CS380: Computer Graphics
2D Imaging and Transformation

Sung-Eui Yoon
(윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/CG
Class Objectives

- Write down simple 2D transformation matrixes
- Understand the homogeneous coordinates and its benefits
- Know OpenGL-transformation related API
- Implement idle-based animation method
2D Geometric Transforms

- Functions to map points from one place to another
- Geometric transforms can be applied to
 - Drawing primitives (points, lines, conics, triangles)
 - Pixel coordinates of an image

Demo
Translation

- Translations have the following form:
 \[x' = x + t_x \]
 \[y' = y + t_y \]

- inverse function: undoes the translation:
 \[x = x' - t_x \]
 \[y = y' - t_y \]

- identity: leaves every point unchanged
 \[x' = x + 0 \]
 \[y' = y + 0 \]
2D Rotations

- Another group - rotation about the origin:

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix} \begin{bmatrix}
x \\
y
\end{bmatrix} = R \begin{bmatrix}
x \\
y
\end{bmatrix}
\]

\[
R^{-1} = \begin{bmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{bmatrix}
\]

\[
R_{\theta=0} = \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]
Rotations in Series

- We want to rotate the object 30 degrees and, then, 60 degrees

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} = \begin{bmatrix}
\cos(60) & -\sin(60) \\
\sin(60) & \cos(60)
\end{bmatrix} \begin{bmatrix}
\cos(30) & -\sin(30) \\
\sin(30) & \cos(30)
\end{bmatrix} \begin{bmatrix}
x \\
y
\end{bmatrix}
\]

We can merge multiple rotations into one rotation matrix

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} = \begin{bmatrix}
\cos(90) & -\sin(90) \\
\sin(90) & \cos(90)
\end{bmatrix} \begin{bmatrix}
x \\
y
\end{bmatrix}
\]
Euclidean Transforms

- **Euclidean Group**
 - Translations + rotations
 - Rigid body transforms

- **Properties:**
 - Preserve distances
 - Preserve angles
 - How do you represent these functions?

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix} \begin{bmatrix}
x \\
y
\end{bmatrix} + \begin{bmatrix}
t_x \\
t_y
\end{bmatrix}
\]
Problems with this Form

- Translation and rotation considered separately
 - Typically we perform a series of rotations and translations to place objects in world space
 - It’s inconvenient and inefficient in the previous form
 - Inverse transform involves multiple steps

- How can we address it?
 - How can we represent the translation as a matrix multiplication?
Homogeneous Coordinates

- Consider our 2D plane as a subspace within 3D

(x, y) (x, y, z)
Matrix Multiplications and Homogeneous Coordinates

- Can use any planar subspace that does not contain the origin
- Assume our 2D space lies on the 3D plane $z = 1$
 - Now we can express all Euclidean transforms in matrix form:

$$
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 \cos \theta & -\sin \theta & t_x \\
 \sin \theta & \cos \theta & t_y \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
$$
Scaling

- **S** is a scaling factor

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix}
= \begin{bmatrix}
 s & 0 & 0 \\
 0 & s & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]
Example: World Space to NDC

\[
\frac{x_n - (-1)}{1 - (-1)} = \frac{x_w - (w.l)}{w.r - w.l}
\]

\[
x_n = 2\frac{x_w - (w.l)}{w.r - w.l} - 1
\]

\[
x_n = Ax_w + B
\]

\[
A = \frac{2}{w.r - w.l}, \quad B = -\frac{w.r + w.l}{w.r - w.l}
\]
Example: World Space to NDC

- Now, it can be accomplished via a matrix multiplication
- Also, conceptually simple

\[
\begin{bmatrix}
x_n \\
y_n \\
1
\end{bmatrix} = \begin{bmatrix}
\frac{2}{w.r-w.l} & 0 & -\frac{w.r+w.l}{w.r-w.l} \\
0 & \frac{2}{w.t-w.b} & -\frac{w.t+w.b}{w.t-w.b} \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x_w \\
y_w \\
1
\end{bmatrix}
\]
Shearing

- Push things sideways
- Shear along x-axis
- Shear along y-axis
Reflection

- Reflection about x-axis

- Reflection about y-axis
Composition of 2D Transformation

- Quite common to apply more than one transformation to an object
 - E.g., $v_2 = Sv_1$, $v_3 = Rv_2$, where S and R are scaling and Rotation matrix

- Then, we can use the following representation:
 - $v_3 = R(Sv_1)$ or
 - $v_3 = (RS)v_1$
 - why?
Transformation Order

- Order of transforms is very important
 - Why?

```
x y
|x|   |   |
|   |   |   |
|   |   |   |
|   |   |   |
```

```
x y
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
```

```
x y
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
```

```
x y
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
```

```
x y
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
```

```
x y
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
```

```
x y
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
```

```
x y
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
```
Affine Transformations

- Transformed points \((x', y')\) have the following form:

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

- Combinations of translations, rotations, scaling, reflection, shears

- Properties
 - Parallel lines are preserved
 - Finite points map to finite points
Rigid-Body Transforms in OpenGL

```c
glTranslate (tx, ty, tz);
glRotate (angleInDegrees, axisX, axisY, axisZ);
glScale(sx, sy, sz);
```

OpenGL uses matrix format internally.
OpenGL Example – Rectangle Animation (double.c)

Demo
Main Display Function

```c
void display(void)
{
    glClear(GL_COLOR_BUFFER_BIT);

    glPushMatrix();
    glRotatef(spin, 0.0, 0.0, 1.0); // Rotate by an angle
    glColor3f(1.0, 1.0, 1.0); // Set color to white
    glRectf(-25.0, -25.0, 25.0, 25.0); // Draw a rectangle
    glPopMatrix();

    glutSwapBuffers();
}
```
Frame Buffer

- Contains an image for the final visualization
- Color buffer, depth buffer, etc.

- Buffer initialization
 - `glClearColor(GL_COLOR_BUFFER_BIT);`
 - `glClearColor(..);`

- Buffer creation
 - `glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);`

- Buffer swap
 - `glutSwapBuffers();`
Matrix Stacks

- OpenGL maintains matrix stacks
 - Provides pop and push operations
 - Convenient for transformation operations

- `glMatrixMode()` sets the current stack
 - `GL_MODELVIEW`, `GL_PROJECTION`, or `GL_TEXTURE`

- `glPushMatrix()` and `glPopMatrix()` are used to manipulate the stacks
OpenGL Matrix Operations

- `glTranslate(tx, ty, tz)`
- `glRotate(angleInDegrees, axisX, axisY, axisZ)`
- `glMultMatrix(*arrayOf16InColumnMajorOrder)`
- `glLoadMatrix (*arrayOf16InColumnMajorOrder)`
- `glLoadIdentity()`

- Concatenate with the current matrix
- Overwrite the current matrix
Matrix Specification in OpenGL

● Column-major ordering

\[
M = \begin{bmatrix}
m_1 & m_5 & m_9 & m_{13} \\
m_2 & m_6 & m_{10} & m_{14} \\
m_3 & m_7 & m_{11} & m_{15} \\
m_4 & m_8 & m_{12} & m_{16}
\end{bmatrix}
\]

● Reverse to the typical C-convention (e.g., \(m[i][j] : \) row \(i \) & column \(j \))

● Better to declare \(m[16] \)

● Also, \texttt{glLoadTransportMatrix*()} & \texttt{glMultTransposeMatrix*()} are available
Animation

- It consists of “redraw” and “swap”

- It’s desirable to provide more than 30 frames per second (fps) for interactive applications

- We will look at an animation example based on idle-callback function
void mouse(int button, int state, int x, int y) {
 switch (button) {
 case GLUT_LEFT_BUTTON:
 if (state == GLUT_DOWN)
 glutIdleFunc (spinDisplay);
 break;
 case GLUT_RIGHT_BUTTON:
 if (state == GLUT_DOWN)
 glutIdleFunc (NULL);
 break;
 }
}

void spinDisplay(void) {
 spin = spin + 2.0;
 if (spin > 360.0)
 spin = spin - 360.0;
 glutPostRedisplay();
}
Class Objectives were:

- Write down simple 2D transformation matrixes
- Understand the homogeneous coordinates and its benefits
- Know OpenGL-transformation related API
- Implement idle-based animation method
Homework

- Go over the next lecture slides before the class
- Watch 2 SIGGRAPH videos and submit your summaries before every Tue. class
 - Send an email to cs380ta@gmail.com
 - Just one paragraph for each summary

Example:

Title: XXX XXXX XXXX
Abstract: this video is about accelerating the performance of ray tracing. To achieve its goal, they design a new technique for reordering rays, since by doing so, they can improve the ray coherence and thus improve the overall performance.
Any Questions?

- Come up with one question on what we have discussed in the class and submit at the end of the class
 - 1 for already answered questions
 - 2 for typical questions
 - 3 for questions with thoughts or that surprised me

- Submit at least four times during the whole semester
Next Time

- 3D transformations