CS380: Computer Graphics Viewing Transformation

Sung-Eui Yoon (윤성의)

Course URL: http://sgvr.kaist.ac.kr/~sungeui/CG/

Class Objectives

- Know camera setup parameters
- Understand viewing and projection processes
- Related to Ch. 4: Camera Setting

Viewing Transformations

- Map points from world spaces to eye space
 - Can be composed from rotations and translations

Viewing Transformations

- Goal: specify position and orientation of our camera
 - Defines a coordinate frame for eye space

"Framing" the Picture

• A new camera coordinate

- Camera position at the origin
- Z-axis aligned with the view direction
- Y-axis aligned with the up direction

 More natural to think of camera as an object positioned in the world frame

Viewing Steps

 Rotate to align the two coordinate frames and, then, translate to move world space origin to camera's origin

An Intuitive Specification

• Specify three quantities:

- Eye point (e)
- the image
- position of the camera
- Look-at point (p) center of the image
- Up-vector (\vec{u}_a) will be oriented upwards in

Deriving the Viewing Transformation

• First compute the look-at vector and normalize $\vec{l} = p - e$ $\hat{l} = \frac{\vec{l}}{|\vec{l}|}$

- Compute right vector and normalize
 - Perpendicular to the look-at and up vectors

 $\vec{r} = \vec{l} \times \vec{u}_a$ $\hat{r} = \frac{\dot{r}}{|\vec{r}|}$

- *ū*_a is only approximate direction
- Perpendicular to right and look-at vectors

$$\hat{u} = \hat{r} \times \hat{l}$$

Rotation Component

Map our vectors to the cartesian coordinate axes

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \hat{r} & \hat{u} & -\hat{l} \end{bmatrix} R_{v}$$

- To compute R_v we invert the matrix on the right
 - This matrix M is orthonormal (or orthogonal) its rows are orthonormal basis vectors: vectors mutually orthogonal and of unit length

• Then,
$$M^{-1} = M^T$$

• So, $\mathbf{R}_{v} = \begin{bmatrix} \hat{r}^t \\ \hat{u}^t \\ -\hat{l}^t \end{bmatrix}$

Translation Component

- The rotation that we just derived is specified about the eye point in world space
 - Need to translate all world-space coordinates so that the eye point is at the origin
 - Composing these transformations gives our viewing transform, V $\dot{w}^t = \dot{e}^t \mathbf{R}_v \mathbf{T}_{-\dot{e}}$

$$\mathbf{V} = \mathbf{R}_{v}\mathbf{T}_{-\dot{e}} = \begin{bmatrix} \hat{r}_{x} & \hat{r}_{y} & \hat{r}_{z} & 0\\ \hat{u}_{x} & \hat{u}_{y} & \hat{u}_{z} & 0\\ -\hat{l}_{x} & -\hat{l}_{y} & -\hat{l}_{z} & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -e_{x}\\ 0 & 1 & 0 & -e_{y}\\ 0 & 0 & 1 & -e_{z}\\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \hat{r} & -\hat{r} \cdot \vec{e}\\ \hat{u} & -\hat{u} \cdot \vec{e}\\ -\hat{l} & \hat{l} \cdot \vec{e}\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Transform a world-space point into a point in the eye-space

Viewing Transform in OpenGL

OpenGL utility (glu) library provides a viewing transformation function:

gluLookAt (double eyex, double eyey, double eyez, double centerx, double centery, double centerz, double upx, double upy, double upz)

• Computes the same transformation that we derived and composes it with the current matrix

Same to glm::gtc::matrix_transform::lookAt (..) Some tutorial: <u>https://learnopengl.com/Getting-</u> <u>started/Camera</u>

Example in the Skeleton Codes of PA2

```
void setCamera ()
{ ...
// initialize camera frame transforms
  for (i=0; i < cameraCount; i++ )
   double* c = cameras[i];
   wld2cam.push_back(FrameXform());
   glPushMatrix();
   glLoadldentity();
   gluLookAt(c[0],c[1],c[2], c[3],c[4],c[5], c[6],c[7],c[8]);
   glGetDoublev( GL_MODELVIEW_MATRIX, wld2cam[i].matrix() );
   glPopMatrix();
   cam2wld.push_back(wld2cam[i].inverse());
```

12

Projections

Map 3D points in eye space to 2D points in image space

- Two common methods
 - Orthographic projection
 - Perspective projection

Orthographic Projection

Projects points along lines parallel to z-axis

- Also called parallel projection
- Used for top and side views in drafting and modeling applications
- Appears unnatural due to lack of perspective foreshortening

Notice that the parallel lines of the tiled floor remain parallel after orthographic projection!

Orthographic Projection

 The projection matrix for orthographic projection is very simple

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \\ \mathbf{1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{1} \end{bmatrix}$$

Next step is to convert points to NDC

View Volume and Normalized Device Coordinates

Define a view volume

 Compose projection with a scale and a translation that maps eye coordinates to normalized device coordinates

Normalized Device Coordinates

Orthographic Projections to NDC

Scale the z coordinate in exactly the same way .Technically, this coordinate is not part of the projection. But, we will use this value of z for other purposes

Some sanity checks:

$$x'(l) = \frac{2l}{r-l} - \frac{r+l}{r-l} = -\frac{r-l}{r-l} = -1$$

Orthographic Projection in OpenGL

This matrix is constructed by the following OpenGL call:

void glOrtho(double left, double right, double bottom, double top, double near, double far);

Same to glm::gtc::matrix_transform::ortho (..)

Perspective Projection

- Artists (Donatello, Brunelleschi, Durer, and Da Vinci) during the renaissance discovered the importance of perspective for making images appear realistic
- Perspective causes objects nearer to the viewer to appear larger than the same object would appear farther away
- Homogenous coordinates allow perspective projections using linear operators

Signs of Perspective

Lines in projective space always intersect at a point

Perspective Projection for a Pinhole Camera

Perspective Projection Matrix

The simplest transform for perspective projection is:

$$\begin{bmatrix} wx' \\ wy' \\ wz' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- We divide by w to make the fourth coordinate 1
 - In this example, w = z
 - Therefore, x' = x / z, y' = y / z, z' = 0

Normalized Perspective

• As in the orthographic case, we map to normalized device coordinates

NDC Perspective Matrix

• The values of left, right, top, and bottom are specified at the near depth. Let's try some sanity checks:

NDC Perspective Matrix

• The values of left, right, top, and bottom are specified at the near depth. Let's try some sanity checks:

$$z = far \Rightarrow z' = \frac{far \frac{far + near}{far - near} + \frac{-2 \cdot far \cdot near}{far - near}}{far}}{far} = \frac{\frac{far (far - near)}{far}}{far}}{far} = 1$$
$$z = near \Rightarrow z' = \frac{near \frac{far + near}{far - near} + \frac{-2 \cdot far \cdot near}{far - near}}{near}}{near} = \frac{\frac{near (near - far)}{far}}{near}}{near} = -1$$

Perspective in OpenGL

 OpenGL provides the following function to define perspective transformations:

 Some think that using glFrustum() is nonintuitive.
 So OpenGL provides a function with simpler, but less general capabilities

gluPerspective()

Simple "cameralike" model Can only specify symmetric frustums

Substituting the extents into glFrustum()

Example in the Skeleton Codes of PA2

```
void reshape( int w, int h)
 width = w; height = h;
 glViewport(0, 0, width, height);
 gIMatrixMode(GL_PROJECTION); // Select The Projection Matrix
                 // Reset The Projection Matrix
 glLoadIdentity();
 // Define perspective projection frustum
 double aspect = width/double(height);
 gluPerspective(45, aspect, 1, 1024);
 glMatrixMode(GL_MODELVIEW);
                                       // Select The Modelview Matrix
```

glLoadldentity();

// Reset The Projection Matrix

Class Objectives were:

- Know camera setup parameters
- Understand viewing and projection processes

Homework

• Watch SIGGRAPH Videos

Go over the next lecture slides

(Optional) PA3

- PA2: perform the transformation at the modeling space
- PA3: perform the transformation at the viewing space

Next Time

Interaction

