CS380: Computer Graphics
Screen Space & World Space

Sung-Eul Yoon
(=42l)

Course URL.:
http://sglab.kaist.ac.kr/~sungeui/CG

KAIST

Class Objectives

e Understand different spaces and basic
OpenGL commands

e Understand a continuous world, Julia sets

KAIST

Your New World

e A 2D square ranging from (-1, -1) to (1, 1)

e You can draw In the box with just a few
lines of code

KAIST

Code Example (Immediate Mode)

B Simple OpenGL Examples @@ Leg aCy O pe n G L COd e .

glColor3d(0.0, 0.8, 1.0);

glBegin(GL_POLYGON);
glVertex2d(-0.5, -0.5);
glVertex2d(0.5, -0.5);
glVertex2d(0.5, 0.5);
glVertex2d(-0.5, 0.5);

glEnd();

KAIST

OpenGL Command Syntax

¢ glColor3d(0.0, 0.8, 1.0);

Suffix Data Type Corresponding OpenGL
C-Type Type

b 8-bit int. singed char GLbyte
S 16-bit int. short GLshort
i 32-bit int. int GLint
f 32-bit float float GLfloat
d 64-bit double double GLdouble
ub 8-bit unsinged int. unsigned char GLubyte
us 16-bit unsigned int. unsigned short GLushort
ui 32-bit unsigned int. unsigned int GLuint

KAIST

OpenGL Command Syntax

e YOU can use pointers or buffers
glColor3f(0.0, 0.8, 1.0);

GLfloat color _array [] = {0.0, 0.8, 1.0};
glColor3fv (color_array);

e Using buffers for drawing is much more
efficient

KAIST

Another Code Example

B Simple OpenGL Examples @@ O pe n G L COd e .

glColor3d(0.0, 0.8, 1.0);

glBegin(GL_POLYGON) ;
glVertex2d(-0.5, -0.5);
glVertex2d(0.5, -0.5);
glVertex2d(0.5, 0.5);

glEnd(Q)

7 KAIST

Drawing Primitives in OpenGL

Vgw: Vin . Vige

Vie Vje

B e e ST

1 GLPOINTS,

Vge

Vy

Vo
Va

Vs
V4 V1

| GL_LINE_ STRIP

A
Vg Vo Vo__a Vs
V
‘. V.
VO . v V1 V5 7
Vi Vy, 5 Vs
GL_QUADS GL_QUAD_STRIP ~ GL_POLYGON

Figure 2-7 Geometric Primitive Types

The red book

KAIST

Yet Another Code Example

e OpenGL Code:
ﬁmmw“iiifi——ﬁahx glColor3d(0.8, 0.6, 0.8);

glBegin(GL_LINE_LOOP);
for (1 = 0; 1 <360;1 =1 + 2)

X = cos(1*pi1/180);
y = sin(i1*pi1/180);
glVertex2d(x, VvY);
+
glEndQ);

KAIST

10

OpenGL as a State Machine

e OpenGL maintains various states until you
change them

// set the current color state
glColor3d(0.0, 0.8, 1.0);

glIBegin(GL_POLYGON) ;
glVertex2d(-0.5, -0.5);
glVertex2d(0.5, -0.5);
glVertex2d(0.5, 0.5);

glEndQ)

KAIST

11

OpenGL as a State Machine

e OpenGL maintains various states until you
change them

e Many state variables refer to modes (e.g.,
lighting mode)
e You can enable, glEnable (), or disable,
glDisable ()

e YOU can guery state variables
e glGetFloatv (), gllsEnabled (), etc.
e glGetError (): very useful for debugging

KAIST

12

Debugging Tip

#define CheckError(s)
{

If (error)
printf("%s in %s\n",gluErrorString(error),s);

}

\
\
GLenum error = glGetError(); \
\
\

glTexCoordPointer (2, x, sizeof(y), (GLvoid *) TexDelta);
CheckError ("Tex Bind");

glDrawElements(GL_TRIANGLES, x, GL_UNSIGNED_ SHORT, 0);
CheckError (" Tex Draw");

KAIST

OpenGL Ver. 4.3 (Using Retained
Mode)

#include <iostream> ShaderInfo shaders[] = {

using namespace std; { GL_VERTEX_SHADER, "triangles.vert" },
#include "vgl.h" { GL_FRAGMENT_SHADER, "triangles.frag" },
#include "LoadShaders.h" { GL_NONE, NULL } };

enum VAO_IDs { Triangles, NumVAOs }; GLuint program = LoadShaders(shaders);
enum Buffer_IDs { ArrayBuffer, NumBuffers }; glUseProgram(program);

enum Attrib_IDs { vPosition = 0 }; glVertexAttribPointer(vPosition, 2, GL_FLOAT,
GLuint VAOS[NumVAOs]; GL_FALSE, 0, BUFFER_OFFSET(0));

GLuint Buffers[NumBuffers]; glEnableVertexAttribArray(vPosition);

const GLuint NumVertices = 6; }

Void init(void) { Void display(void) {
glGenVertexArrays(NumVAOs, VAOS); glClear(GL_COLOR_BUFFER_BIT);
glBindVertexArray(VAOs[Triangles]); gIBindVertexArray(VAOs[Triangles]);

GLfloat vertices[NumVertices][2] = { glDrawArrays(GL_TRIANGLES, 0, NumVertices);
{-0.90, -0.90 }, // Triangle 1 glFlush();

{0.85, -0.90 }, }

{-0.90, 0.85 }, Int main(int argc, char** argv) {

{0.90, -0.85 }, // Triangle 2 glutlnit(&argc, argv); glutinitDisplayMode(GLUT_RGBA);
{0.90, 0.90 }, glutlnitWindowsSize(512, 512);

{-0.85,0.90 } }; glutInitContextVersion(4, 3);
glGenBuffers(NumBuffers, Buffers); glutlnitContextProfile(GLUT_CORE_PROFILE);

glutCreateWindow(argv[0]);
glBindBuffer(GL_ARRAY_BUFFER, Buffers[ArrayBuffer]); if (glewlInit()) {

glBufferData(GL_ARRAY_ BUFFER, sizeof(vertices), exit(EXIT_FAILURE); }
vertices, GL_STATIC_DRAW); init();glutDisplayFunc(display); glutMainLoop();
13 } I?}.\IST

Vulkan: A Recent Change

The Need for a New Generation GPU API

« Explicit
- Open up the high-level driver abstraction to give direct, low-level GPU control
» Streamlined

- Faster performance, lower overhead, less latency -
» Portable 2 <:=

- Cloud, desktop, console, mobile and embedded [?\
« Extensible h

- Platform for rapid innovation

-t

w a i -~ .
O: &y
A <& ﬁ’
o ppenGL has ev.ulved over 25 years and) GPUs are increasingly programmable ﬂnd GPUs will rate gr aphi s, pute, vision
T continues to meet industry needs - but there is compute capable + platforms are becoming and deep learning across diverse platforms:

a need for a complementary APl approach mobile, memory-unified and multi-core FLEXIBILITY and PORTABILITY are key
x

14

KAIST

w-
o

z

KHRO

15

Benefits of Vulkan

penGL ES.
= GoontL.

Wuikan.

Application
single thread per context

High-level Driver
Abstraction

Error i
Layered GPU Control

Application
Memory allocation
Thread

Vulkan Explicit GPU Control

Front-end

of command buffers
Multi-queue wark
submission

T T T T
Thin Driver
Explicit GPU Control

Multi-threaded generation »

Compilers

Initially GLSL

GPU

GPU

Vulkan 1.0 provides access to
OpenGL ES 3.1 / OpenGL 4.X-class GPU functionality
but with increased performance and flexibility

Vulkan Benefits

Simpler drivers:
Improved efficiency/performance
Reduced CPU bottlenecks
Lower latency
Increased portability

Resource management in app code:
Less hitches and surprises

Command Buffers:
Command creation can be multi-threaded
Multiple CPU cores increase performance

Graphics, compute and DMA queues:
Work dispatch flexibility

SPIR-V Pre-compiled Shaders:
No front-end compiler in driver
Future shading language flexibility

Loadable Layers
No error handling overhead in
production code

KAIST

My Problem on CG SWs

e Recent trends of real-time rendering add
additional complexity and lower level
detalls for higher performance

e Away from easy entrance to its field; i.e., not §
good for educational purposes

e Physically-based renderlng IS getting more
widely used :

e Understanding SRS Uinow o
principled concepts is HSaRERRRE S
more important than I PRLT
Implementations

16 KAIST

My Approach

e Focus on fundamental concepts that will
last in 10 years

e Use the legacy OpenGL version as a basic
teaching tool, thanks to its simplicity

e Discuss its current form too, to differentiate old
and new versions
e Teach the nature of rapid evolution of
computer graphics and computer science in
general
e Programming assignments

e Based on the legacy OpenGL, which is covered
INn the class and lab

@ Lab classes teaching the legacy & ver. 4.3¢pIST

Classic Rendering Pipeline

e Implemented in various SWs and HWs

Transformation: Rasterization:
CPU H» . - .
Vertex processing Pixel processing

GPU

KAIST

Prepare
vertex array
data

| L

Vertex
processing

Ack. OpenGL and wiki

"f Vertex Specification Program on
l vertex:
Vertex Shader L._' MOd?" V_I ew,
i Projection
|___Tessellation___ T transforms
T 0
: Geometry Shader _1 Subdivide
I (optional)

Vertex Post-Processing

!

Primitive Assembly

y

Rasterization

Per-Sample Operations

@ o
© O
O

Catmull-Clark
subdivision

Prepare r"f Vertex Specification Program on
vertex array l vertex:
data i Vertex Shader L._'_ MF?I‘CCI)jgle’C\t/iIC?xV’
verex T fessellaton) | transforms
processing | | l======= I ------ [
L GeometryShader || | | Subdivide
I (optional)
Primitive - | Vertex Post-Processing
clipping, !
perspective | | Primitive Assembly | Face culling
divide, i
viewport Rasterization
transform i
Depth test — il- Fragment Shader

Ack. OpenGL and wiki

—> Per-Sample Operations

r

Fragment

rocessing KAIST

Relation to Other CG related
Tools/Languages

Game/rendering engine &
modeling/animation tools .
e

@ ovencer B3 £
UNREAL " \ OpenCL
Kunity &

<ANVIDIA.
CUDA.

AUTODESK GPGPU (General-Purpose
computing on Graphics
Processing Units)
penGL ES.
G Walkan.
Application
Single thread per context
v Application
T:er:a‘:qrr:rlnmt -
High-level l_)river m:@ﬁm%m —— Shad I ng Iang ua-'ges (G LSL!
Cotet e i HLSL for DirectX)
Layelé:;ﬁm‘ T:nin :')riv:r
Explicit GPU Control
21 GPU GPU KAIST

Julia Sets (Fractal)

3t et (e, viovm N .| ® Study a visualization of
a simple iterative

function defined over

the imaginary plane

e It has chaotic behavior

e Small changes have
dramatic effects

22 KAIST

23

Julia Set - Definition

e The Julia set J. for a number c in the
complex plane P iIs given by:

J.={p | peP and

Pi.1 = P% + C_converges to a
fixed limit }

KAIST

24

Complex Numbers

e Consists of 2 tuples (Real, Imaginary)
e E.g,c =a+ bi

e Various operations
® C; +Cy=(a; +ay) + (by + byl

® C;-C; = (a1a; - biby) + (b, + aby)l
e (c)? =((ap?— (b2 + (2 a.by)i
e |c] = sgrt(az + b?)

KAIST

Convergence Example

e Real numbers are a subset of complex
numbers:

e Consider c = [0, O], and p = [X, O]

e For what values of x under X, , = X;? is

convergent?
How about x,= 0.5?

xg—4 = 0.5, 0.25, 0.0625, 0.0039

b—o—o—] >

25 KAIST

Convergence Example

e Real numbers are a subset of complex
numbers:

e consider c = [0, O], and p = [X, O]
e for what values of x is x;,; = X;? convergent?

How about x,=1.17

Xo.q = 1.1,1.21, 1.4641, 2.14358

26 KAIST

27

Convergence Properties

e Suppose c = [0,0], for what complex
values of p does the series converge?

e For real numbers:
e If |X;] = 1, then the series diverges

e For complex numbers
e If |p;|] = 2, then the series diverges
e Loose bound Imaginary part

Real part

The black points are
the ones in Julia set KAIST

A Peek at the Fractal Code
class Complex {

float re, im; »‘
¥
viod Julia (Complex p, Complex c, int & I, float & r)

{

Int maxlIterations = 256;
for (i = 0; I < maxlterations;i++)

{
p=p*p +c; | | 1 & r are used to
rsSqr = p.re*p.re + p.im*p.im; assign a color
1f(rSqr>4)
break;
}

r =sqrt(rsSqr);
KAIST

28}

29

How can we see more?

e Our world view ISR

allows us to see so
much

e What if we want to
Zoom In?

e \We need to define a
mapping from our
desired world view
to our screen

Mapping from World to Screen

Screen

4 World Window

KAIST

Screen Space

e Graphical image is
presented by setting colors (0,0)
for a set of discrete samples

(width-1,0)

called “pixels”

e Pixels displayed on screen in

windows

e Pixels are addressed as 2D
arrays

e Indices are “screen-
space” coordinates

(0,height-1)

31

(width-1, height-1)

KAIST

Coordinate Conventions

(0,0) > (width-1,0)

© (width-1, (0,0)

height-1) height-1)
Windows Screen OpenGL Screen
Coordinates Coordinates

32 KAIST

Pixel Independence

e Often easier to structure graphical objects
Independent of screen or window sizes

e Define graphical objects in “world-space”

1.25 meters

eters

33

500

cubits

€

B8

2

v_/ﬁf/

>
/800

cubits

KAIST

Normalized Device Coordinates

e Intermediate “rendering-space”
e Compose world and screen space

e Sometimes called

™ ¥ our World

34 KAIST

Why Introduce NDC?

e Simplifies many rendering operations
e Clipping, computing coefficients for
Interpolation

e Separates the bulk of geometric processing
from the specifics of rasterization (sampling)

e Will be discussed later

KAIST

35

Mapping from World to Screen

Screen

A World NDC wWindow

.] .

36 KAIST

37

World Space to NDC

Xn _(_1) _ Xy _(WI)

1
1-(-1) w.or—w.l w.t
— 1
xn—2XW (w.l) 1 Wb
W.r —w
Xn = AXyt+ B
2 : .
A | :_wr+wl
w.r —w.l wW.r —w.l

KAIST

NDC to Screen Space

e Same approach %
X, —originx x, —(-1) n
width 1-(-1) N
origin.y
e Solve for x; 1
height
+
Xg = widthx'"2 LA originx -1
Xs= AXp+ B =TT
width width . origin.x
= 5 ;, B= 5 + origin.x -1 1

KAIST

39

Class Objectives were:

e Understand different spaces and basic
OpenGL commands

e Understand a continuous world, Julia sets

KAIST

Any Questions?

e Come up with one question on what we
have discussed in the class and submit at

the end of the class
e 1 for already answered questions
e 2 for typical questions
e 3 for questions with thoughts or that surprised
me

e Submit at least four times during the whole

semester
e Multiple questions in one time are counted as

once KAIST

40

Homework

e Go over the next lecture slides before the
class

e Watch 2 SIGGRAPH videos and submit your
summaries before every Tue. class
e Submit online through our course homepage
e Just one paragraph for each summary

Example:

Title: XXX XXXX XXXX

Abstract: this video is about accelerating the
performance of ray tracing. To achieve its goal, they
design a new technique for reordering rays, since by

doing so, they can improve the ray coherence and thus
improve the overall performance.

41 KAIST

42

Homework for Next Class

e Read Chapter 1, Introduction

'3 Sungeui Yoon (2,81 X \

| basic rendering concepts such as rasterization, ray
tracing, and various physically-based rendering

| techniques. It will also cover many advanced

| techniques such as interactive, yet high-quality

| rendering methods.

Why am I writing this book?

| « C O | @ sglabkaist.ackr/~sungeui/render/ QY B
IRendering
Rendering
| 1st edition (expected to be completed at 2017)
| Sung-eui Yoon, Copyright 2016
| This is an on-going book that I'm writing. This covers Sung-¢ul Yoon

KAIST

17 edition (Expected to be completed at 2017)

Copyright 2016 - 2017

* Rendering is one of fundamental tools for understanding various things in
many applications. Even though it has been heavily studied, real-time photo-realistic
rendering has not been achieved yet. As a result, this topic needs to be studied and

developed further.

» Rendering has been developed in a long time. It is very hard to catch up all the
major concepts. Also, new concepts and techniques have been constantly proposed.
To develop new ideas, it is very important to understand them in an effective and

efficient manner.

® There are a few books that well cover the fundamental topics of rendering.
Unfortunately, those books are rather expensive and did not cover recent topics. I'll

KAIST

43

Next Time

e Basic OpenGL program structure and how
OpenGL supports different spaces

KAIST

