

Comp380
Rep. TA: Myungbae Son (cs380ta@gmail.com)

Objective: The purpose of these two assignments is to let you to become familiar with the details of the rendering pipeline. A

good understanding of the rendering pipeline is a great help in writing and debugging programs that use OpenGL and other graphics

APIs. In these assignments, you will implement the basic functionality required to rasterize polygons, as well as parameter

interpolation for lighting and texturing. You will be provided with a framework in which you will write your implementation and a

program that you can use to test it.

Developing environment: TA will test your code in Visual Studio 2015 (MSVC 14.0) in Microsoft Windows.

Programming Assignment #5
Due May 17th (Wed) 11:59 PM

The skeleton codes can show four different models when you click we click “F1”, “F2”, “F3”, and “F4”. The codes also support both

hardware-based rendering using OpenGL and software-based rendering. By clicking “w”, you can see the wire-frame of the rendered

images. If you click the space bar, it switches between the hardware or software rendering. However, many functions of the

software-based rendering are not implemented. Note that the viewport area is shown in gray or dark violet when the hardware or

software-based rendering is enabled respectively.

Also, you can toggle the lighting, clipping, triangulation and rasterization by clicking “1”, “2”, “3”, and “4” respectively.

We use the built-in software-version lighting function. So, start with your programming with the following configuration: Software
rendering:on - L(1):on C(2):off T(3):off R(4):off

You need to implement the following functions in the software based rendering.

1. Clip polygons against view frustum in clip coordinates in the ClipPolygon() method. (15 pts)

 Use the Sutherland-Hodgman to clip against one frustum plane at a time. Remember to interpolate vertex attributes to

the new point on a clipped edge. Then, turn on the clipping in your software rendering.

2. Modify TriangulatePolygon () to turn the clipped polygons into triangles. (10 pts)

 Rasterization is easier to implement if the inputs are always triangles. You may assume that the input polygons are

always convex. Then, turn on the triangulation in your software rendering.

3. Modify RasterizeTriangle() to do the following:

 Triangle rasterization using edge equations. Evaluate the full edge equations at each pixel in the bounding box of the

primitive. Perform linear interpolation for colors assigned to each vertex. (5 pts)

 Z-buffering (10 pts).

- You can check whether your Z-buffering implementation works well or not by moving the rectangle in the scene

with F2 toward Z-direction (by pressing page-up, down keys)

 Perform back-face culling and toggle back-face culling with a key map “B” (10 pts)

- You should print the number of triangles actually rendered to the console to check whether your back-face culling

implementation works correctly or not.

 Then, turn on the rasterization in your software rendering.

Note that you can check your results with ones generated by OpenGL. This can be done by turning off each module in the software

rendering.

Tips

1. Your software renderer should work on the perspective mode with key ‘p’, and object translations (arrow keys), and rotations

(‘[‘ , ‘]’). Inspect the keyboard function to find more information.

Deliveries:
1) Binary (*.exe) and source codes (*.h, *.cc, *.cpp) of your solutions. Do NOT attach the third party libraries (e.g., glm) or the

models that have been unchanged from the skeleton code.

2) A report (*.pdf) that specifies the files you made/changed.

3) Submit your work in KLMS. You should submit *.zip file that contains your binary (*.exe), source codes (*.cpp), OBJ file,

and your report (*.pdf).

Policies: Everyone must turn in their own assignment. You can collaborate with others, but any work that you turn in should be your

own.

mailto:cs380ta@gmail.com

Programming Assignment #6

Due May 30th (Tue) 11:59 PM

1. Implement the OpenGL lighting model including ambient, diffuse, and specular lighting. Modify the ComputeLighting()

function to compute lighting at the vertices and store it in the vertex color.

 - To enable lighting, activate ‘l’ (lowercase ‘L’) and ‘1’ (number one)

2. Add a texture to a simple scene displayed when clicking the “F1”. Support texture mapping using nearest neighbor filtering.

- To enable texturing, press key ‘t’

Deliveries:
1) Binary (*.exe) and source codes (*.h, *.cc, *.cpp) of your solutions. Do NOT attach the third party libraries (e.g., glm) or the

models that have been unchanged from the skeleton code.

2) A report (*.pdf) that specifies the files you made/changed.

3) Submit your work in KLMS. You should submit *.zip file that contains your binary (*.exe), source codes (*.cpp), OBJ file,

and your report (*.pdf).

Policies: Everyone must turn in their own assignment. You can collaborate with others, but any work that you turn in should be your

own.

