CS380: Computer Graphics
Screen Space & World Space

Sung-Eui Yoon
(윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/CG
Class Objectives

- Understand different spaces and basic OpenGL commands
- Understand a continuous world, Julia sets
Your New World

- A 2D square ranging from (-1, -1) to (1, 1)
- You can draw in the box with just a few lines of code
Code Example

OpenGL Code:

```c
setColor3d(0.0, 0.8, 1.0);

begin(GL_POLYGON);
    glVertex2d(-0.5, -0.5);
    glVertex2d( 0.5, -0.5);
    glVertex2d( 0.5,  0.5);
    glVertex2d(-0.5,  0.5);
end();
```
OpenGL Command Syntax

- `glColor3d(0.0, 0.8, 1.0);`

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Data Type</th>
<th>Corresponding C-Type</th>
<th>OpenGL Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>8-bit int.</td>
<td>singed char</td>
<td>GLbyte</td>
</tr>
<tr>
<td>s</td>
<td>16-bit int.</td>
<td>short</td>
<td>GLshort</td>
</tr>
<tr>
<td>i</td>
<td>32-bit int.</td>
<td>int</td>
<td>GLint</td>
</tr>
<tr>
<td>f</td>
<td>32-bit float</td>
<td>float</td>
<td>GLfloat</td>
</tr>
<tr>
<td>d</td>
<td>64-bit double</td>
<td>double</td>
<td>GLdouble</td>
</tr>
<tr>
<td>ub</td>
<td>8-bit unsinged int.</td>
<td>unsigned char</td>
<td>GLubyte</td>
</tr>
<tr>
<td>us</td>
<td>16-bit unsigned int.</td>
<td>unsigned short</td>
<td>GLushort</td>
</tr>
<tr>
<td>ui</td>
<td>32-bit unsigned int.</td>
<td>unsigned int</td>
<td>GLuint</td>
</tr>
</tbody>
</table>
OpenGL Command Syntax

- You can use pointers or buffers

 `glColor3f(0.0, 0.8, 1.0);`

 `GLfloat color_array[] = {0.0, 0.8, 1.0};
glColor3fv(color_array);`

- Using buffers for drawing is much more efficient
OpenGL Code:

glColor3d(0.0, 0.8, 1.0);

glBegin(GL_POLYGON);
 glVertex2d(-0.5, -0.5);
 glVertex2d(0.5, -0.5);
 glVertex2d(0.5, 0.5);
 glVertex2d(-0.5, -0.5);
glEnd();
Drawing Primitives in OpenGL

Figure 2-7 Geometric Primitive Types
Yet Another Code Example

OpenGL Code:

```c
#include <GL/gl.h>

GLfloat x, y;

void myFunction()
{
    glBegin(GL_LINE_LOOP);
    for (i = 0; i < 360; i = i + 2)
    {
        x = cos(i*3.14159/180);
        y = sin(i*3.14159/180);
        glVertex2d(x, y);
    }
    glEnd();
}
```

To use this function, you would call `myFunction()` in your main program.
OpenGL as a State Machine

• OpenGL maintains various states until you change them

```c
// set the current color state
glColor3d(0.0, 0.8, 1.0);

glBegin(GL_POLYGON);
    glVertex2d(-0.5, -0.5);
    glVertex2d( 0.5, -0.5);
    glVertex2d( 0.5,  0.5);
    glVertex2d( 0.5,  0.5);

glEnd();
```
OpenGL as a State Machine

- OpenGL maintains various states until you change them

- Many state variables refer to modes (e.g., lighting mode)
 - You can enable, glEnable(), or disable, glDisable()

- You can query state variables
 - glGetFloatv(), glIsEnabled(), etc.
 - glGetError(): very useful for debugging
Debugging Tip

#define CheckError(s)
{
 GLenum error = glGetError();
 if (error)
 printf("%s in %s\n", gluErrorString(error), s);
}

glTexCoordPointer (2, x, sizeof(y), (GLvoid *) TexDelta);
CheckError ("Tex Bind");

glDrawElements(GL_TRIANGLES, x, GL_UNSIGNED_SHORT, 0);
CheckError ("Tex Draw");
#include <iostream>
using namespace std;
#include "vgl.h"
#include "LoadShaders.h"

enum VAO_IDs { Triangles, NumVAOs };
enum Buffer_IDs { ArrayBuffer, NumBuffers };
enum Attrib_IDs { vPosition = 0 };
GLuint VAOs[NumVAOs];
GLuint Buffers[NumBuffers];
const GLuint NumVertices = 6;

Void init(void) {
 glGenVertexArrays(NumVAOs, VAOs);
 glBindVertexArray(VAOs[Triangles]);
 GLfloat vertices[NumVertices][2] = {
 {-0.90, -0.90 }, // Triangle 1
 { 0.85, -0.90 },
 { -0.90, 0.85 },
 { 0.90, -0.85 }, // Triangle 2
 { 0.90, 0.90 },
 { -0.85, 0.90 } };
 glGenBuffers(NumBuffers, Buffers);
 glBindBuffer(GL_ARRAY_BUFFER, Buffers[ArrayBuffer]);
 glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
 ShaderInfo shaders[] = {
 { GL_VERTEX_SHADER, "triangles.vert" },
 { GL_FRAGMENT_SHADER, "triangles.frag" },
 { GL_NONE, NULL });
 GLuint program = LoadShaders(shaders);
 glUseProgram(program);
 glVertexAttribPointer(vPosition, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
 glEnableVertexAttribArray(vPosition);
}

Void display(void) {
 glClear(GL_COLOR_BUFFER_BIT);
 glBindVertexArray(VAOs[Triangles]);
 glDrawArrays(GL_TRIANGLES, 0, NumVertices);
 glFlush();
}

Int main(int argc, char** argv) {
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_RGBA);
 glutInitWindowSize(512, 512);
 glutInitContextVersion(4, 3);
 glutCreateWindow(argv[0]);
 if (glewInit()) {
 exit(EXIT_FAILURE); }
 init(); glutDisplayFunc(display); glutMainLoop();
}
Julia Sets (Fractal)

- Study a visualization of a simple iterative function defined over the imaginary plane

- It has chaotic behavior
 - Small changes have dramatic effects
Julia Set - Definition

- The Julia set J_c for a number c in the complex plane P is given by:

$$J_c = \{ p \mid p \in P \text{ and } p_{i+1} = p_i^2 + c \text{ converges to a fixed limit} \}$$
Complex Numbers

- Consists of 2 tuples (Real, Imaginary)
 - E.g., $c = a + bi$

- Various operations
 - $c_1 + c_2 = (a_1 + a_2) + (b_1 + b_2)i$
 - $c_1 \cdot c_2 = (a_1a_2 - b_1b_2) + (a_1b_2 + a_2b_1)i$
 - $(c_1)^2 = ((a_1)^2 - (b_1)^2) + (2a_1b_1)i$
 - $|c| = \sqrt{a^2 + b^2}$
Real numbers are a subset of complex numbers:

- Consider \(c = [0, 0] \), and \(p = [x, 0] \)
- For what values of \(x \) is \(x_{i+1} = x_i^2 \) convergent?

How about \(x_0 = 0.5 \)?

\[
x_{0-4} = 0.5, 0.25, 0.0625, 0.0039
\]
Real numbers are a subset of complex numbers:

- consider \(c = [0, 0] \), and \(p = [x, 0] \)
- for what values of \(x \) is \(x_{i+1} = x_i^2 \) convergent?

How about \(x_0 = 1.1 \)?

\[
x_{0-4} = 1.1, 1.21, 1.4641, 2.14358
\]
Convergence Properties

- Suppose $c = [0,0]$, for what complex values of p does the series converge?
- For real numbers:
 - If $|x_i| > 1$, then the series diverges
- For complex numbers
 - If $|p_i| > 2$, then the series diverges
 - Loose bound

The black points are the ones in Julia set
class Complex {
 float re, im;
};

void Julia (Complex p, Complex c, int & i, float & r) {
 int maxIterations = 256;
 for (i = 0; i < maxIterations;i++)
 {
 p = p*p + c;
 rSqr = p.re*p.re + p.im*p.im;
 if(rSqr > 4)
 break;
 }
 r = sqrt(rSqr);
}

A Peek at the Fractal Code

i & r are used to assign a color
How can we see more?

- Our world view allows us to see so much
 - What if we want to zoom in?
- We need to define a mapping from our desired world view to our screen
Mapping from World to Screen

World

Screen

Window
Screen Space

- Graphical image is presented by setting colors for a set of discrete samples called “pixels”
 - Pixels displayed on screen in windows
- Pixels are addressed as 2D arrays
 - Indices are “screen-space” coordinates

$(0,0)$ $(width-1,0)$ $(0,height-1)$ $(width-1, height-1)$
OpenGL Coordinate System
Pixel Independence

- Often easier to structure graphical objects independent of screen or window sizes
- Define graphical objects in “world-space”
Normalized Device Coordinates

- Intermediate “rendering-space”
 - Compose world and screen space
- Sometimes called “canonical screen space”
Why Introduce NDC?

- Simplifies many rendering operations
 - Clipping, computing coefficients for interpolation
 - Separates the bulk of geometric processing from the specifics of rasterization (sampling)
 - Will be discussed later
Mapping from World to Screen

World

NDC

Screen

Window

x_w

x_n

x_s
World Space to NDC

\[
\frac{x_n - (-1)}{1 - (-1)} = \frac{x_w - (w.l)}{w.r - w.l}
\]

\[
x_n = 2 \frac{x_w - (w.l)}{w.r - w.l} - 1
\]

\[
x_n = Ax_w + B
\]

\[
A = \frac{2}{w.r - w.l}, \quad B = -\frac{w.r + w.l}{w.r - w.l}
\]
NDC to Screen Space

- **Same approach**
 \[
 \frac{x_s - \text{origin}.x}{\text{width}} = \frac{x_n - (-1)}{1-(-1)}
 \]

- **Solve for** \(x_s \)
 \[
 x_s = \text{width} \cdot \frac{x_n + 1}{2} + \text{origin}.x
 \]

\[
 x_s = Ax_n + B
 \]

\[
 A = \frac{\text{width}}{2}; \quad B = \frac{\text{width}}{2} + \text{origin}.x
 \]
Class Objectives were:

- Understand different spaces and basic OpenGL commands
- Understand a continuous world, Julia sets
Any Questions?

- Come up with one question on what we have discussed in the class and submit at the end of the class
 - 1 for already answered questions
 - 2 for typical questions
 - 3 for questions with thoughts or that surprised me

- Submit four times during the whole semester
Homework

- Go over the next lecture slides before the class
- Watch 2 SIGGRAPH videos and submit your summaries before every Tue. class
 - Send an email to cs380ta@gmail.com
 - Just one paragraph for each summary

Example:

Title: XXX XXXX XXXX
Abstract: this video is about accelerating the performance of ray tracing. To achieve its goal, they design a new technique for reordering rays, since by doing so, they can improve the ray coherence and thus improve the overall performance.
Homework for Next Class

- Read Chapter 1, Introduction
 - Read “Numerical issues” carefully
Next Time

- Basic OpenGL program structure and how OpenGL supports different spaces