CS380:
 Radiometry and Rendering Equation

Sung-Eui Yoon (윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/CG/

Class Objectives (Ch. 12 and 13)

- Know terms of:
- Hemispherical coordinates and integration
- Various radiometric quantities (e.g., radiance)
- Basic material function, BRDF
- Understand the rendering equation
- Radiometric quantities
- Briefly touched here
- Refer to my book, if you want to know more
- Last time:
- Covered basic ray tracing and its acceleration data structure

Motivation

Light and Material Interactions

- Physics of light
- Radiometry
- Material properties

- Rendering equation

Models of Light

- Quantum optics
- Fundamental model of the light
- Explain the dual wave-particle nature of light
- Wave model
- Simplified quantum optics
- Explains diffraction, interference, and polarization
- Geometric optics
- Most commonly used model in CG
- Size of objects >> wavelength of light
- Light is emitted, reflected, and transmitted

Radiometry and Photometry

- Photometry
- Quantify the perception of light energy
- Radiometry
- Measurement of light energy: critical component for photo-realistic rendering
- Light energy flows through space, and varies with time, position, and direction
- Radiometric quantities: densities of energy at particular places in time, space, and direction
- Briefly discussed here; refer to my book

Hemispheres

- Hemisphere
- Two-dimensional surfaces
- Direction
- Point on (unit) sphere

$$
\begin{aligned}
& \theta \in\left[0, \frac{\pi}{2}\right] \\
& \varphi \in[0,2 \pi]
\end{aligned}
$$

Solid Angles

2D

Full circle
= 2pi radians

3D

View on the hemisphere

Hemispherical Coordinates

- Direction, Θ
- Point on (unit) sphere

$d A=(r \sin \theta d \varphi)(r d \theta)$

From kavita's slides

Hemispherical Coordinates

- Direction, Θ
- Point on (unit) sphere

$$
\begin{gathered}
\sin \boldsymbol{\theta}=\frac{\boldsymbol{x}}{\boldsymbol{r}} \\
\boldsymbol{x}=\boldsymbol{r} \sin \boldsymbol{\theta} \\
d A=(r \sin \theta d \varphi)(r d \theta) \\
\text { From kavias silides }
\end{gathered}
$$

Hemispherical Coordinates

- Differential solid angle

$$
d \omega=\frac{d A}{r^{2}}=\sin \theta d \theta d \varphi
$$

Hemispherical Integration

- Area of hemispehre:

$$
\begin{aligned}
\int_{\Omega_{x}} d \omega & =\int_{0}^{2 \pi} d \varphi \int_{0}^{\pi / 2} \sin \theta d \theta \\
& =\int_{0}^{2 \pi} d \varphi[-\cos \theta]_{0}^{\pi / 2} \\
& =\int_{0}^{2 \pi} d \varphi \\
& =2 \pi
\end{aligned}
$$

Irradiance

- Incident radiant power per unit area (dP/dA)
- Area density of power

- Symbol: E, unit: W/ m²
- Area power density exiting

a surface is called radiance exitance
(M) or radiosity (B)
- For example
- A light source emitting 100 W of area $0.1 \mathrm{~m}^{2}$
- Its radiant exitance is $\mathbf{1 0 0 0} \mathbf{~ W / ~ m}{ }^{\mathbf{2}}$

Radiance

- Radiant power at x in direction θ
- $L(x \rightarrow \Theta)$: 5D function
- Per unit area
-Per unit solid angle

- Important quantity for rendering

Radiance

- Radiant power at x in direction θ
- $L(x \rightarrow \Theta)$: 5D function
- Per unit area
-Per unit solid angle

- Units: Watt / (m² sr)
- Irradiance per unit solid angle
- $2^{\text {nd }}$ derivative of P
- Most commonly used term

Radiance: Projected Area

$$
\begin{align*}
L(x \rightarrow \Theta) & =\frac{d^{2} P}{d A^{2} d \omega_{\ominus}} \\
& =\frac{d^{2} P}{d \omega_{\Theta} d A \cos \theta}
\end{align*}
$$

- Why per unit projected surface area

Sensitivity to Radiance

- Responses of sensors (camera, human eye) is proportional to radiance

- Pixel values in image proportional to radiance received from that direction

Properties of Radiance

- Invariant along a straight line (in vacuum)

From kavita's slides

Invariance of Radiance

Relationships

- Radiance is the fundamental quantity

$$
L(x \rightarrow \Theta)=\frac{d^{2} P}{d A^{\perp} d \omega_{\Theta}}
$$

- Power:

$$
P=\int_{\text {Area Solid }}^{\text {Angle }} \int_{\substack{ \\\text { An }}} L(x \rightarrow \Theta) \cdot \cos \theta \cdot d \omega_{\Theta} \cdot d A
$$

- Radiosity:

$$
B=\int_{\substack{\text { Solid } \\ \text { Angle }}} L(x \rightarrow \Theta) \cdot \cos \theta \cdot d \omega_{\Theta}
$$

Light and Material Interactions

- Physics of light
- Radiometry
- Material properties

- Rendering equation

Materials

Bidirectional Reflectance Distribution Function (BRDF)

$f_{r}(x, \Psi \rightarrow \Theta)=\frac{d L(x \rightarrow \Theta)}{d E(x \leftarrow \Psi)}=\frac{d L(x \rightarrow \Theta)}{L(x \leftarrow \Psi) \cos \psi d w_{\Psi}}$

BRDF special case: ideal diffuse

Pure Lambertian

$$
f_{r}(x, \Psi \rightarrow \Theta)=\frac{\rho_{d}}{\pi}
$$

$$
\rho_{d}=\frac{\text { Energy }_{\text {out }}}{\text { Energy }_{\text {in }}}
$$

$$
0 \leq \rho_{d} \leq 1
$$

Other Distribution Functions: BxDF

- BSDF (S: Scattering)
- The general form combining BRDF + BTDF (T: Transmittance)
- BSSRDF (SS: Surface Scattering)
- Handle subsurface scattering

Light and Material Interactions

- Physics of light
- Radiometry
- Material properties

- Rendering equation

Light Transport

- Goal
- Describe steady-state radiance distribution in the scene
- Assumptions
- Geometric optics
- Achieves steady state instantaneously

Rendering Equation

- Describes energy transport in the scene
- Input
- Light sources
- Surface geometry
- Reflectance characteristics of surfaces
- Output
- Value of radiances at all surface points in all directions

Rendering Equation

Rendering Equation

$L_{r}(x \rightarrow \Theta)=\int_{\Psi} L(x \leftarrow \Psi) f_{r}(x, \Psi \rightarrow \Theta) \cos \theta_{x} d w_{\Psi}$,

- Applicable to all wave lengths

Rendering Equation

Rendering Equation: Area Formulation

$$
L(x \rightarrow \Theta)=L_{e}(x \rightarrow \Theta)+\int_{\Omega_{x}} f_{r}(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_{x} \cdot d \omega_{\Psi}
$$

$$
L(y \rightarrow-\Psi)
$$

Ray-casting function: what is the nearest visible surface point seen from x in direction Ψ ?

$$
\begin{aligned}
& y=v p(x, \Psi) \\
& L(x \leftarrow \Psi)=L(v p(x, \Psi) \rightarrow-\Psi)
\end{aligned}
$$

Rendering Equation

$$
L(x \rightarrow \Theta)=L_{e}(x \rightarrow \Theta)+\int_{\Omega_{x}} f_{r}(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_{x} \cdot d \omega_{\Psi}
$$

$$
\begin{gathered}
y=v p(x, \Psi) \\
L(x \leftarrow \Psi)=L(v p(x, \Psi) \rightarrow-\Psi)
\end{gathered}
$$

$$
d \omega_{\Psi}=\frac{d A_{y} \cos \theta_{y}}{r_{x y}^{2}}
$$

Rendering Equation: Visible Surfaces

$$
L(x \rightarrow \Theta)=L_{e}(x \rightarrow \Theta)+\int_{\Omega_{x}} f_{r}(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_{x} \cdot d \omega_{\Psi}
$$

Coordinate transform

Integration domain $=$ visible surface points y

- Integration domain extended to ALL surface points by including visibility function

Rendering Equation: All Surfaces

KAIST

Two Forms of the Rendering Equation

- Hemisphere integration
$L_{r}(x \rightarrow \Theta)=\int_{\Psi} L(x \leftarrow \Psi) f_{r}(x, \Psi \rightarrow \Theta) \cos \theta_{x} d w_{\Psi}$
- Area integration (used as the form factor)
$L_{r}(x \rightarrow \Theta)=\int_{A} L(y \rightarrow-\Psi) f_{r}(x, \Psi \rightarrow \Theta) \frac{\cos \theta_{x} \cos \theta_{y}}{r_{x y}^{2}} V(x, y) d A$,

Class Objectives (Ch. 12 \& 13) were:

- Know terms of:
- Hemispherical coordinates and integration
- Various radiometric quantities (e.g., radiance)
- Basic material function, BRDF
- Understand the rendering equation

Next Time

- Monte Carlo rendering methods

