CS380: Computer Graphics
Triangle Rasterization

Sung-Eui Yoon
(윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/CG/
Class Objectives (Ch. 8)

- Understand triangle rasterization using edge-equations
- Understand mechanics for parameter interpolations
- Realize benefits of incremental algorithms
Coordinate Systems

- model
- world
- eye
- clip
- NDC
- window

Modelview matrix

÷ w

Viewport transformation
Primitive Rasterization

- Rasterization converts vertex representation to pixel representation
- Coverage determination
 - Computes which pixels (samples) belong to a primitive
- Parameter interpolation
 - Computes parameters at covered pixels from parameters associated with primitive vertices
Coverage Determination

- Coverage is a 2D sampling problem
- Possible coverage criteria:
 - Distance of the primitive to sample point (often used with lines)
 - Percent coverage of a pixel (used to be popular)
 - Sample is inside the primitive (assuming it is closed)
Why Triangles?

- Triangles are simple
 - Simple representation for a surface element (3 points or 3 edge equations)
 - Triangles are linear (makes computations easier)

\[
T = (v_0, v_1, v_2) \\
T = (e_0, e_1, e_2)
\]
Why Triangles?

- Triangles are **convex**
- What does it mean to be a convex?

An object is **convex** if and only if any line segment connecting two points on its boundary is contained entirely within the object or one of its boundaries.
Why Triangles?

- Triangles are **convex**

- Why is convexity important?
 - Regardless of a triangle’s orientation on the screen a given scan line will contain only a single segment or *span* of that triangle
 - Simplify rasterization processes
Why Triangles?

- Arbitrary polygons can be decomposed into triangles
- Decomposing a convex n-sided polygon is trivial
 - Suppose the polygon has ordered vertices \(\{v_0, v_1, \ldots, v_n\} \)
 - It can be decomposed into triangles \(\{(v_0, v_1, v_2), (v_0, v_2, v_3), (v_0, v_i, v_{i+1}), \ldots, (v_0, v_{n-1}, v_n)\} \)
- Decomposing a non-convex polygon is non-trivial
 - Sometimes have to introduce new vertices
Why Triangles?

- Triangles can approximate any 2-dimensional shape (or 3D surface)
 - Polygons are a locally linear (planar) approximation
- Improve the quality of fit by increasing the number of edges or faces
Scanline Triangle Rasterizer

- Walk along edges and process one scanline at a time; also called edge walk method
- Rasterize spans between edges
Scanline Triangle Rasterizer

- Walk along edges and process one scanline at a time
- Rasterize spans between edges
Scanline Triangle Rasterizer

- Walk along edges and process one scanline at a time
- Rasterize spans between edges
Scanline Triangle Rasterizer

- Walk along edges and process one scanline at a time
- Rasterize spans between edges
Scanline Triangle Rasterizer

- Walk along edges and process one scanline at a time
- Rasterize spans between edges
Scanline Triangle Rasterizer

- Walk along edges and process one scanline at a time
- Rasterize spans between edges
Scanline Rasterization

- **Advantages:**
 - Can be made quite fast
 - Low memory usage for small scenes
 - Do not need full 2D z-buffer (can use 1D z-buffer on the scanline)

- **Disadvantages:**
 - Does not scale well to large scenes
 - Lots of special cases
Rasterizing with Edge Equations

- Compute edge equations from vertices
- Compute interpolation equations from vertex parameters
- Traverse pixels evaluating the edge equations
- Draw pixels for which all edge equations are positive
- Interpolate parameters at pixels
Edge Equation Coefficients

- The cross product between 2 homogeneous points generates the line between them

\[\mathbf{e} = \mathbf{v}_0 \times \mathbf{v}_1 \]

\[= \begin{bmatrix} x_0 & y_0 & 1 \end{bmatrix}^t \times \begin{bmatrix} x_1 & y_1 & 1 \end{bmatrix}^t \]

\[= [(y_0 - y_1) \ (x_1 - x_0) \ (x_0 y_1 - x_1 y_0)] \]

\[A \quad B \quad C \]

\[E(x,y) = Ax + By + C \]

- A pixel at \((x,y)\) is “inside” an edge if \(E(x,y) > 0\)
Shared Edges

- Suppose two triangles share an edge. Which covers the pixel when the edge passes through the sample ($E(x,y)=0$)?

- Both
 - Pixel color becomes dependent on order of triangle rendering
 - Creates problems when rendering transparent objects - “double hitting”

- Neither
 - Missing pixels create holes in otherwise solid surface

- We need a consistent tie-breaker!
Shared Edges

- A common tie-breaker:

 \[
 \text{bool } t = \begin{cases}
 A > 0 & \text{if } A \neq 0 \\
 B > 0 & \text{otherwise}
 \end{cases}
 \]

- Coverage determination becomes

 \[
 \text{if(} E(x,y) > 0 \mid \mid (E(x,y)==0 \&\& t)\text{)}
 \]

 pixel is covered
Shared Vertices

- Use “inclusion direction” as a tie breaker
- Any direction can be used
- Snap vertices to subpixel grid and displace so that no vertex can be at the pixel center
Interpolating Parameters

- Specify a parameter, say redness \(r \) at each vertex of the triangle
 - Linear interpolation creates a planar function

\[
r(x,y) = Ax + By + C
\]
Solving for Linear Interpolation Equations

- Given the redness of the three vertices, we can set up the following linear system:

\[
\begin{bmatrix}
 r_0 & r_1 & r_2
\end{bmatrix} =
\begin{bmatrix}
 A_r & B_r & C_r
\end{bmatrix}
\begin{bmatrix}
 x_0 & x_1 & x_2 \\
 y_0 & y_1 & y_2 \\
 1 & 1 & 1
\end{bmatrix}
\]

with the solution:

\[
\begin{bmatrix}
 A_r & B_r & C_r
\end{bmatrix} =
\begin{bmatrix}
 r_0 & r_1 & r_2
\end{bmatrix}
\begin{bmatrix}
 (y_1 - y_2) & (x_2 - x_1) & (x_1 y_2 - x_2 y_1) \\
 (y_0 - y_2) & (x_2 - x_0) & (x_0 y_2 - x_2 y_0) \\
 (y_0 - y_1) & (x_1 - x_0) & (x_0 y_1 - x_1 y_0)
\end{bmatrix}
\]

\[
\det
\begin{bmatrix}
 x_0 & x_1 & x_2 \\
 y_0 & y_1 & y_2 \\
 1 & 1 & 1
\end{bmatrix}
\]
Triangle Area

\[
\text{Area} = \frac{1}{2} \det \begin{bmatrix}
 x_0 & x_1 & x_2 \\
 y_0 & y_1 & y_2 \\
 1 & 1 & 1
\end{bmatrix}
\]

\[
= \frac{1}{2}((x_1 y_2 - x_2 y_1) - (x_0 y_2 - x_2 y_0) + (x_0 y_1 - x_1 y_0))
\]

\[
= \frac{1}{2}(C_0 + C_1 + C_2)
\]

- Area = 0 means that the triangle is not visible
- Area < 0 means the triangle is back facing:
 - Reject triangle if performing back-face culling
 - Otherwise, flip edge equations by multiplying by -1
Interpolation Equation

- The parameter plane equation is just a linear combination of the edge equations

\[
\begin{bmatrix}
A_r & B_r & C_r
\end{bmatrix} = \frac{1}{2 \cdot \text{area}} \begin{bmatrix}
r_0 & r_1 & r_2
\end{bmatrix} \begin{bmatrix}
e_0 \\
e_1 \\
e_2
\end{bmatrix}
\]
Z-Buffering

- When rendering multiple triangles we need to determine which triangles are visible
- Use z-buffer to resolve visibility
 - Stores the depth at each pixel
- Initialize z-buffer to 1 (far value)
 - Post-perspective z values lie between 0 and 1
- Linearly interpolate depth (z_{tri}) across triangles
- If $z_{\text{tri}}(x,y) < z\text{Buffer}[x][y]$ write to pixel at (x,y)
 $$z\text{Buffer}[x][y] = z_{\text{tri}}(x,y)$$
Traversing Pixels

- Free to traverse pixels
 - Edge and interpolation equations can be computed at any point

- Try to minimize work
 - Restrict traversal to primitive bounding box
 - Hierarchical traversal
 - Knock out tiles of pixels (say 4x4) at a time
 - Test corners of tiles against equations
 - Test individual pixels of tiles not entirely inside or outside
Incremental Algorithms

Some computation can be saved by updating the edge and interpolation equations incrementally:

\[E(x, y) = Ax + By + C \]
\[E(x + \Delta, y) = A(x + \Delta) + By + C \]
\[= E(x, y) + A \cdot \Delta \]
\[E(x, y + \Delta) = Ax + B(y + \Delta) + C \]
\[= E(x, y) + B \cdot \Delta \]

Equations can be updated with a single addition!
Triangle Setup

- Compute edge equations
 - 3 cross products
- Compute triangle area
 - A few additions
- Cull zero area and back-facing triangles and/or flip edge equations
- Compute interpolation equations
 - Matrix/ vector product per parameter
Massive Models

100,000,000 primitives

1,000,000 pixels

100 visible primitives/pixel

- Cost to render a single triangle
 - Specify 3 vertices
 - Compute 3 edge equations
 - Evaluate equations one

St. Mathew models consisting of about 400M triangles (Michelangelo Project)
Multi-Resolution or Levels-of-Detail (LOD) Techniques

- **Basic idea**
 - Render with fewer triangles when model is farther from viewer

- **Methods**
 - **Polygonal simplification**
Polygonal Simplification

- Method for reducing the polygon count of mesh

Edge Collapse

V_a \rightarrow V_b

Vertex Split

V_b \rightarrow V_c
Static LODs

- Pre-compute discrete simplified meshes
- Switch between them at runtime
- Has very low LOD selection overhead

Excerpted from Hoppe’s slides
Dynamic Simplification

- Provides smooth and varying LODs over the mesh [Hoppe 97]

1st person’s view 3rd person’s view

Play video
View-Dependent Rendering
[Yoon et al., SIG 05]

Double Eagle Tanker
82 Million triangles

30 Pixels of error
Pentium 4
GeForce Go 6800 Ultra
1GB RAM
What if there are so many objects?

From “cars”, a Pixar movie
What if there are so many objects?

From a Pixar movie
Stochastic Simplification of Aggregate Detail
Cook et al., ACM SIGGRAPH 2007

Figure 2: Distant views of the plant from Figure 1 with close-ups below: (a) unsimplified, (b) with 90% of its leaves excluded, (c) with area correction, (d) with area and contrast correction.
Occlusion Culling with Occlusion Queries

- Render objects visible in previous frame
 - Known as occlusion representation or occlusion map
Occlusion Culling with Occlusion Queries

- Turn off color and depth writes
- Render object bounding boxes with occlusion queries
 - An occlusion query returns the number of visible pixels
 - Newly visible
Occlusion Culling with Occlusion Queries

- Re-enable color writes
- Render newly visible objects
Class Objectives were:

- Understand triangle rasterization using edge-equations
- Understand mechanics for parameter interpolations
- Realize benefits of incremental algorithms
Next Time

- Illumination and shading
- Texture mapping
Homework

- Go over the next lecture slides before the class
- Watch 2 SIGGRAPH videos and submit your summaries before every Tue. class
 - Send an email to cs380ta@gmail.com
 - Just one paragraph for each summary
Any Questions?

- Come up with one question on what we have discussed in the class and submit at the end of the class
 - 1 for already answered questions
 - 2 for typical questions
 - 3 for questions with thoughts or that surprised me

- Submit at least four times during the whole semester