
CS380: Computer Graphics
Interacting with a 3D World

Sung-Eui Yoon
(윤성의)

Course URL:
http://sgvr.kaist.ac.kr/~sungeui/CG/

3

Class Objectives
●Read a mesh representation
●Understand a selection method and a

virtual-trackball interface

●Related chapter: Chapter 5, Interaction

4

●How do we specify 3D objects?
● Simple mathematical functions, z = f(x,y)
● Parametric functions, (x(u,v), y(u,v), z(u,v))
● Implicit functions, f(x,y,z) = 0

● Build up from simple primitives
● Point – nothing really to see
● Lines – nearly see through
● Planes – a surface

Primitive 3D

5

Simple Planes or Facets
● Surfaces modeled as connected planar

facets
● N (>3) vertices, each with 3 coordinates
● Minimally a triangle

6

● Triangles are commonly used
● Triangles are simple and convex

●Why is convexity important?
● Simplify rasterization processes, which will be

discussed later

Why Triangles?

7

● Arbitrary polygons can be decomposed into
triangles

● Decomposing a convex n-sided polygon is trivial
● Suppose the polygon has ordered vertices {v0, v1, ... vn}
● It can be decomposed into triangles {(v0,v1,v2),

{v0,v2,v3), (v0,vi,vi+1), ... (v0,vn-1,vn)}

● Decomposing a non-convex polygon is non-trivial
● Sometimes have to introduce new vertices

Why Triangles?

8

● Triangles can approximate any 2-dimensional
shape (or 3D surface)
● Polygons are a locally linear (planar) approximation

● Improve the quality of fit by increasing the
number edges or faces

Why Triangles?

9

Specifying a Face
● Face or facet

Face [v0.x, v0.y, v0.z] [v1.x, v1.y, v1.z] … [vN.x, vN.y, vN.z]

● Sharing vertices via indirection
Vertex[0] = [v0.x, v0.y, v0.z]

Vertex[1] = [v1.x, v1.y, v1.z]

Vertex[2] = [v2.x, v2.y, v2.z]

:

Vertex[N] = [vN.x, vN.y, vN.z]

Face v0, v1, v2, … vN

v0

v1
v2

v3

10

Vertex Specification
● Where

● Geometric coordinates [x, y, z]

● Attributes
● Color values [r, g, b]
● Texture Coordinates [u, v]

● Orientation
● Inside vs. Outside
● Encoded implicitly in ordering

11

Normal Vector
● Often called normal, [nx, ny, nz]

● Normal to a surface is a vector perpendicular to
the surface
●Will be used in illumination

●
● Normalized: �𝑛𝑛 =

[𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦 ,𝑛𝑛𝑧𝑧]

𝑛𝑛𝑥𝑥2 + 𝑛𝑛𝑦𝑦2 + 𝑛𝑛𝑧𝑧2

12

Drawing Faces in OpenGL
glBegin(GL_POLYGON);
foreach (Vertex v in Face) {

glColor4d(v.red, v.green, v.blue, v.alpha);
glNormal3d(v.norm.x, v.norm.y, v.norm.z);
glTexCoord2d(v.texture.u, v.texture.v);
glVertex3d(v.x, v.y, v.z);

}
glEnd();

● Heavy-weight model
● Attributes specified for every vertex

● Redundant
● Vertex positions often shared by at least 3 faces
● Vertex attributes are often face attributes (e.g. face

normal)

13

Decoupling Vertex and Face
Attributes via Indirection
● Use vertex index for defining faces
● Works for many cases

● Used with vertex array or vertex buffer objects in
OpenGL

● Exceptions:
● Regions where the surface changes materials
● Regions of high curvature (a crease)

14

3D File Formats
● MAX – Studio Max
● DXF – AutoCAD

● Supports 2-D and 3-D; binary
● 3DS – 3D studio

● Flexible; binary
● VRML – Virtual reality modeling language

● ASCII – Human readable (and writeable)
● OBJ – Wavefront OBJ format

● ASCII
● Extremely simple
● Widely supported

15

OBJ File Tokens
● File tokens are listed below

some text
Rest of line is a comment

v float float float
A single vertex’s geometric position in space

vn float float float
A normal

vt float float
A texture coordinate

16

OBJ Face Varieties
f int int int ... (vertex only)

or
f int/ int int/ int int/ int . . . (vertex & texture)

or
f int/ int/ int int/ int/ int int/ int/ int … (vertex,

texture, & normal)

● The arguments are 1-based indices into the
arrays
● Vertex positions
● Texture coordinates
● Normals, respectively

17

OBJ Example
● Vertices followed by faces

● Faces reference previous
vertices by integer index

● 1-based

A simple cube
v 1 1 1
v 1 1 -1
v 1 -1 1
v 1 -1 -1
v -1 1 1
v -1 1 -1
v -1 -1 1
v -1 -1 -1
f 1 3 4
f 5 6 8
f 1 2 6
f 3 7 8
f 1 5 7
f 2 4 8

18

OBJ Sources
● Google “3d mesh obj”

● Most modeling programs export .OBJ files
● Most rendering packages read in .OBJ files

19

Picking and Selection
● Basic idea: Identify objects selected by the user

● Click-selection: select one object at a time
● Sweep-selection: select objects within a bounding

rectangle

Demo
(click h)

20

Picking and Selection
● Several ways to implement selection:
●Object-based approaches

● Find screen space bounding boxes contained in
pick region

● Compute a pick ray and ray trace to find
intersections

● Related to collision detection and ray tracing

● Image-space approaches
● Render to back buffer using colors that encode

object IDs and return ID under pick point

21

Selection with the Back Buffer
● Selects only objects that are

visible
● Render objects to back buffer

with color that encodes ID
● Back buffer is never seen

● Use glReadPixels() to read the
pixel at the pick point

Front buffer

Back buffer

25

Interaction Paradigms
● Can move objects or camera

● Object moving is most intuitive if the object
“sticks” to the mouse while dragging

26

Interaction Paradigms
●Move w.r.t. to camera frame

● Pan – move in plane perpendicular to view
direction

● Dolly – move along the view direction
● Zoom - looks like dolly: objects get bigger, but

position remains fixed
● Rotate

●up/down controls elevation angle
●left/right controls azimuthal angle

● Roll – spin about the view direction
● Trackball – can combine rotate and roll

27

Interaction Paradigms
● Move w.r.t to modeling (or world) frame

● Combines both
● Presents a frame where you can drag

w.r.t the world axes
● Dragging origin moves w.r.t. to camera

frame

28

Interaction - Trackball
● A common UI for manipulating objects
● 2 degree of freedom device
● Differential behavior provides a intuitive rotation

specification

Trackball demo

29

A Virtual Trackball
● Imagine the viewport as floating above, and just

touching an actual trackball
● You receive the coordinates in screen space of the

MouseDown() and MouseMove() events
● What is the axis of rotation?
● What is the angle of rotation?

30

Computing the Rotation

a

● Construct a vector from the center of rotation of the
virtual trackball to the point of the MouseDown() event

● Construct a 2nd vector from the center of rotation for
a given MouseMove() event

● Normalize , and , and then compute

● Then find and construct

𝑏𝑏

�⃑�𝑎
𝑏𝑏

�𝑎𝑎 =
�⃑�𝑎
�⃑�𝑎

�𝑏𝑏 =
𝑏𝑏

𝑏𝑏

→𝑿𝑿 = �𝑎𝑎 × �𝑏𝑏

→𝑿𝑿

𝐑𝐑 =

𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅(𝜽𝜽,
𝑿𝑿
𝑿𝑿

)

a

𝜽𝜽 = 𝒄𝒄𝒄𝒄𝒔𝒔−𝟏𝟏 �𝒂𝒂 ⋅ �𝒃𝒃

31

Class Objectives were:
●Read a mesh representation
●Understand a selection method and a

virtual-trackball interface

●Related chapter: Chapter 5, Interaction

	슬라이드 번호 1
	Class Objectives
	Primitive 3D
	Simple Planes or Facets
	Why Triangles?
	Why Triangles?
	Why Triangles?
	Specifying a Face
	Vertex Specification
	Normal Vector
	Drawing Faces in OpenGL
	Decoupling Vertex and Face Attributes via Indirection
	3D File Formats
	OBJ File Tokens
	OBJ Face Varieties
	OBJ Example
	OBJ Sources
	Picking and Selection
	Picking and Selection
	Selection with the Back Buffer
	Interaction Paradigms
	Interaction Paradigms
	Interaction Paradigms
	Interaction - Trackball
	A Virtual Trackball
	Computing the Rotation
	Class Objectives were:

