CS380: Computer Graphics Clipping and Culling

Sung-Eui Yoon (윤성의)

Course URL: http://sgvr.kaist.ac.kr/~sungeui/CG/

Class Objectives

- Understand clipping and culling
- Understand view-frustum, back-face culling, and hierarchical culling methods
- Know various possibilities to perform culling and clipping in the rendering pipeline
- Related chapter:
 - Ch. 6: Clipping and Culling

Culling and Clipping

Culling

- Throws away entire objects and primitives that cannot possibly be visible
- An important rendering optimization (esp. for large models)
- Clipping
 - "Clips off" the visible portion of a primitive
 - Simplifies rasterization
 - Also, used to create "cut-away" views

Culling Example

Power plant model (12 million triangles)

Culling Example

Full model 12 Mtris View frustum culling Occulsion culling 10 Mtris 1 Mtris

Lines and Planes

Implicit equation for line (plane):

$$n_{x}x + n_{y}y - d = 0$$

$$\begin{bmatrix} n_{x} & n_{y} & -d \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

$$\Rightarrow \quad \overline{l} \cdot \dot{p} = 0$$

• If \vec{n} is normalized then d gives the distance of the line (plane) from the origin along \vec{n}

Lines and Planes

- Lines (planes) partition 2D (3D) space:
 - Positive and negative *half-spaces*
- The intersection of negative halfspaces defines a convex region

Testing Objects for Containment

Conservative Testing

- Use cheap, conservative bounds for trivial cases
- Can use more accurate, more expensive tests for ambiguous cases if needed

Hierarchical Culling

- Bounding volume hierarchies (BVHs)
 - Accelerate culling by rejecting/accepting entire subtrees at a time
 - Uses axis-aligned bounding boxes
 - Also known as object partitioning hierarchies

Hierarchical Culling w/ BVH

 Simple traversal algorithm: while(node is indeterminate) recurse on children

Test-Of-Time 2006 Award

RT-DEFORM: Interactive Ray Tracing of Dynamic Scenes using BVHs Christian Lauterbach, Sung-eui Yoon, David Tuft, Dinesh Manocha IEEE Interactive Ray Tracing, 2006 <image><image><image><image><text><text><text><text>

Keywords: my tracing, bounding volume historchies, defer models, semation

INTEROUCTION
 Ray tracing is a classic problem in computer graphics and
moded in the literature for more than three decides. Mo
 's-mult addocated
 's-mult addocated
 's-multi-addocated
 's-multi-addocated

while: Is the pape, we proceed a single and officiant is in , often the matching of paritum does not change. We range uses with negots 'n comparison and neuronauttransy uses with negots 'n comparison and neuronauttransy uses with negots 'n comparison and neuronauttransy uses with negots and the neuronautory of the source of the neuronautory of the neuronautory of the critical efficiency of the neuronautory of the neuronautory pathy departments between accounter frames. We also go apply departies between accounter frames. We also go apply departed and the neuronautory department to the neuronautory of the cache officancy of the neuronautory departments. We have

View Frustum Culling

- Test objects against planes defining view frustum
- How do you compute them?

Back-Face Culling

- Special case of occlusion convex selfocclusion
 - For closed objects (has well-defined inside and outside) some parts of the surface must be blocked by other parts of the surface
- Specifically, the backside of the object is not visible

Face Plane Test

Compute the plane for the face:

$$\vec{n} = (\dot{v}_1 - \dot{v}_0) \times (\dot{v}_2 - \dot{v}_0)$$
$$d = \vec{n} \cdot \dot{v}_0$$

Cull if eye point in the negative half-space

Clipping a Line Segment against a Line

First check endpoints against the plane

- If they are on the same side, no clipping is needed
- Interpolate to get new point `

$$\dot{p}' = \dot{p}_0 + t(\dot{p}_1 - \dot{p}_0) \qquad \bar{l} \cdot \dot{p}' = 0$$

$$\bar{l} \cdot (\dot{p}_0 + t(\dot{p}_1 - \dot{p}_0)) = 0$$
$$t = \frac{-(\bar{l} \cdot \dot{p}_0)}{\bar{l} \cdot (\dot{p}_1 - \dot{p}_0)}$$

- p' p₀
- Vertex attributes interpolated the same way

 p_1

Clipping in the Pipeline - Too much details; skipped

Culling and Clipping in the Rendering Pipeline

View frustum culling, but performed in the application level

View frustum clipping and back-face culling can be done here

Back-face culling done in setup phase of rasterization

Class Objectives were:

- Understand clipping and culling
- Understand view-frustum, back-face culling, and hierarchical culling methods
- Know various possibilities to perform culling and clipping in the rendering pipeline

Homework

- Go over the next lecture slides before the class
- Watch 2 SIGGRAPH videos and submit your summaries before every Mon. class
- Submit your questions two times during the whole semester

Next Time

Rasterizing triangles

- Triangulating a polygon
- Interpolating parameters

