CS380: Radiometry and Rendering Equation

Sung-Eui Yoon (윤성의)

Course URL: <u>http://sglab.kaist.ac.kr/~sungeui/CG/</u>

Class Objectives (Ch. 12 and 13)

• Know terms of:

- Hemispherical coordinates and integration
- Various radiometric quantities (e.g., radiance)
- Basic material function, BRDF
- Understand the rendering equation
- Radiometric quantities
 - Briefly touched here
 - Refer to my book, if you want to know more

• Last time:

 Covered basic ray tracing and its acceleration data structure

Motivation

Light and Material Interactions

- Physics of light
- Radiometry
- Material properties

Rendering equation

Models of Light

Quantum optics

- Fundamental model of the light
- Explain the dual wave-particle nature of light

Wave model

- Simplified quantum optics
- Explains diffraction, interference, and polarization

Geometric optics

- Most commonly used model in CG
- Size of objects >> wavelength of light
- Light is emitted, reflected, and transmitted

Radiometry and Photometry

• Photometry

• Quantify the perception of light energy

Radiometry

- Measurement of light energy: critical component for photo-realistic rendering
- Light energy flows through space, and varies with time, position, and direction
- Radiometric quantities: densities of energy at particular places in time, space, and direction
- Briefly discussed here; refer to my book

Hemispheres

Hemisphere

- Two-dimensional surfaces
- Direction
 - Point on (unit) sphere

 $\theta \in \left[0, \frac{\pi}{2}\right]$ $\varphi \in [0, 2\pi]$

From kavita's slides

Solid Angles

2D

Full circle = 2pi radians

Full sphere = 4pi steradians

 $\Omega = \frac{A}{R^2}$

3D

View on the hemisphere

Hemispherical Coordinates

Direction, Point on (unit) sphere

 $dA = (r\sin\theta d\varphi)(rd\theta)$

From kavita's slides

Hemispherical Coordinates

Direction, Point on (unit) sphere

$$\sin \theta = \frac{x}{r},$$
$$x = r \sin \theta$$

$$dA = (r\sin\theta d\varphi)(rd\theta)$$

From kavita's slides

Hemispherical Coordinates

Differential solid angle

$$d\omega = \frac{dA}{r^2} = \sin\theta d\theta d\varphi$$

Hemispherical Integration

• Area of hemispehre:

$$\int_{\Omega_x} d\omega = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi/2} \sin \theta d\theta$$
$$= \int_{0}^{2\pi} d\varphi \left[-\cos \theta \right]_{0}^{\pi/2}$$
$$= \int_{0}^{2\pi} d\varphi$$
$$= 2\pi$$

Irradiance

- Incident radiant power per unit area (dP/dA)
 - Area density of power

• Symbol: E, unit: W/ m²

 Area power density exiting a surface is called radiance exitance (M) or radiosity (B)

• For example

- A light source emitting 100 W of area 0.1 m²
- Its radiant exitance is 1000 W/ m²

Radiance

• Radiant power at x in direction θ

- $L(x \to \Theta)$: 5D function
 - Per unit area
 - Per unit solid angle

Important quantity for rendering

Radiance

• Radiant power at x in direction θ

L(x→Θ) : 5D function
Per unit area
Per unit solid angle

$$L(x \to \Theta) = \frac{d^2 P}{dA^{\perp} d\omega_{\Theta}}$$

Θ

- Units: Watt / (m² sr)
- Irradiance per unit solid angle
- 2nd derivative of P
- Most commonly used term

Radiance: Projected Area

Why per unit projected surface area

dA

Sensitivity to Radiance

Responses of sensors (camera, human eye) is proportional to radiance

From kavita's slides

Pixel values in image proportional to radiance received from that direction

Properties of Radiance

Invariant along a straight line (in vacuum)

From kavita's slides

Invariance of Radiance

We can prove it based on the assumption the conservation of energy.

Relationships

Radiance is the fundamental quantity

$$L(x \to \Theta) = \frac{d^2 P}{dA^{\perp} d\omega_{\Theta}}$$

Angle

• Radiosity:

$$B = \int L(x \to \Theta) \cdot \cos \theta$$

$$Solid$$
Angle

·dw

Light and Material Interactions

- Physics of light
- Radiometry
- Material properties

From kavita's slides

Rendering equation

Materials

KΔIST

From kavita's slides

Bidirectional Reflectance Distribution Function (BRDF)

$$f_r(x, \Psi \to \Theta) = \frac{dL(x \to \Theta)}{dE(x \leftarrow \Psi)} = \frac{dL(x \to \Theta)}{L(x \leftarrow \Psi)\cos\psi dw_{\Psi}}$$

BRDF special case: ideal diffuse

Pure Lambertian

 $f_r(x, \Psi \to \Theta) = \frac{\rho_d}{\pi}$

 $\rho_{d} = \frac{Energy_{out}}{Energy_{in}}$ $0 \leq \rho_d \leq 1$

Savita Bala, Computer Science, Cornell University

Other Distribution Functions: BxDF

BSDF (S: Scattering)

 The general form combining BRDF + BTDF (T: Transmittance)

BSSRDF (SS: Surface Scattering)

Handle subsurface scattering

wiki

ΚΔΙς

Light and Material Interactions

- Physics of light
- Radiometry
- Material properties

Rendering equation

Light Transport

Goal

 Describe steady-state radiance distribution in the scene

Assumptions

- Geometric optics
- Achieves steady state instantaneously

- Describes energy transport in the scene
- Input
 - Light sources
 - Surface geometry
 - Reflectance characteristics of surfaces
- Output
 - Value of radiances at all surface points in all directions

$$L(x \rightarrow \Theta) = L_e(x \rightarrow \Theta) + L_r(x \rightarrow \Theta)$$

 $L_r(x \to \Theta) = \int_{\Psi} L(x \leftarrow \Psi) f_r(x, \Psi \to \Theta) \cos \theta_x dw_{\Psi},$

Applicable to all wave lengths

Rendering Equation: Area Formulation

 $L(x \to \Theta) = L_e(x \to \Theta) + \int f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_x \cdot d\omega_{\Psi}$

Ray-casting function: what is the nearest visible surface point seen from x in direction Ψ ?

 $y = vp(x, \Psi)$ $L(x \leftarrow \Psi) = L(vp(x, \Psi) \rightarrow -\Psi)$

© Kavita Bala, Computer Science, Cornell University

 $L(x \to \Theta) = L_e(x \to \Theta) + \int f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_x \cdot d\omega_{\Psi}$ Ω_{ν}

$$y = vp(x, \Psi)$$

$$L(x \leftarrow \Psi) = L(vp(x, \Psi) \rightarrow -\Psi)$$

$$d\omega_{\Psi} = \frac{dA_y \cos \theta_y}{r_{xy}^2}$$

© Kavita Bala, Computer Science, Cornell University

Rendering Equation: Visible Surfaces

$$L(x \to \Theta) = L_e(x \to \Theta) + \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_x \cdot d\omega_{\Psi}$$

Coordinate transform
$$L(x \to \Theta) = L_e(x \to \Theta) + \int_{all \text{ surfaces}} f_r(\Psi \leftrightarrow \Theta) \cdot L(y \to -\Psi) \cos \theta_x \cdot \frac{\cos \theta_y}{r_{xy}^2} \cdot dA_y$$
$$y = vp(x, \Psi)$$

Integration domain = visible surface points y

 Integration domain extended to ALL surface points by including visibility function

Rendering Equation: All Surfaces

Two Forms of the Rendering Equation

Hemisphere integration

$$L_r(x \to \Theta) = \int_{\Psi} L(x \leftarrow \Psi) f_r(x, \Psi \to \Theta) \cos \theta_x dw_{\Psi}$$

Area integration (used as the form factor)

$$L_r(x \to \Theta) = \int_A L(y \to -\Psi) f_r(x, \Psi \to \Theta) \frac{\cos \theta_x \cos \theta_y}{r_{xy}^2} V(x, y) dA,$$

Class Objectives (Ch. 12 & 13) were:

• Know terms of:

- Hemispherical coordinates and integration
- Various radiometric quantities (e.g., radiance)
- Basic material function, BRDF
- Understand the rendering equation

Next Time

Monte Carlo rendering methods

