CS380: Computer Graphics Viewing Transformation

Sung-Eui Yoon (윤성의)

Course URL:
http://sgvr.kaist.ac.kr/~sungeui/CG/

Class Objectives

- Know camera setup parameters
- Understand viewing and projection processes
- Related to Ch. 4: Camera Setting

Viewing Transformations

- Map points from world spaces to eye space
- Can be composed from rotations and translations

Viewing Transformations

- Goal: specify position and orientation of our camera
- Defines a coordinate frame for eye space

"Framing" the Picture

- A new camera coordinate
- Camera position at the origin
- Z-axis aligned with the view direction
- Y-axis aligned with the up direction

- More natural to think of camera as an object positioned in the world frame

Viewing Steps

- Rotate to align the two coordinate frames and, then, translate to move world space origin to camera's origin

An Intuitive Specification

- Specify three quantities:
- Eye point (e) - position of the camera
- Look-at point (p) - center of the image
- Up-vector ($\overrightarrow{\mathrm{u}}_{\mathrm{a}}$) - will be oriented upwards in the image

Deriving the Viewing Transformation

- First compute the look-at vector and normalize

$$
\overrightarrow{\mathrm{l}}=\mathrm{p}-\mathrm{e} \quad \hat{\mathrm{l}}=\frac{\overrightarrow{\mathrm{l}}}{|\overrightarrow{\mathrm{l}}|}
$$

- Compute right vector and normalize
- Perpendicular to the look-at and up vectors

$$
\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{l}} \times \overrightarrow{\mathrm{u}}_{\mathrm{a}} \quad \hat{\mathrm{r}}=\frac{\overrightarrow{\mathrm{r}}}{|\overrightarrow{\mathrm{r}}|}
$$

- Compute up vector
- \vec{u}_{a} is only approximate direction

- Perpendicular to right and look-at vectors

$$
\hat{u}=\hat{r} \times \hat{1}
$$

Rotation Component

- Map our vectors to the cartesian coordinate axes

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
\hat{r} & \hat{u} & -i ̂
\end{array}\right] \mathrm{R}_{\mathrm{v}}
$$

- To compute R_{v} we invert the matrix on the right
- This matrix M is orthonormal (or orthogonal) - its rows are orthonormal basis vectors: vectors mutually orthogonal and of unit length
- Then, $M^{-1}=M^{T}$
- So,

$$
\mathbf{R}_{v}=\left[\begin{array}{c}
\hat{\mathrm{r}}^{\mathrm{t}} \\
\hat{\mathrm{u}}^{\mathrm{t}} \\
-\hat{\mathrm{l}}^{\mathrm{t}}
\end{array}\right]
$$

Translation Component

- The rotation that we just derived is specified about the eye point in world space
- Need to translate all world-space coordinates so that the eye point is at the origin
- Composing these transformations gives our viewing transform, V

$$
\dot{w}^{t}=\dot{e}^{t} \mathbf{R}_{v} \mathbf{T}_{-\dot{e}}
$$

$$
\mathbf{V}=\mathbf{R}_{v} \mathbf{T}_{-\dot{e}}=\left[\begin{array}{cccc}
\hat{r}_{x} & \hat{r}_{y} & \hat{r}_{z} & 0 \\
\hat{u}_{x} & \hat{u}_{y} & \hat{u}_{z} & 0 \\
-\hat{l}_{x} & -\hat{l}_{y} & -\hat{l}_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & -e_{x} \\
0 & 1 & 0 & -e_{y} \\
0 & 0 & 1 & -e_{z} \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\hat{r} & -\hat{r} \cdot \vec{e} \\
\hat{u} & -\hat{u} \cdot \vec{e} \\
-\hat{l} & \hat{l} \cdot \vec{e} \\
0 & 0 & 0 \\
1
\end{array}\right]
$$

Transform a world-space point into a point in the eye-space

Viewing Transform in OpenGL

- OpenGL utility (glu) library provides a viewing transformation function:
gluLookAt (double eyex, double eyey, double eyez, double centerx, double centery, double centerz, double upx, double upy, double upz)
- Computes the same transformation that we derived and composes it with the current matrix

Same to glm::gtc::matrix_transform::lookAt (..) Some tutorial: https://learnopengl.com/Gettingstarted/Camera

Example in the Skeleton Codes of PA2

```
void setCamera ()
{ ...
// initialize camera frame transforms
        for (i=0; i < cameraCount; i++ )
        {
            double* c = cameras[i];
            wld2cam.push_back(FrameXform());
            gIPushMatrix();
            glLoadldentity();
            gluLookAt(c[0],c[1],c[2], c[3],c[4],c[5], c[6],c[7],c[8]);
            gIGetDoublev( GL_MODELVIEW_MATRIX, wId2cam[i].matrix() );
            glPopMatrix();
            cam2wld.push_back(wId2cam[i].inverse());
    }
```


Projections

- Map 3D points in eye space to 2D points in image space

- Two common methods
- Orthographic projection
- Perspective projection

Orthographic Projection

- Projects points along lines parallel to z-axis
- Also called parallel projection
- Used for top and side views in drafting and modeling applications
- Appears unnatural due to lack of perspective foreshortening

Notice that the parallel lines of the tiled floor remain parallel after orthographic projection!

Orthographic Projection

- The projection matrix for orthographic projection is very simple

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

- Next step is to convert points to NDC

View Volume and Normalized Device Coordinates

- Define a view volume
- Compose projection with a scale and a translation that maps eye coordinates to normalized device coordinates

Orthographic Projections to NDC

Some sanity checks:

Scale the z coordinate in exactly the same way .Technically, this coordinate is not part of the projection. But, we will use this value of z for other purposes

$$
x^{\prime}(l)=\frac{2 l}{r-l}-\frac{r+l}{r-l}=-\frac{r-l}{r-l}=-1
$$

Orthographic Projection in OpenGL

- This matrix is constructed by the following OpenGL call:
void glOrtho(double left, double right, double bottom, double top, double near, double far);

Same to glm::gtc::matrix_transform::ortho (..)

Perspective Projection

- Artists (Donatello, Brunelleschi, Durer, and Da Vinci) during the renaissance discovered the importance of perspective for making images appear realistic
- Perspective causes objects nearer to the viewer to appear larger than the same object would appear farther away
- Homogenous coordinates allow perspective projections using linear operators

Signs of Perspective

- Lines in projective space always intersect at a point

Perspective Projection for a Pinhole Camera

Perspective Projection Matrix

- The simplest transform for perspective projection is:

$$
\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w z^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- We divide by w to make the fourth coordinate 1
- In this example, $\mathbf{w}=\mathbf{z}$
- Therefore, $\mathrm{x}^{\prime}=\mathrm{x} / \mathrm{z}, \mathrm{y}^{\prime}=\mathrm{y} / \mathrm{z}, \mathrm{z}^{\prime}=\mathbf{0}$

Normalized Perspective

- As in the orthographic case, we map to normalized device coordinates

NDC Perspective Matrix

$$
\left[\begin{array}{c}
\mathbf{w} \mathbf{X}^{\prime} \\
\mathbf{w} \mathbf{y}^{\prime} \\
\mathbf{w} \mathbf{Z}^{\prime} \\
\mathbf{w}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{2 \cdot \text { near }}{\text { right-left }} & 0 & \frac{-(\text { (right+left) }}{\text { right-left }} & 0 \\
0 & \frac{\text { 2.near }}{\text { top-bottom }} & \frac{- \text { (top+bottom) }}{\text { top-bottom }} & 0 \\
0 & 0 & \frac{\text { far+near }}{\text { far-near }} & \frac{-2 \cdot f a r \cdot n e a r}{\text { far-near }} \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

- The values of left, right, top, and bottom are specified at the near depth. Let's try some sanity checks:

$$
\begin{aligned}
& X=\text { left } \\
& Z=\text { near }
\end{aligned} \Rightarrow X^{\prime}=\frac{\frac{2 \cdot \text { near.left }}{\text { right-left }}-\frac{\text { near(rig }}{\text { right }}}{\text { near }} \begin{aligned}
& X=\text { right } \\
& Z=\text { near }
\end{aligned} \Rightarrow x^{\prime}=\frac{\frac{2 \cdot \text { near.right }}{\text { right-left }}-\frac{\text { neart }}{\text { ric }}}{\text { near }}
$$

NDC Perspective Matrix

$$
\left[\begin{array}{c}
\mathbf{w} \mathbf{X}^{\prime} \\
\mathbf{w} \mathbf{y}^{\prime} \\
\mathbf{w} \mathbf{Z}^{\prime} \\
\mathbf{w}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{2 . \text { near }}{\text { right-left }} & 0 & \frac{-(\text { right+left) }}{\text { right-left }} & 0 \\
0 & \frac{\text { 2.near }}{\text { top-bottom }} & \frac{-(\text { top }+ \text { bottom })}{\text { top-bottom }} & 0 \\
0 & 0 & \frac{\text { far+near }}{\text { far-near }} & \frac{-2 \cdot f a r-n e a r}{\text { far-near }} \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y} \\
z \\
1
\end{array}\right]
$$

- The values of left, right, top, and bottom are specified at the near depth. Let's try some sanity checks:

$$
\begin{aligned}
& z=\mathrm{far} \Rightarrow z^{\prime}=\frac{\text { far } \frac{\mathrm{far}+\text { near }}{\text { far }- \text { near }}+\frac{-2 \cdot f a r \cdot n e a r}{\text { far }- \text { near }}}{\mathrm{far}}=\frac{\frac{\mathrm{far}(\mathrm{far}-\text { near })}{\mathrm{ffar}} \mathrm{faear}}{\mathrm{far}}=1 \\
& z=\text { near } \Rightarrow Z^{\prime}=\frac{\text { near } \frac{\text { far } \frac{\text { near }}{\text { far }- \text { near }}+\frac{-2 \cdot f a r \cdot n e a r}{\text { far-near }}}{\text { near }}}{\text { near }} \frac{\frac{\text { near(near-far })}{\text { far-near }}}{\text { near }}=-1
\end{aligned}
$$

Perspective in OpenGL

- OpenGL provides the following function to define perspective transformations:
> void gIFrustum(double left, double right,
> double bottom, double top,
> double near, double far);
- Some think that using gIFrustum() is nonintuitive. So OpenGL provides a function with simpler, but less general capabilities
void gluPerspective(double vertfov, double aspect, double near, double far);

gluPerspective()

Simple "cameralike" model
 Can only specify symmetric frustums

- Substituting the extents into gIFrustum()

Example in the Skeleton Codes of PA2

void reshape(int w, int h)
\{
width = w; height = h;
gIViewport(0, 0, width, height);
gIMatrixMode(GL_PROJECTION); // Select The Projection Matrix glLoadldentity(); // Reset The Projection Matrix
// Define perspective projection frustum
double aspect = width/double(height);
gluPerspective(45, aspect, 1, 1024); glMatrixMode(GL_MODELVIEW);
// Select The Modelview Matrix
gILoadIdentity();
// Reset The Projection Matrix

Class Objectives were:

- Know camera setup parameters
- Understand viewing and projection processes

Homework

- Watch SIGGRAPH Videos
- Go over the next lecture slides

(Optional) PA3

- PA2: perform the transformation at the modeling space
- PA3: perform the transformation at the viewing space

Next Time

- Interaction

