CS380: Computer Graphics
Modeling Transformations

Sung-Eui Yoon
(윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/CG/
Class Objectives (Ch. 6)

- Know the classic data processing steps, rendering pipeline, for rendering primitives
- Understand 3D translations and rotations
Outline

- Where are we going?
 - Sneak peek at the rendering pipeline
- Vector algebra
- Modeling transformation
- Viewing transformation
- Projections
The Classic Rendering Pipeline

- Object **primitives** defined by vertices fed in at the top
- Pixels come out in the display at the bottom
- Commonly have multiple primitives in various stages of rendering
Modeling Transforms

- Start with 3D models defined in modeling spaces with their own modeling frames: $m^t_1, m^t_2, \ldots, m^t_n$

- Modeling transformations orient models within a common coordinate frame called world space, W^t
 - All objects, light sources, and the camera live in world space

- Trivial rejection attempts to eliminate objects that cannot possibly be seen
 - An optimization
Illumination

- Illuminate potentially visible objects
- Final rendered color is determined by object’s orientation, its material properties, and the light sources in the scene

<table>
<thead>
<tr>
<th>Modeling Transformations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivial Rejection</td>
<td></td>
</tr>
<tr>
<td>Illumination</td>
<td></td>
</tr>
<tr>
<td>Viewing Transformation</td>
<td></td>
</tr>
<tr>
<td>Clipping</td>
<td></td>
</tr>
<tr>
<td>Projection</td>
<td></td>
</tr>
<tr>
<td>Rasterization</td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td></td>
</tr>
</tbody>
</table>

Lambert’s Cosine Law
Viewing Transformations

- Maps points from world space to eye space:
 \[\hat{e}^t = \hat{w}^t V \]
- Viewing position is transformed to the origin
- Viewing direction is oriented along some axis
Clipping and Projection

- We specify a volume called a *viewing frustum*
- Map the view frustum to the unit cube
- Clip objects against the view volume, thereby eliminating geometry not visible in the image
- Project objects into two-dimensions
- Transform from eye space to normalized device coordinates
Rasterization and Display

- Transform normalized device coordinates to screen space
- Rasterization converts objects pixels

- Almost every step in the rendering pipeline involves a change of coordinate systems!
- Transformations are central to understanding 3D computer graphics
But, this is a architectural overview of a recent GPU (Fermi)

- Unified architecture
- Highly parallel
- Support CUDA (general language)
- Wide memory bandwidth
But, this is a architectural overview of a recent GPU
Recent CPU Chips (Intel’s Core i7 processors)
Vector Algebra

- We already saw vector addition and multiplications by a scalar
- Will study three kinds of vector multiplications
 - Dot product (\cdot) - returns a scalar
 - Cross product (\times) - returns a vector
 - Tensor product (\otimes) - returns a matrix
Dot Product (\cdot)

\[\vec{a} \cdot \vec{b} = \vec{a}^\top \vec{b} = \begin{bmatrix} a_x & a_y & a_z & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \\ 0 \end{bmatrix} = s, \quad \vec{a} \cdot \vec{b} = \vec{a}^\top \vec{b} = \begin{bmatrix} a_x & a_y & a_z & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \\ 1 \end{bmatrix} = s \]

- **Returns a scalar** s
- **Geometric interpretations** s:
 - $\vec{a} \cdot \vec{b} = \|\vec{a}\| \|\vec{b}\| \cos \theta$
 - **Length of** \vec{b} **projected onto** and \vec{a} **or vice versa**
 - **Distance of** \vec{b} **from the origin** in the direction of \vec{a}
Cross Product \((\times)\)

\[
\vec{a} \times \vec{b} \equiv \begin{bmatrix}
0 & -a_z & a_y & 0 \\
a_z & 0 & -a_x & 0 \\
-a_y & a_x & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix} \vec{b}_x = \vec{c} \quad \vec{a} \cdot \vec{c} = 0 \\
\vec{b} \cdot \vec{c} = 0
\]

\[
\vec{c} = \begin{bmatrix}
a_y b_z - a_z b_y & a_z b_x - a_x b_z & a_x b_y - a_y b_x \\
\end{bmatrix}
\]

- Return a vector \(\vec{c}\) that is perpendicular to both \(\vec{a}\) and \(\vec{b}\), oriented according to the right-hand rule
- The matrix is called the skew-symmetric matrix of \(\vec{a}\)
Cross Product (\times)

- A mnemonic device for remembering the cross-product

$$\mathbf{a} \times \mathbf{b} = \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{bmatrix}$$

$$= (a_y b_z - a_z b_y) \mathbf{i} + (a_z b_x - a_x b_z) \mathbf{j} + (a_x b_y - a_y b_x) \mathbf{k}$$

$$\mathbf{i} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{j} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{k} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$
Modeling Transformations

- Vast majority of transformations are modeling transforms
- Generally fall into one of two classes
 - Transforms that move parts within the model
 \[m_i^t c \Rightarrow m_i^t M c = m_i^t c' \]
 - Transforms that relate a local model’s frame to the scene’s world frame
 \[m_i^t c \Rightarrow m_i^t M c = w^t c \]
- Usually, Euclidean transforms, 3D rigid-body transforms, are needed
Translations

- **Translate points by adding offsets to their coordinates**

 \[
 \dot{m}^t c \Rightarrow \dot{m}^t Tc = \dot{m}^t c'
 \]

 \[
 \dot{m}^t c \Rightarrow \dot{m}^t Tc = \dot{w}^t c
 \]

 where

 \[
 T = \begin{bmatrix}
 1 & 0 & 0 & t_x \\
 0 & 1 & 0 & t_y \\
 0 & 0 & 1 & t_z \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \]

- **The effect of this translation:**

 ![Effect of translation](image)
3D Rotations

- More complicated than 2D rotations
 - Rotate objects along a rotation axis

- Several approaches
 - Compose three canonical rotations about the axes
 - Quaternions
Geometry of a Rotation

- **Natural basis for rotation of a vector about a specified axis:**
 - \hat{a} - rotation axis (normalized)
 - $\hat{a} \times \vec{x}$ - vector perpendicular to
 - \vec{x}_\perp - perpendicular component of \vec{x} relative to \hat{a}
Geometry of a Rotation

\[
\begin{align*}
\mathbf{x}' &= \hat{O} + \mathbf{x}_\| + \mathbf{x}_\perp \\
\mathbf{x}'_\perp &= \cos \theta \mathbf{x}_\perp + \sin \theta \mathbf{b} \\
\mathbf{x}_\| &= \hat{\mathbf{a}} (\hat{\mathbf{a}} \cdot \mathbf{x}) \\
\mathbf{x}_\perp &= \mathbf{x} - \mathbf{x}_\| \\
\mathbf{b} &= \hat{\mathbf{a}} \times \mathbf{x}
\end{align*}
\]

\[
\mathbf{x}' = \hat{O} + \cos \theta \mathbf{x} + (1 - \cos \theta) (\hat{\mathbf{a}} (\hat{\mathbf{a}} \cdot \mathbf{x})) + \sin \theta (\hat{\mathbf{a}} \times \mathbf{x})
\]

\[
\mathbf{c}_{\mathbf{x}'} = \mathbf{M} \mathbf{c}_x
\]

\[
\mathbf{M} = \text{diag}(\hat{O}) + \cos \theta \text{diag}([1 \quad 1 \quad 1 \quad \hat{O}^T]) + (1 - \cos \theta) \mathbf{A}_\otimes + \sin \theta \mathbf{A}_x
\]
Tensor Product (\otimes)

\[
\overrightarrow{a} \otimes \overrightarrow{b} \equiv \overrightarrow{ab^t} = \begin{bmatrix}
 a_x \\
 a_y \\
 a_z \\
 0
\end{bmatrix}
\begin{bmatrix}
 b_x & b_y & b_z & 0
\end{bmatrix} = \begin{bmatrix}
 a_x b_x & a_x b_y & a_x b_z & 0 \\
 a_y b_x & a_y b_y & a_y b_z & 0 \\
 a_z b_x & a_z b_y & a_z b_z & 0 \\
 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
(\overrightarrow{a} \otimes \overrightarrow{b})\overrightarrow{c} = \begin{bmatrix}
 (b_x c_x + b_y c_y + b_z c_z) a_x \\
 (b_x c_x + b_y c_y + b_z c_z) a_y \\
 (b_x c_x + b_y c_y + b_z c_z) a_z
\end{bmatrix} = \overrightarrow{a} (\overrightarrow{b} \cdot \overrightarrow{c})
\]

- Creates a matrix that when applied to a vector \(\overrightarrow{c} \) return \(\overrightarrow{a} \) scaled by the project of \(\overrightarrow{c} \) onto \(\overrightarrow{b} \).
Tensor Product (\otimes)

- Useful when $\vec{b} = \vec{a}$
- The matrix $\vec{a} \otimes \vec{a}$ is called the symmetric matrix of \vec{a}
- We shall denote this A_\otimes

\[
\begin{align*}
A_\otimes &= \vec{a} \otimes \vec{a} = \\
&= \begin{bmatrix}
a_{a_x} a_{a_y} a_{a_z} & 0 \\
a_{a_y} a_{a_y} a_{a_z} & 0 \\
a_{a_z} a_{a_z} a_{a_z} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} \\
A_\otimes \vec{c} &= \begin{pmatrix} a_{a_x} a_{a_y} a_{a_z} \\
a_{a_y} a_{a_y} a_{a_z} \\
a_{a_z} a_{a_z} a_{a_z} \\
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix} \\
&= (\vec{a} \otimes \vec{a}) \vec{c} \\
&= \vec{a} (\vec{a} \cdot \vec{c})
\end{align*}
\]
Sanity Check

● Consider a rotation by about the x-axis

\[
\text{Rotate}\begin{bmatrix}1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \theta = \begin{bmatrix}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}\cos \theta + \begin{bmatrix}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}\left(1 - \cos \theta\right) + \begin{bmatrix}0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}\sin \theta
\]

\[
= \begin{bmatrix}1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
\]

● You can check it in any computer graphics book, but you don’t need to memorize it
Rotation using Affine Transformation

Assume that these basis vectors are normalized.
Quatetnion

- Developed by W. Hamilton in 1843
 - Based on complex numbers

- Two popular notations for a quaternion, q
 - $w + xi + yj + zk$, where $i^2 = j^2 = k^2 = ijk = -1$
 - $[w, v]$, where w is a scalar and v is a vector

- Conversion from the axis, v, and angle, t
 - $q = [\cos (t/2), \sin (t/2) v]$
 - Can represent rotation
Basic Quaternion Operations

- **Addition**
 - \(q + q' = [w + w', v + v'] \)

- **Multiplication**
 - \(qq' = [ww' - v \cdot v', v \times v' + wv' + w'v] \)

- **Conjugate**
 - \(q^* = [w, -v] \)

- **Norm**
 - \(N(q) = w^2 + x^2 + y^2 + z^2 \)

- **Inverse**
 - \(q^{-1} = q^* / N(q) \)
Basic Quaternion Operations

- q is a **unit quaternion** if $N(q) = 1$
 - Then $q^{-1} = q^*$

- **Identity**
 - $[1, (0, 0, 0)]$ for multiplication
 - $[0, (0, 0, 0)]$ for addition
Rotations using Quaternions

- Suppose that you want to rotate a vector/point \(\mathbf{v} \)
- Then, the rotated \(\mathbf{v}' \)
 - \(\mathbf{v}' = q \mathbf{r} q^{-1}, \) where \(\mathbf{r} = [0, \mathbf{v}] \)

- But, what is \(q \)?
 - Notice that \(q \) is a unit quaternion

- Compositing rotations
 - \(\mathbf{R} = \mathbf{R}_2 \mathbf{R}_1 \) (rotation \(\mathbf{R}_1 \) followed by rotation \(\mathbf{R}_2 \)
Example

- Rotate by degree a along x axis:
 \[q_x = [\cos \left(\frac{a}{2} \right), \sin \left(\frac{a}{2} \right) (1, 0, 0)] \]
Quaternion to Rotation Matrix

- \(Q = w + xi + yj + zk \)
- \(R_m = \begin{bmatrix} 1 - 2y^2 - 2z^2 & 2yz + 2wx & 2xz - 2wy \\ 2xy - 2wz & 1 - 2x^2 - 2z^2 & 2yz - 2wx \\ 2xz + 2wy & 2yz - 2wx & 1 - 2x^2 - 2y^2 \end{bmatrix} \)

- We can also convert a rotation matrix to a quaternion
Advantage of Quaternions

- More efficient way to generate arbitrary rotations
- Less storage than 4 x 4 matrix
- Easier for smooth rotation
- Numerically more stable than 4x4 matrix (e.g., no drifting issue)
- More readable
Class Objectives were:

- Know the classic data processing steps, rendering pipeline, for rendering primitives
- Understand 3D translations and rotations
PA2: Simple Animation & Transformation
OpenGL: Display Lists

- Display lists
 - A group of OpenGL commands stored for later executions
 - Can be optimized in the graphics hardware
 - Thus, can show higher performance

- Immediate mode
 - Causes commands to be executed immediately
void drawCow()
{
 if (frame == 0)
 {
 cow = new WaveFrontOBJ("cow.obj");
 cowID = glGenLists(1);
 glNewList(cowID, GL_COMPILE);
 cow->Draw();
 glEndList();
 }
 ..
 glCallList(cowID);
 ..
}
API for Display Lists

Gluint **glGenLists** (range)
- generate a continuous set of empty display lists

void **glNewList** (list, mode) & **glEndList** ()
 : specify the beginning and end of a display list

void **glCallLists** (list)
 : execute the specified display list
OpenGL: Getting Information from OpenGL

```c
void main( int argc, char* argv[] )
{
    ...
    int rv, gv, bv;
    glGetIntegerv(GL_RED_BITS, &rv);
    glGetIntegerv(GL_GREEN_BITS, &gv);
    glGetIntegerv(GL_BLUE_BITS, &bv);
    printf( "Pixel colors = %d : %d : %d\n", rv, gv, bv );
    ....
}

void display () {
    ..
    glGetDoublev(GL_MODELVIEW_MATRIX, cow2wld.matrix());
    ..
}
```
Homework

- **Read:**
 - Ch. 7: Viewing

- **Watch SIGGRAPH Videos**
- **Go over the next lecture slides**
Next Time

- Viewing transformations