CS380: Computer Graphics Triangle Rasterization

Sung-Eui Yoon (윤성의)

Course URL: http://sgvr.kaist.ac.kr/~sungeui/CG/

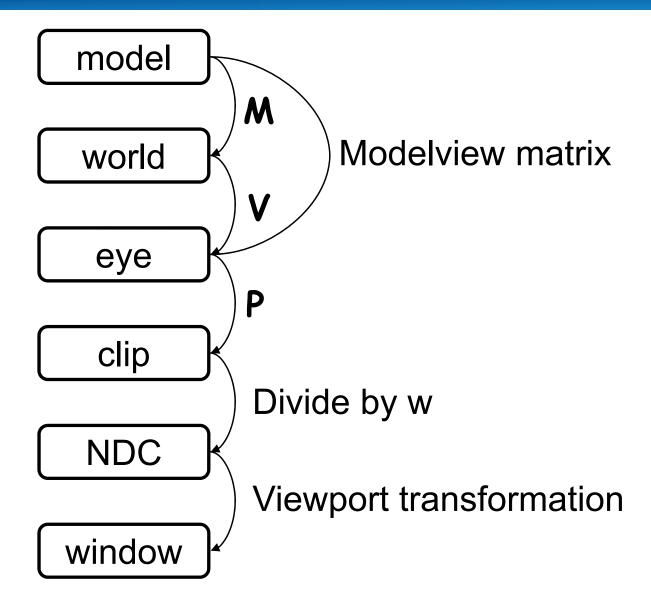
Class Objectives (Ch. 7)

- Understand triangle rasterization using edge-equations
- Understand mechanics for parameter interpolations
- Realize benefits of incremental algorithms
- At the last class:
 - Discussed clipping and culling methods of view-frustum, back-face, and hierarchical culling methods

Questions

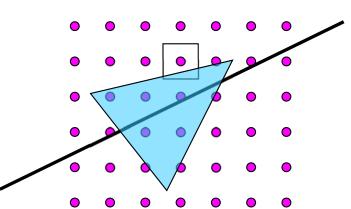
- How do we apply clipping and culling when there are transparent parts are included in objects? .. virtual optical lenses to obtain realistic view?
- I thought GPUs are exploited most only when extensive multi-threading is used. But up till now there doesn't seem to be any multithreading in the src codes in the lecture/homework materials.

Coordinate Systems



Primitive Rasterization

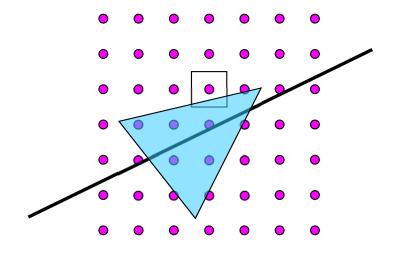
Rasterization converts vertex representation to pixel representation



- Coverage determination
 - Computes which pixels (samples) belong to a primitive
- Parameter interpolation
 - Computes parameters at covered pixels from parameters associated with primitive vertices

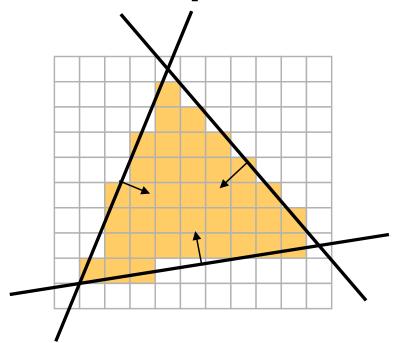
Coverage Determination

- Coverage is a 2D sampling problem
 - Commonly reduced to 1D problem of checking a sample point
- Possible coverage criteria:
 - Distance of the primitive to sample point (often used with lines)
 - Percent coverage of a pixel (used to be popular)
 - Sample is inside the primitive (assuming it is closed)



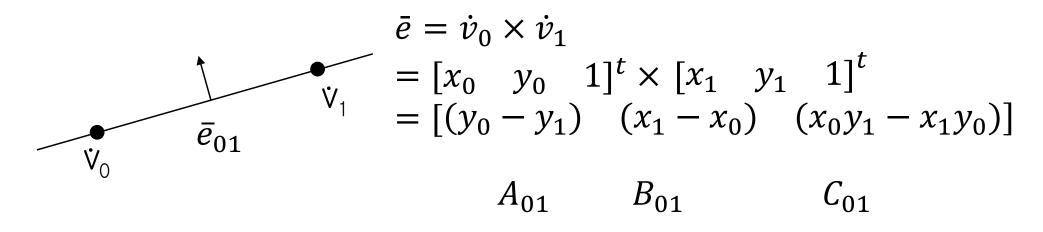
Rasterizing with Edge Equations

- Compute edge equations from vertices
- Compute interpolation equations from vertex parameters
- Traverse pixels evaluating the edge equations
- Draw pixels for which all edge equations are positive
- Interpolate parameters at pixels



Edge Equation Coefficients

 The cross product between 2 homogeneous points generates the line between them

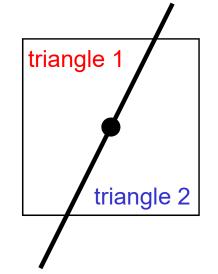


$$E(x,y) = \bar{e}_{01}(x,y) = A_{01}x + B_{01}y + C_{01}$$

A pixel at (x,y) is "inside" an edge if E(x,y)>0

Shared Edges

Suppose two triangles share an edge.
 Which covers the pixel when the edge passes through the sample (E(x,y)=0)?



Both

 Pixel color becomes dependent on order of triangle rendering

 Creates problems when rendering transparent objects - "double hitting"

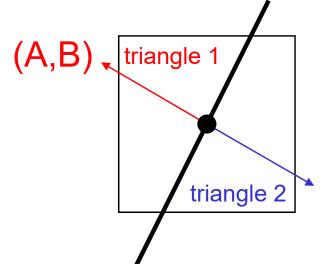
Neither

- Missing pixels create holes in otherwise solid surface
- We need a consistent tie-breaker!

Shared Edges

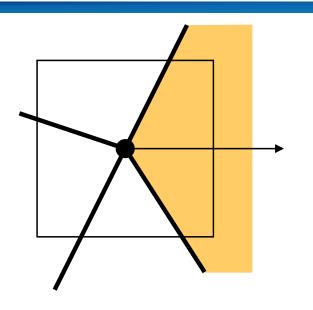
A common tie-breaker:

bool
$$t = \begin{cases} A > 0 & \text{if } A \neq 0 \\ B > 0 & \text{ot herwise} \end{cases}$$

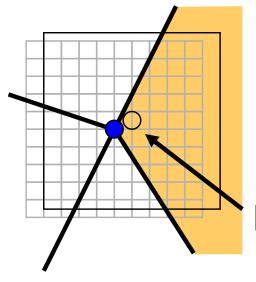


 Coverage determination becomes if(E(x,y) >0 || (E(x,y)==0 && t)) pixel is covered

Shared Vertices



- Use "inclusion direction" as a tie breaker
- Any direction can be used

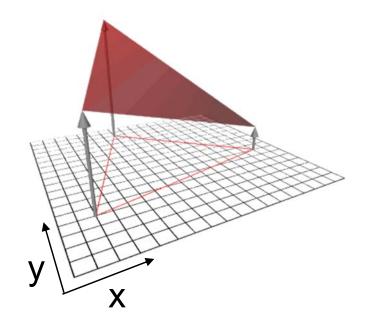


 Snap vertices to subpixel grid and displace so that no vertex can be at the pixel center

Pixel center

Interpolating Parameters

- Specify a parameter, say redness (r) at each vertex of the triangle
 - Linear interpolation creates a planar function



$$r(x,y) = A_r x + B_r y + C_r$$

Solving for Linear Interpolation **Equations**

Given the redness of the three vertices, we can set up the following linear system:

$$\begin{bmatrix} r_0 & r_1 & r_2 \end{bmatrix} = \begin{bmatrix} A_r & B_r & C_r \end{bmatrix} \begin{bmatrix} x_0 & x_1 & x_2 \\ y_0 & y_1 & y_2 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} A_r & B_r & C_r \end{bmatrix} = \begin{bmatrix} r_0 & r_1 & r_2 \end{bmatrix}$$

with the solution:
$$\begin{bmatrix} (y_1 - y_2) & (x_2 - x_1) & (x_1 y_2 - x_2 y_1) \\ (y_0 - y_2) & (x_2 - x_0) & (x_0 y_2 - x_2 y_0) \\ (y_0 - y_1) & (x_1 - x_0) & (x_0 y_1 - x_1 y_0) \end{bmatrix}$$

$$\det \begin{bmatrix} x_0 & x_1 & x_2 \\ y_0 & y_1 & y_2 \\ 1 & 1 & 1 \end{bmatrix}$$

Triangle Area

Area =
$$\frac{1}{2}$$
det $\begin{bmatrix} X_0 & X_1 & X_2 \\ y_0 & y_1 & y_2 \\ 1 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} \bar{e} = \dot{v}_0 \times \dot{v}_1 \\ = [x_0 & y_0 & 1]^t \times [x_1 & y_1 & 1]^t \\ = [(y_0 - y_1) & (x_1 - x_0) & (x_0 y_1 - x_1 y_0)] \end{bmatrix}$
= $\frac{1}{2}$ (($X_1 y_2 - X_2 y_1$) - ($X_0 y_2 - X_2 y_0$) + ($X_0 y_1 - X_1 y_0$)) \downarrow
= $\frac{1}{2}$ ($C_0 + C_1 + C_2$) // they are from edge equations; $C_2 = C_{01}$

- Area = 0 means that the triangle is not visible
- Area < 0 means the triangle is back facing:
 - Reject triangle if performing back-face culling
 - Otherwise, flip edge equations by multiplying by -1

Interpolation Equation

 The parameter plane equation is just a linear combination of the edge equations

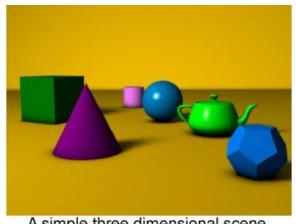
$$\begin{bmatrix} A_r & B_r & C_r \end{bmatrix} = \frac{1}{2 \cdot area} \begin{bmatrix} r_0 & r_1 & r_2 \end{bmatrix} \begin{bmatrix} \bar{e}_0 \\ \bar{e}_1 \\ \bar{e}_2 \end{bmatrix}$$

$$\overline{e_o}$$
, $\overline{e_1}$, $\overline{e_2}$ are vectors of edge equations $\overline{e_2}$ are $from\ A_{01}$, B_{01} , C_{01}

Clearer notations are used in the book

Z-Buffering

- When rendering multiple triangles we need to determine which triangles are visible
- Use z-buffer to resolve visibility
 - Stores the depth at each pixel
- Initialize z-buffer to 1 (far value)
 - Post-perspective z values lie between 0 and 1
- Linearly interpolate depth (z_{tri}) across triangles
- If z_{tri}(x,y) < zBuffer[x][y] write to pixel at (x,y) $zBuffer[x][y] = z_{tri}(x,y)$



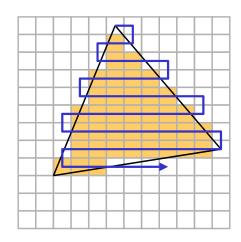
A simple three dimensional scene



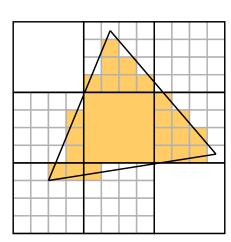
Z-buffer representation

Traversing Pixels

- Free to traverse pixels
 - Edge and interpolation equations can be computed at any point



- Try to minimize work
 - Restrict traversal to primitive bounding box
 - Hierarchical traversal
 - Knock out tiles of pixels (say 4x4) at a time



Incremental Algorithms

 Some computation can be saved by updating the edge and interpolation equations incrementally:

$$E(x,y) = Ax + By + C$$

$$E(x + \Delta, y) = A(x + \Delta) + By + C$$

$$= E(x,y) + A \cdot \Delta$$

$$E(x,y + \Delta) = Ax + B(y + \Delta) + C$$

$$= E(x,y) + B \cdot \Delta$$

 Equations can be updated with a single addition!

Triangle Setup

- Compute edge equations
 - 3 cross products
- Compute triangle area
 - A few additions
- Cull zero area and back-facing triangles and/or flip edge equations
- Compute interpolation equations
 - Matrix/vector product per parameter

Massive Models

100,000,000 primitives 1,000,000 pixels

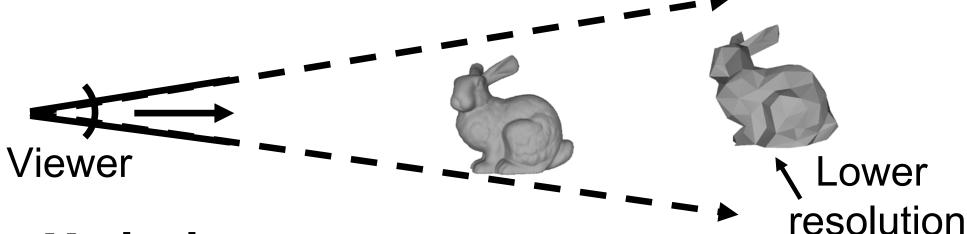
100 visible primitives/pixel

- Cost to render a single triangle
 - Specify 3 vertices
 - Compute 3 edge equations
 - Evaluate equations one

St. Mathew models consisting of about 400M triangles (Michelangelo Project)

Multi-Resolution or Levels-of-Detail (LOD) Techniques

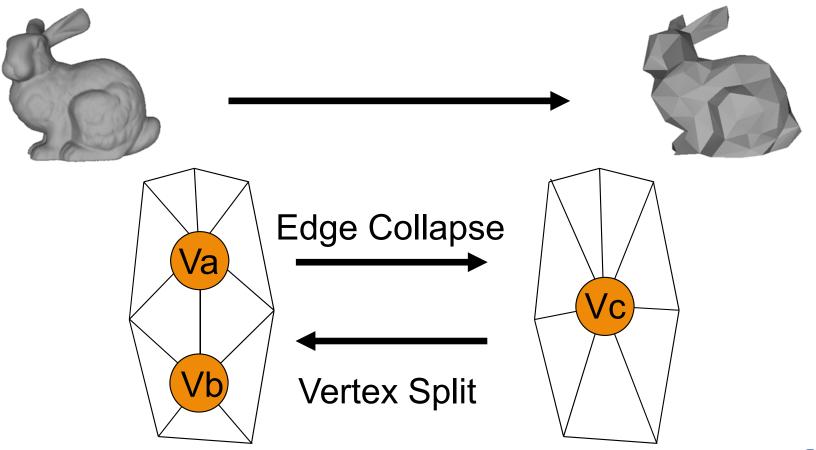
- Basic idea
 - Render with fewer triangles when model is farther from viewer



- Methods
 - Polygonal simplification

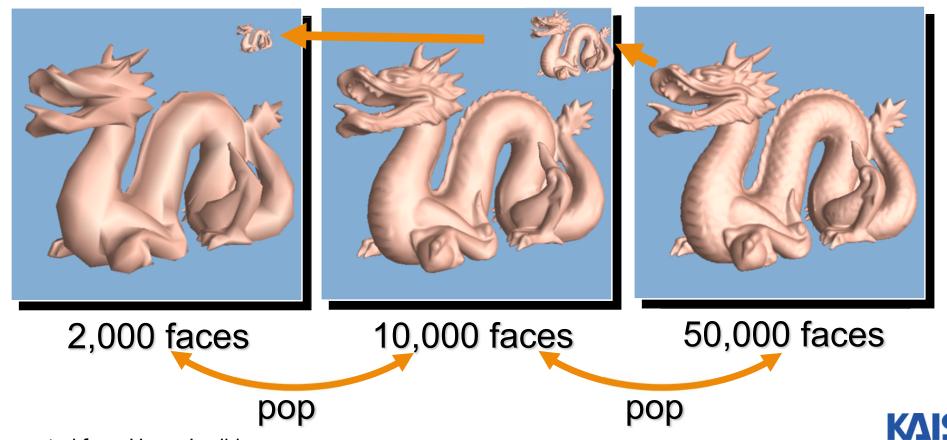
Polygonal Simplification

Method for reducing the polygon count of mesh



Static LODs

- Pre-compute discrete simplified meshes
 - Switch between them at runtime
 - Has very low LOD selection overhead



What if there are so many objects?

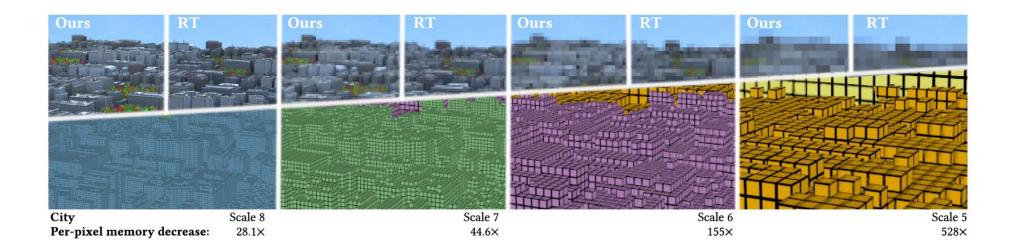
From "cars", a Pixar movie

Some solution: Stochastic Simplification of Aggregate Detail

Cook et al., ACM SIGGRAPH 2007

Deep Appearance Prefiltering, SIGGRAPH 23

 Prefiltering complex appearance of the scene using deep learning approaches



Class Objectives were:

- Understand triangle rasterization using edge-equations
- Understand mechanics for parameter interpolations
- Realize benefits of incremental algorithms

Homework

- Go over the next lecture slides before the class
- Watch 2 SIGGRAPH videos and submit your summaries before every Mon. class
 - Just one paragraph for each summary
- Submit questions two times during the whole semester

Next Time

- Illumination and shading
- Texture mapping

