
CS380: Computer Graphics
Interacting with a 3D World

Sung-Eui Yoon
(윤성의)

Course URL:
http://sgvr.kaist.ac.kr/~sungeui/CG/



3

Class Objectives
●Read a mesh representation
●Understand a selection method and a 

virtual-trackball interface

●Related chapter: Chapter 5, Interaction
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●How do we specify 3D objects?
● Simple mathematical functions, z = f(x,y)
● Parametric functions, (x(u,v), y(u,v), z(u,v))
● Implicit functions, f(x,y,z) = 0

● Build up from simple primitives
● Point – nothing really to see
● Lines – nearly see through
● Planes – a surface

Primitive 3D
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Simple Planes or Facets
● Surfaces modeled as connected planar 

facets
● N (>3) vertices, each with 3 coordinates
● Minimally a triangle
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● Triangles are commonly used
● Triangles are simple and convex

●Why is convexity important? 
● Simplify rasterization processes, which will be 

discussed later

Why Triangles?
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● Arbitrary polygons can be decomposed into 
triangles

● Decomposing a convex n-sided polygon is trivial
● Suppose the polygon has ordered vertices {v0, v1, ... vn}
● It can be decomposed into triangles {(v0,v1,v2), 

{v0,v2,v3), (v0,vi,vi+1), ... (v0,vn-1,vn)}

● Decomposing a non-convex polygon is non-trivial
● Sometimes have to introduce new vertices

Why Triangles?
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● Triangles can approximate any 2-dimensional 
shape (or 3D surface)
● Polygons are a locally linear (planar) approximation

● Improve the quality of fit by increasing the 
number edges or faces

Why Triangles?
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Specifying a Face
● Face or facet

Face [v0.x, v0.y, v0.z] [v1.x, v1.y, v1.z] … [vN.x, vN.y, vN.z]

● Sharing vertices via indirection
Vertex[0] = [v0.x, v0.y, v0.z]

Vertex[1] = [v1.x, v1.y, v1.z]

Vertex[2] = [v2.x, v2.y, v2.z]

:

Vertex[N] = [vN.x, vN.y, vN.z]

Face v0, v1, v2, … vN

v0

v1
v2

v3
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Vertex Specification
● Where

● Geometric coordinates [x, y, z]

● Attributes
● Color values [r, g, b]
● Texture Coordinates [u, v]

● Orientation
● Inside vs. Outside
● Encoded implicitly in ordering
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Normal Vector
● Often called normal, [nx, ny, nz]

● Normal to a surface is a vector perpendicular to 
the surface
●Will be used in illumination

●
● Normalized: �𝑛𝑛 =

[𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦 ,𝑛𝑛𝑧𝑧]

𝑛𝑛𝑥𝑥2 + 𝑛𝑛𝑦𝑦2 + 𝑛𝑛𝑧𝑧2
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Drawing Faces in OpenGL
glBegin(GL_POLYGON);
foreach (Vertex v in Face) {

glColor4d(v.red, v.green, v.blue, v.alpha);
glNormal3d(v.norm.x, v.norm.y, v.norm.z);
glTexCoord2d(v.texture.u, v.texture.v);
glVertex3d(v.x, v.y, v.z);

}
glEnd();

● Heavy-weight model 
● Attributes specified for every vertex

● Redundant 
● Vertex positions often shared by at least 3 faces 
● Vertex attributes are often face attributes (e.g. face 

normal)
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Decoupling Vertex and Face 
Attributes via Indirection
● Use vertex index for defining faces
● Works for many cases

● Used with vertex array or vertex buffer objects in 
OpenGL

● Exceptions:
● Regions where the surface changes materials
● Regions of high curvature (a crease)
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3D File Formats
● MAX – Studio Max
● DXF – AutoCAD

● Supports 2-D and 3-D; binary
● 3DS – 3D studio

● Flexible; binary
● VRML – Virtual reality modeling language

● ASCII – Human readable (and writeable)
● OBJ – Wavefront OBJ format

● ASCII 
● Extremely simple
● Widely supported
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OBJ File Tokens
● File tokens are listed below

# some text 
Rest of line is a comment 

v float float float 
A single vertex’s geometric position in space

vn float float float
A normal

vt float float
A texture coordinate



16

OBJ Face Varieties
f int int int ... (vertex only)

or
f int/ int int/ int int/ int . . . (vertex & texture)

or
f int/ int/ int int/ int/ int int/ int/ int … (vertex, 

texture, & normal)

● The arguments are 1-based indices into the 
arrays
● Vertex positions
● Texture coordinates
● Normals, respectively
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OBJ Example
● Vertices followed by faces

● Faces reference previous
vertices by integer index

● 1-based

# A simple cube
v 1 1 1
v 1 1 -1
v 1 -1 1
v 1 -1 -1
v -1 1 1
v -1 1 -1
v -1 -1 1
v -1 -1 -1
f 1 3 4
f 5 6 8
f 1 2 6
f 3 7 8
f 1 5 7
f 2 4 8
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OBJ Sources
● Google “3d mesh obj”

● Most modeling programs export .OBJ files
● Most rendering packages read in .OBJ files
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Picking and Selection
● Basic idea: Identify objects selected by the user

● Click-selection: select one object at a time
● Sweep-selection: select objects within a bounding 

rectangle

Demo
(click h)
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Picking and Selection
● Several ways to implement selection:
●Object-based approaches

● Find screen space bounding boxes contained in 
pick region

● Compute a pick ray and ray trace to find 
intersections

● Related to collision detection and ray tracing

● Image-space approaches
● Render to back buffer using colors that encode 

object IDs and return ID under pick point
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Selection with the Back Buffer
● Selects only objects that are 

visible
● Render objects to back buffer 

with color that encodes ID 
● Back buffer is never seen 

● Use glReadPixels() to read the  
pixel at the pick point

Front buffer

Back buffer
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Interaction Paradigms
● Can move objects or camera

● Object moving is most intuitive if the object 
“sticks” to the mouse while dragging
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Interaction Paradigms
●Move w.r.t. to camera frame

● Pan – move in plane perpendicular to view 
direction

● Dolly – move along the view direction
● Zoom - looks like dolly: objects get bigger, but 

position remains fixed
● Rotate

●up/down controls elevation angle
●left/right controls azimuthal angle

● Roll – spin about the view direction
● Trackball – can combine rotate and roll
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Interaction Paradigms
● Move w.r.t to modeling (or world) frame

● Combines both
● Presents a frame where you can drag

w.r.t the world axes
● Dragging origin moves w.r.t. to camera

frame
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Interaction - Trackball
● A common UI for manipulating objects
● 2 degree of freedom device
● Differential behavior provides a intuitive rotation

specification

Trackball demo
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A Virtual Trackball
● Imagine the viewport as floating above, and just 

touching an actual trackball
● You receive the coordinates in screen space of the 

MouseDown() and MouseMove() events
● What is the axis of rotation?
● What is the angle of rotation?
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Computing the Rotation

a

● Construct a vector       from the center of rotation of the 
virtual trackball to the point of the MouseDown() event

● Construct a 2nd vector           from the center of rotation for 
a given MouseMove() event

● Normalize                , and                   , and then compute 

● Then find                                   and construct 

𝑏𝑏

�⃑�𝑎
𝑏𝑏

�𝑎𝑎 =
�⃑�𝑎
�⃑�𝑎

�𝑏𝑏 =
𝑏𝑏

𝑏𝑏

→𝑿𝑿 = �𝑎𝑎 × �𝑏𝑏

→𝑿𝑿

𝐑𝐑 =

𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅(𝜽𝜽,
𝑿𝑿
𝑿𝑿

)

a

𝜽𝜽 = 𝒄𝒄𝒄𝒄𝒔𝒔−𝟏𝟏 �𝒂𝒂 ⋅ �𝒃𝒃
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Class Objectives were:
●Read a mesh representation
●Understand a selection method and a 

virtual-trackball interface

●Related chapter: Chapter 5, Interaction
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