively studied in the field of rendering. To85

realize this goal many techniques have been proposed86

for improving the reconstruction and sampling processes87

of MC rendering, mainly in two approaches: reducing88

the source of MC noise and filtering MC noise.89

One of the well-known examples for reducing the90

source of MC noise is multidimensional adaptive sam-91

pling and reconstruction method [6]. In addition, ad-92

vanced reconstruction techniques based on a frequency-93

domain analysis have been designed for specific render-94

ing effects such as depth-of-fields and motion blur [7, 8,95

9].96

As an early example of filtering MC noise, Rush-97

meier and Ward [10] proposed an energy preserving98

nonlinear filter that redistributes the color values of noisy99

pixels into their neighboring pixels. Jensen and Chris-100

tensen [11] denoised images by separating light paths101

that are reflected diffusely two times and by then filter-102

ing them using the median filter. Xu and Pattanaik [12]103

pointed out that the direct application of bilateral filter-104

ing [13] cannot remove spike noise generated by MC105

rendering. To address this problem they used cross bi-106

lateral filtering with an edge stopping function that is a107

smoothed input image by Gaussian filtering. DeCoro et108

al. [14] introduced an outlier removal technique based109

on density estimation, which can be used as a preprocess-110

ing for various filtering methods. This outlier removal111

technique can be also used with our method, as a prepro-112

cessing tool to remove outliers.113

In MC rendering the filtering process is often guided114

by the additional information (e.g. G-buffer) to perform115

edge-preserving filtering. McCool [15] introduced an116

anisotropic diffusion filter guided by additional informa-117

tion (e.g. depth, normal, and texture) easily obtained by118

MC rendering. Dammertz et al [16] used the Á-trous119

wavelet transform, and applied cross bilateral filtering120

using depth, normal, and texture to transformed low-121

resolution images. Since this method uses low-resolution122
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images, an iterative filtering performance is achieved.123

Bauszat et al. [4] proposed a filtering process guided by124

geometric information, which filters out noise in indi-125

rect illumination generated by interactive path tracing.126

Recently, Moon et al. [3] proposed a virtual flash image127

constructed by considering a nearly noise-free part of128

light paths, and the image is used as an edge stopping129

function in non-local means.130

2.2. Random Parameter Filtering (RPF)131

Sen et al. [2] proposed RPF, which selectively uses132

different filtering factors on features used in joint bilat-133

eral filtering. The main idea of RPF is that MC noise134

occurs due to point sampling the scene function with135

various random parameters such as pixel position, lens136

position, and time. If dependence of geometric features137

and colors on random parameters can be evaluated, one138

can determine appropriate weights of those features in139

joint bilateral filtering. RPF accounts for possible cor-140

ruptions of scene information due to distribution effects141

such as motion blur or depth-of-field. They can hence142

filter not only noise due to variance in light paths, but143

also noise due to difference in geometry. RPF computes144

different feature weights by measuring the mutual de-145

pendence between pixels, colors, features and random146

parameters.147

While RPF achieves impressive denoising results with148

a small number of samples per pixel, RPF requires a149

high computation cost. This is mainly because filtering150

each pixel requires thousands of neighboring samples151

and relies on sample-by-sample analysis. On the other152

hand, we perform various operations of our method in a153

pixel basis, while maintaining high denoising quality.154

2.3. Bilateral Upsampling155

Image upsampling has been well studied as one of the156

basic image operations [17]. In the field of rendering,157

upsampling has been mainly used for accelerating the158

computation of smoothly changing indirect illumination.159

Sloan et al. [18] used bilateral upsampling [13] to inter-160

polate indirect shading using geometry information as161

an edge-stopping function. Ritschel et al. [5] also used162

bilateral upsampling of indirect illumination for inter-163

actively generating preview images. In our work, we164

apply joint-bilateral filter based upsampling to accelerate165

computing feature weights that are smoothly changing166

in large regions of images.167

3. Overview of Our Approach168

In this section we explain our motivations, followed169

by giving the overview of our approach.170

Figure 2: Comparisons of our method and RPF on the pool scene
rendered by 8 samples per pixel (spp). Both our method and RPF
handle motion blur (second row) and soft shadow with edges (third
row), while our method runs five times faster and shows even a lower
MSE over RPF with 8 spp.

3.1. Motivations171

RPF is a reconstruction technique that considers dif-172

ferent importance of feature types for images generated173

by MC rendering. RPF consists of three stages: selecting174

and preprocessing of neighboring samples, computing175

feature weights for joint bilateral filtering, and perform-176

ing filtering.177

RPF filters an input image four times in order to re-178

duce variance as much as possible with different filtering179

window sizes, starting with 55 and decreasing into 35,180

17, and 7 at each filtering step. This multi-pass approach181

of RPF effectively denoises global low-frequency noise182

first and then gradually removes more localized noise,183

thereby cleaning up noise while preserving details.184

In addition, RPF provides a high quality filtering re-185

sult even with a small number of ray samples (e.g. 8).186

Nonetheless, when input images are corrupted by severe187

noise, filtering results with a small number of ray sam-188

ples can be unsatisfactory. For example, depth-of-field189

effects in Fig. 1 make over-blurred results on detailed190

geometry, when 8 spp is used. As the number of ray191

samples (e.g. 32 spp) increases, the detailed geometry192

can be preserved. It indicates that a relatively large num-193

ber of ray samples can be required for achieving a high194

quality filtering result, when noise levels of input images195

are very high.196

Unfortunately, the computation time of RPF is highly197

dependent on the number of ray samples. Fig. 3 shows198

performance curves of RPF for processing different mod-199
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Figure 3: Timing results of RPF and our method. Our method is
efficient even with high samples per pixel (spp). Note that the running
time of our method with 32 spp is less than or equal to that of RPF
with 8 spp.

els. As the number of samples per pixel increases, RPF200

becomes prohibitively slow, losing its key advantage of201

providing quality preview images within a short compu-202

tation time.203

3.2. Overall Algorithm204

We introduce pixel-based random parameter filtering,205

which operates on pixels rather than samples, thereby206

efficiently producing high-quality denoised results. Its207

key advantage is that we perform various operations of208

our method in a pixel basis. Feature weight computation,209

which cannot be done pixel-based, is accelerated by us-210

ing bilateral upsampling; we sparsely evaluate feature211

weights over the image, and estimate feature weights for212

the rest of the image using joint bilateral interpolation.213

We first conduct various initialization including com-214

puting neighboring pixels and samples (Sec. 4.1), and215

feature normalization (Sec. 4.2) for a robust denoising216

process. We then prepare feature weights by directly217

measuring or interpolating from nearby pixels (Sec. 4.4).218

Based on those feature weights we finally perform joint219

bilateral filtering (Sec. 4.3). For the sake of clarity we220

provide a pseudocode of our pixel-based random param-221

eter filtering in Algorithm 1, and summarize various222

notations (Table I) that we use throughout the paper.223

Algorithm 1 Pixel-based Random Parameter Filtering
Input: Input image I
Output: Final image

for pixel i in image I do
Precompute µi and σi

end for
Divide I into two sets Is and Ii (Sec. 4)
for iteration step t = 0, 1, 2, 3 do

for each pixel in Is do
Construct neighboring pixels and samples (Sec. 4.1)
Compute feature weights (Sec. 4.3)
Perform filtering (Sec. 4.3)

end for
for each pixel in Ii do

Construct neighboring pixels and samples (Sec. 4.1)
Interpolate feature weights (Sec. 4.4)
if interpolation is failed then

Compute feature weights
end if
Perform filtering (Sec. 4.3)

end for
end for
return final image

4. Our Method224

We explain our reconstruction method in this section.225

Before going into the main filtering loop we first cal-226

culate the mean and standard deviations, µi and σi, of227

samples within a pixel i of an input image, I. They are228

used for accelerating the computation of the mean and229

standard deviation of neighboring samples, which will230

be used for normalization of samples in Sec. 4.2.231

Figure 4: Is (red) and Ii
(grey).

We also decompose pix-232

els of the image I into two233

disjoint sets, Is and Ii. Is is234

a sparse set of pixels where235

we evaluate feature weights,236

while Ii is a set containing237

the rest of pixels, whose fea-238

ture weights are interpolated239

by their nearby neighbors240

from Is. In our implemen-241

tation pixels for Is are uni-242

formly distributed over the image such that they form a243

sub-sampled grid from the input image (Fig. 4).244

4.1. Neighboring Pixels and Samples245

We derive various information including feature246

weights from each pixel and perform reconstruction.247

When we have only a few samples in each pixel, in-248

formation derived from these small sets of samples can249

be brittle and contain noise. In order to address this prob-250

lem, given a pixel i, we define a set of neighboring pixels,251

Pi, and then derive such information robustly from the252

neighboring pixels Pi.253

4



Table I. Notations used in this paper
s Number of samples per pixel (spp).
w Size of filtering window.
pi 2 × 1 vector containing floating point pixel

position (x, y) of i-th pixel.
ci 3 × 1 vector containing the mean color of i-th

pixel.
fi 15 × 1 vector containing mean geometric

features of i-th pixel.
vi 27 × 1 feature vector containing all the feature

info. including pi, ci, and fi of i-th sample. For
its full description, see Sec. 5. We use vi,k to
denote the k-th dimension of the vector vi.

µi Mean vector of samples within i-th pixel.
σi Standard deviation vector of samples within

i-th pixel
x̄ Denotes a normalized vector for x.(e.g. p̄i and

c̄i)
µ̂i Mean vector of neighboring samples of i-th

pixel
σ̂i Standard deviation vector of neighboring

samples of i-th pixel
zk Tolerance parameter for selecting a neighbor

when considering k-th dimension of the feature
vector.

To construct neighboring pixels Pi given a pixel i we254

iterate all the pixels within its filtering windows and con-255

sider geometric features, stored in fi. When the mean256

of pixel j is within zk · σi,k from the mean of the current257

pixel i, we include the pixel j to the neighboring pixels258

Pi; σi,k indicates k-th dimension of the standard devia-259

tion vector σi. zk represents the relative tolerance for260

difference of fi and f j at the k-th dimension.261

Once we define Pi we construct neighboring samples,262

S i, of the pixel i by simply adding all the samples in263

every pixel j ∈ Pi. We will use neighboring samples S i264

to derive mutual information between various variables265

for random parameter filtering.266

Since we compute neighboring samples S i indirectly267

from neighboring pixels Pi, some samples in S i may268

not be in the range of zk · σi,k from the mean of pixel i.269

Nonetheless those samples take only a minor portion on270

S i (e.g., 5% to 10% on average). This is mainly because271

the various statistics derived from samples follow those272

derived from pixels well. Instead we could compute273

S i by additionally checking whether each sample of a274

pixel from Pi is within zk · σi,k from the mean of pixel275

i, and this sample-based alternative was adopted in the276

original RPF [2]. Fig. 5 shows feature weights and their277

Figure 5: Comparison of feature weights computed by the original
RPF and our method. The left ones of the feature weights are βi,k
derived from world space coordinates, and the right ones are derived
from normals. Feature weights computed in a pixel-basis are similar to
that computed in a sample-basis.

corresponding denoising results based on our pixel-based278

definition of neighboring pixels/samples and that of the279

original RPF. As can be seen, the differences between280

our pixel-based and sample-based approaches in terms281

of computed feature weights and denoised results are282

subtle.283

4.2. Feature Normalization284

We normalize features after we construct neighboring285

samples S i for a pixel i. This step is required, because286

features taken into account for filtering have different287

scales. For example, texture values are within the range288

[0,1], while world-space coordinate can be arbitrarily big.289

For normalizing features associated with the pixel i, we290

perform the statistical standardization, which subtracts291

the mean, µ̂i, of neighboring samples S i, and divide292

the resulting value by their standard deviation, σ̂i. We293

perform this process for each feature of every sample in294

S i.295

To perform feature normalization we need to compute
µ̂i and σ̂i for S i given a pixel i. Instead of computing
them based on samples of S i, we can efficiently compute
them based on pre-computed µ j and σ j of neighboring
pixels j ∈ Pi of the pixel i. Specifically, µ̂i can be com-
puted as the following:

µ̂i =

∑
j∈Pi
µ j

| Pi |
. (1)
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We can also compute σ̂i as the following:

σ̂i =

√∑
j∈S i

(v j − µ̂i)2

| S i |

=

√∑
j∈Pi

∑
k∈n j

(vk − µ̂i)2

| S i |
, (2)

where n j is a set containing indices of samples at pixel j.296 ∑
k∈n j

(vk− µ̂i)2 in the above equation can be reformulated

as s(µ j − µ̂i)2 +
∑

k∈n j
(vk − µ j)2, and σ j =

√∑
k∈n j (vk−µ j)2

s .
If we plug these two equations into Eq. 2, we reach the
following equation:

∴ σ̂i =

√∑
j∈Pi

s(σ2
j + (µ j − µ̂i)2)

| S i |
. (3)

As a result, we can efficiently calculate σ̂i and µ̂i from297

σi and µi derived from each pixel i.298

4.3. Joint Bilateral Filtering with Feature Weights299

We use joint bilateral filtering to smooth out colors of
pixels. The joint bilateral filter uses a filtering weight,
wi j, that measures a contribution of a pixel j within a
filtering window to a pixel i, as the following:

wi j = exp(−
2∑

k=1

1
2σ2

i,pk

( p̄i,k − p̄ j,k)2)

× exp(−
3∑

k=1

αi,k

2σ2
i,ck

(c̄i,k − c̄ j,k)2)

× exp(−
| f |∑

k=1

βi,k

2σ2
i, fk

( f̄i,k − f̄ j,k)2), (4)

where p̄, c̄, and f̄ are normalized values of pixel, color
and geometric features. Also, σi,pk , σi,ck , and σi, fk repre-
sent k-th elements corresponding to position pi, color ci,
and geometric features fi, respectively, within the stan-
dard deviation vector σi. αi,k and βi,k are two different
feature weights per pixel i, and denote the importance of
k-th color and importance of k-th feature, respectively.
In the same manner used in the original RPF [2], we
define these two feature weights αi,k and βi,k as follows:

αi,k = max(1 − 2(1 + 0.1t)Wr
c,k, 0),

βi,k = W f ,k
c ·max(1 − (1 + 0.1t)Wr

f ,k, 0),

where Wr
f ,k, W f ,k

c , and Wr
c,k represent dependence of k-th300

geometric feature on random parameters, dependence of301

color on k-th geometric feature, and dependence of k-th302

Figure 6: Comparisons between feature weights derived from normal,
etc. w/ and w/o using our upsampling method By using our upsam-
pling we achieve 8 to 10 times performance improvement in terms of
computing feature weights and about 3 times improvement in terms of
total computation time, without a significant quality drop on the final
reconstruction results.

color on random parameters, respectively. These depen-303

dence relationships are estimated by measuring mutual304

information between different variables. The mutual in-305

formation is obtained by constructing histograms of each306

variable and joint histograms of related variables [2].307

Note that these histograms are computed based on308

samples of geometric features, colors, etc. that are avail-309

able at pixel i. As a result, computing feature weights310

can be a major computational bottleneck of our approach.311

To address this computational problem, we compute fea-312

ture weights on a sparse set Is of pixels and interpolate313

feature weights of other pixels Ii based on those com-314

puted for the sparse set. This process is explained in the315

next section.316

4.4. Upsampling Feature Weights317

Feature weights αi,k and βi,k at each pixel i are highly318

likely to have correlations with geometric features fi,k,319

colors ci,k, and positions pi,k, since those feature weights320

are derived from them. Exploiting this observation, we321

approximate feature weights of a pixel i by interpolating322

feature weights of its nearby pixels, while considering323

the difference in terms of features, colors, etc.324

As shown in Algorithm 1, we first compute feature325

weights for pixels in Is. These are used for interpolating326

feature weights for pixels in Ii. For each pixel in Ii,327

t-nearest pixels in Is are selected for interpolation. We328
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have found that setting t to 16 strikes a good balance in329

terms of the performance and quality.330

We perform interpolation by using the joint bilateral
filter. In this framework, pixels that are more similar in
terms of color and geometry have higher interpolation
weights. Specifically, given a pixel i of Ii, we define
interpolation weights, iwi j from nearest pixels j in Is as
the following:

iwi j = exp(−
2∑

k=1

1
2σ2

i,pk

(pi,k − p j,k)2)

× exp(−
3∑

k=1

1
2σ̂2

i,ck

(ci,k − c j,k)2)

× exp(−
15∑

k=1

1
2(zkσi, fk )2 ( fi,k − f j,k)2).

Note that we use unnormalized values of pi,k, ci,k, and331

fi,k for computing interpolation weights, since i and j332

can be located far away and computation based on the333

normalized values that are standardized within each pixel334

can be invalid in this context.335

Let α j,k to be a feature weight value directly computed
for a pixel j in Is. Using computed interpolation weights,
the feature weight αi,k at a pixel i in Ii is computed as
follows:

αi,k =

∑
(iwi j × α j,k)∑

iwi j
.

βi,k is defined also in a similar manner.336

In the case where
∑

iwi j ' 0, αi,k results in unaccept-337

able values. This indicates that joint bilateral interpola-338

tion cannot approximate the feature weight of the pixel339

well. In this case, its feature weight should be directly340

computed. Specifically, when
∑

iwi j ≤ 0.1, we directly341

compute its feature weight. Once we directly compute or342

estimate feature weights αi,k and βi,k per pixel based on343

interpolation, we perform joint bilateral filtering (Eq. 4)344

with them.345

Fig. 6 shows feature weights (and their corresponding346

reconstruction results) w/ and w/o upsampling feature347

weights. On average our joint bilateral interpolation348

works successfully for 85% to 94% of total pixels, which349

gives 8 to 10 times speedup in terms of computing fea-350

ture weights. MSE of feature weights computed w/ and351

w/o upsampling is in the range from 0.001 to 0.002. The352

quality degradation on reconstructed images due to up-353

sampling in terms of MSE is minor, less than 0.00001.354

5. Results and Comparisons355

We have implemented our method and the original356

RPF method [2] on top of PBRT2 [19]. To faithfully357

Figure 7: Comparisons under an equal sample count, i.e. 8 spp. Our
method achieves visually similar filtering results over RPF, while run-
ning five times faster.

implement the original RPF, we followed detailed com-358

ments of its technical report [20]. We have tested our359

method and compared methods on a machine with two360

Intel quad-cores of Xeon X5690 3.47 GHz.361

Each sample v that we process is a 27 dimensional362

vector containing 2D pixel coordinate, 3D color, geomet-363

ric features, and random parameters. Geometric features364

include world-space coordinate, shading normal, and365

texture values for the first intersection of primary rays,366

and world-space coordinate and shading normal of the367

second intersection. Random parameters used for sam-368

pling include the area light information, lens positions,369

and time at the first and second intersections. For up-370

sampling, we directly compute feature weights for every371

5 by 5 pixels, and attempt to estimate for other pixels372

based on joint bilateral interpolation. zk values used for373

defining neighboring pixels are set to 3 for all the fea-374

ture types except for the world space coordinate. We set375

zk to 30 for world space coordinates, since its range is376

much bigger than other feature types, by following the377

guideline of RPF [2].378

Benchmarks.. We have tested our algorithm on vari-379

ous scenes with different rendering effects. The buddha380

model (Fig. 7) has a highly glossy material with a 720 X381

1280 image resolution; we pick the default image resolu-382

tion of scenes chosen by PBRT2 system and show it in a383

parenthesis for other models. Fig. 2 shows a pool scene384

(512 X 512) with the motion blur effect. Fig. 8 and Fig. 1385

show the San Miguel (1024 X 1024) and dof-dragons386

(1000 X 424) scenes rendered with the depth-of-field387

effect, respectively. All the scenes are rendered with path388

tracing except for the pool scene, which is rendered by389

direct lighting.390
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5.1. Qualitative Comparisons391

The San Miguel scene (Fig. 8) is geometrically com-392

plex and shows numerically high MC errors, when path393

tracing is used. The scene becomes an even more chal-394

lenging benchmark with the depth-of-field effect. This is395

evident from the fact that the reference image generated396

with 16 k samples per pixel (spp) still contains a large397

amount of noise. Overall both our algorithm and RPF398

with 8 spp show over-blurring results on edge regions399

(the fourth zoomed region from the top of Fig. 8). These400

over-blurring results indicate that 8 spp is not enough to401

capture most of the details of the scene. Reconstructed402

results from 64 spp preserve the boundary of shadow403

(the third zoomed region from the top in Fig. 8) and sub-404

tle details caused by the distribution effect (4th zoomed405

region). In this case with 64 spp, RPF takes more than406

6 hours to process 64 spp, which is unacceptable for a407

preview creation purpose. Our method, however, takes408

707 seconds, even faster than 8 spp reconstruction of409

RPF and 30 times faster than RPF with 64 spp. In an410

equal-time comparison, our method achieves 46% lower411

MSE over RPF, because of its higher scalability.412

The dof-dragons scene (Fig. 1) is another case tested413

with the depth-of-field effect. There is a noticeable dif-414

ference between reconstruction results with 8 spp 32415

spp on this scene. The BRDF of the dragon model is416

complex that 8 spp cannot capture a sufficient amount417

of information for a proper reconstruction. This results418

in over-blurring, which does not preserve subtle details419

caused by the depth-of-field effect. Reconstruction re-420

sults from 32 spp are more visually pleasing and numer-421

ically better, while 32 spp still produces a very noisy422

input. In an equal-time comparison, our method with 32423

spp produces visually pleasing and numerically better424

results, three times lower MSE, over RPF with 8 spp,425

which is even two times slower than our method with 32426

spp.427

Fig. 7 shows the results of RPF and our method with428

8 spp on the buddha scene. Noise caused by the area429

light and glossy material is well removed, while keeping430

geometric details of the buddha model. This is a scene431

where RPF was effective even with 8 spp, where our432

approach achieved similar results, while taking only one433

fifth of running time of RPF.434

Fig. 2 compares the performance of RPF and our ap-435

proach on the pool scene, where motion blur due to436

movement of pool balls is present. Both methods work437

well for motion-blurred regions (the second row) and438

rather static regions exhibiting sharp edges (the third439

row) with soft shadow due to area lights. Nonetheless440

our algorithm filters the scene more than 5 times faster441

Figure 8: Equal-time comparisons on the San Miguel scene with
the depth-of-field effect. Our method with 64 spp provides visually
pleasing and numerically lower results over RPF with 8 spp, which is
16% slower than our method with 64 spp.

than RPF, while achieving a similar level of MSE.442

5.2. Quantitative Results443

Fig. 3 shows the timing result of our method com-444

pared with the original RPF. Our method shows a much445

faster performance than the original RPF, while the gap446

between our approach and RPF increases as high spp447

is used for generating input images. This result comes448

mainly from performing various operations in a pixel-449

basis, not in a sample-basis. On average the total com-450

putation time of our method with 32 spp is less than that451

of RPF with 8 spp. In most cases our algorithm is 4 to 6452

times faster than RPF, when spp is less than or equal to453

16. When spp is higher than 16, our algorithm is faster454

by a factor of more than one order of magnitude than455

RPF.456

We also measure a breakdown of components of our457

method. In the case of 32 spp, computation time for 1)458

constructing neighboring pixels and samples, 2) comput-459

ing or estimating feature weights, and 3) filtering takes460

in a ratio of 6:3:1. Constructing neighboring samples461
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Figure 9: MSE results of different methods. MSE of our method is
similar to that of RPF.

and pixels, the simplest part of our algorithm, is the main462

computational bottleneck, since it includes the normal-463

ization process, which is done sample-by-sample. The464

filtering process takes only a minor portion of computa-465

tion time, because it is done purely on a pixel basis. As a466

result, filtering takes a less portion among the total com-467

putation, as the number of samples per pixel increases.468

In the case of RPF, on the other hand, the ratio of com-469

putation time of similar operations is 2:4:4 on average.470

This is mainly because RPF computes feature weights471

and perform filtering in a sample basis.472

Fig. 9 shows error analysis of our method compared473

with RPF and MC rendering. As spp increases, errors474

of both RPF and our method consistently decrease. In475

general, MSE of our method is similar to that of RPF.476

This demonstrates that our method effectively denoises477

MC input images like RPF.478

6. Conclusion479

We have introduced pixel-based random parameter480

filtering that processes and filters samples on the pixel481

basis, instead of the sample basis. Our approach accel-482

erates the feature computation stage, which cannot be483

operated on the pixel basis, by using the upsampling ap-484

proach. We have compared our method over the original485

RPF across a diverse set of models and demonstrated486

that our method effectively denoises input images like487

RPF. Furthermore, given equal-time comparisons, our488

method shows visually pleasing and numerically lower489

MSE results over RPF, because of its higher efficiency.490

6.1. Limitations and Future Work491

Our method also has limitations. Since our work is492

based on RPF, it inherits drawbacks of RPF. Notably,493

our method still has the dueling filter problem, where494

we need to use large filter bandwidths to smooth out495

noise while keeping sharp edges. As a failure case of496

our method, our method leaves noise out in the second497

row of zoomed images on the right of Fig. 8, while498

blurring edges (the first row) generated by 32 spp. In499

addition, by upsampling feature weights, our method500

tends to generate more visually blurry results over RPF,501

especially when feature weights of pixels contain high-502

frequency information.503

There are many interesting avenues for future research,504

in addition to addressing the limitation of our approach.505

Our pixel-based reconstruction method can be naturally506

combined with various adaptive sampling methods. Fur-507

thermore, a low computational overhead of our method508

makes our approach more suitable to be integrated with509

an adaptive sampling process. To allocate more sam-510

ples to where our reconstruction fails, we would like to511

design a new adaptive scheme tailored to our reconstruc-512

tion method. In order to guide more samples on high513

error regions, we would like to employ an error estima-514

tion process for our reconstruction method. This is a515

very challenging problem, but should enable an effective516

adaptive rendering as well as addressing the dueling filter517

problem by considering the error during our reconstruc-518

tion method, as conducted in recent adaptive rendering519

approaches [21, 22, 23]. In addition, we would like to ap-520

ply the error estimation process such that it can be used to521

automatically select currently manually chosen filtering522

parameters of our reconstruction method. Specifically,523

Stein’s unbiased risk estimator [21] can be utilized to524

estimate optimal parameters so that MSE introduced by525

our filtering is minimized.526
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