CS380: Computer Graphics Modeling Transformations

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/CG/

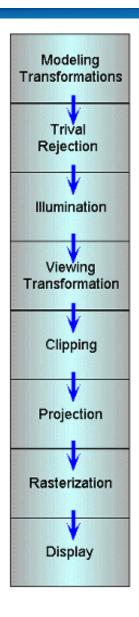
Class Objectives (Ch. 3.5)

- Know the classic data processing steps, rendering pipeline, for rendering primitives
- Understand 3D translations and rotations

Outline

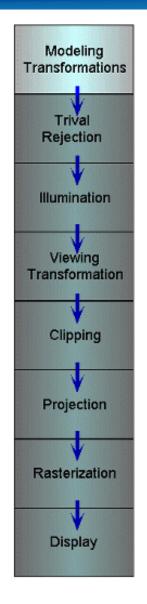
- Where are we going?
 - Sneak peek at the rendering pipeline
- Vector algebra
- Modeling transformation
- Viewing transformation
- Projections

The Classic Rendering Pipeline



- Object primitives defined by vertices fed in at the top
- Pixels come out in the display at the bottom
- Commonly have multiple primitives in various stages of rendering

Modeling Transforms



• Start with 3D models defined in modeling spaces with their own modeling frames: m₁^t, m₂^t,...,m_n^t

 Modeling transformations orient models within a common coordinate frame called world space, w^t

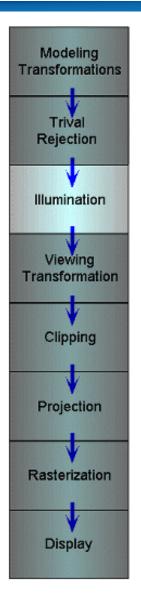
All objects, light sources, and the camera

live in world space

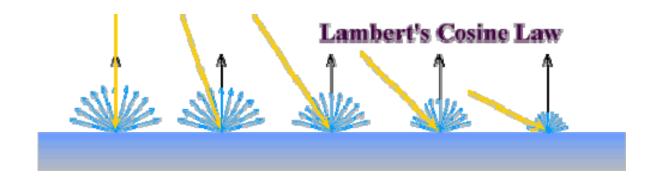
 Trivial rejection attempts to eliminate objects that cannot possibly be seen

An optimization

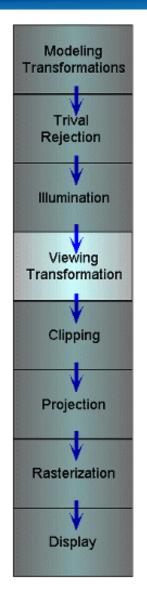
Illumination



- Illuminate potentially visible objects
- Final rendered color is determined by object's orientation, its material properties, and the light sources in the scene



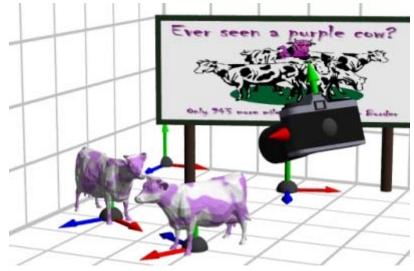
Viewing Transformations



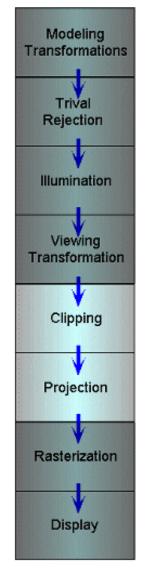
 Maps points from world space to eye space:

 $e^t = w^t V$

- Viewing position is transformed to the origin
- Viewing direction is oriented along some axis



Clipping and Projection



We specify a volume called a viewing frustum

Map the view frustum to the unit cube

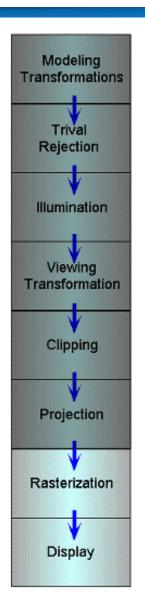
 Clip objects against the view volume, thereby eliminating geometry not visible in

the image

 Project objects into two-dimensions

 Transform from eye space to normalized device coordinates

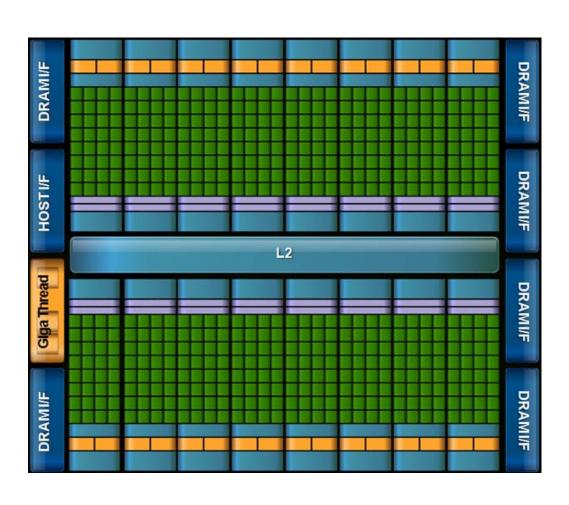
Rasterization and Display



- Transform normalized device coordinates to screen space
- Rasterization converts objects pixels

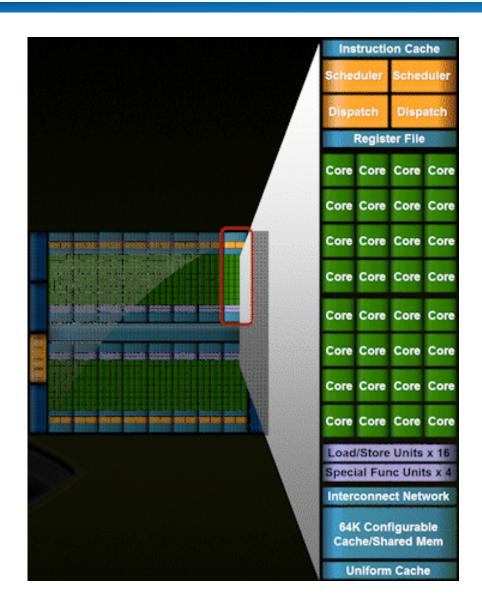
- Almost every step in the rendering pipeline involves a change of coordinate systems!
- Transformations are central to understanding 3D computer graphics

But, this is a architectural overview of a recent GPU (Fermi)

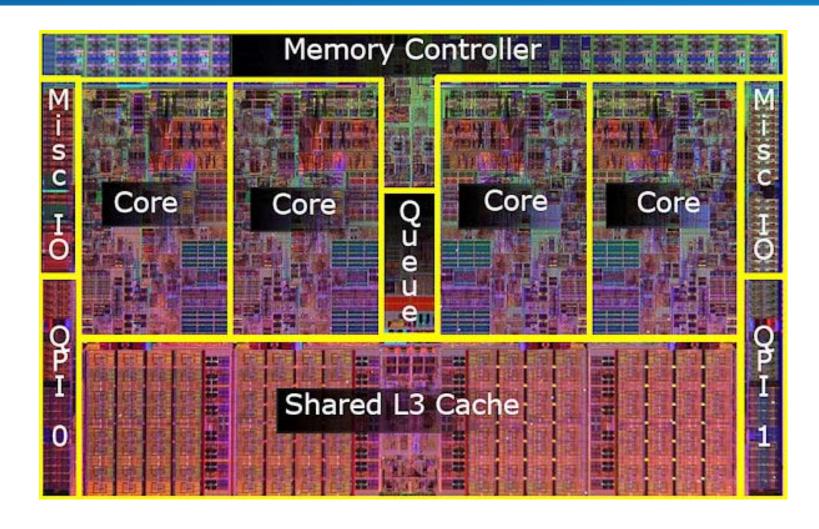


- Unified architecture
- Highly parallel
- Support CUDA (general language)
- Wide memory bandwidth

But, this is a architectural overview of a recent GPU



Recent CPU Chips (Intel's Core i7 processors)



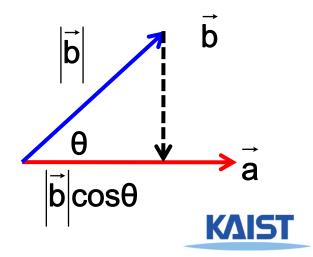
Vector Algebra

- We already saw vector addition and multiplications by a scalar
- Will study three kinds of vector multiplications
 - Dot product (·)
 - Cross product (×)
 - Tensor product (⊗) returns a matrix
- returns a scalar
- returns a vector

Dot Product (·)

$$\vec{a} \cdot \vec{b} = \vec{a}^{\mathsf{T}} \vec{b} = \begin{bmatrix} a_x & a_y & a_z & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \\ 0 \end{bmatrix} = \mathbf{s}, \qquad \vec{a} \cdot \vec{b} = \vec{a}^{\mathsf{T}} \vec{b} = \begin{bmatrix} a_x & a_y & a_z & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \\ 1 \end{bmatrix} = \mathbf{s}$$

- Returns a scalar s
- Geometric interpretations s:
 - $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$
 - Length of b projected onto and a or vice versa
 - Distance of b from the origin in the direction of a

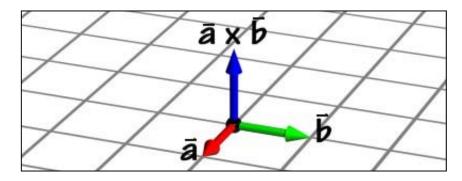


Cross Product (×)

$$\vec{a} \times \vec{b} \equiv \begin{bmatrix} 0 & -a_z & a_y & 0 \\ a_z & 0 & -a_x & 0 \\ -a_y & a_x & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \\ 0 \end{bmatrix} = \vec{c} \qquad \vec{a} \cdot \vec{c} = 0$$

$$\vec{c} = \begin{bmatrix} a_y b_z - a_z b_y & a_z b_x - a_x b_z & a_x b_y - a_y b_x \end{bmatrix}$$

- Return a vector c that is perpendicular to both a and b, oriented according to the right-hand rule
- The matrix is called the skew-symmetric matrix of a



Cross Product (×)

A mnemonic device for remembering the cross-product

$$\vec{a} \times \vec{b} \equiv \det \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{bmatrix}$$

$$= (a_y b_z - a_z b_y) \vec{i} + (a_z b_x - a_x b_z) \vec{j} + (a_x b_y - a_y b_x) \vec{k}$$

$$\vec{i} = \begin{bmatrix} 1 & O & O \end{bmatrix}$$

$$\vec{j} = \begin{bmatrix} O & 1 & O \end{bmatrix}$$

$$\vec{k} = \begin{bmatrix} O & O & 1 \end{bmatrix}$$

Modeling Transformations

- Vast majority of transformations are modeling transforms
- Generally fall into one of two classes
 - Transforms that move parts within the model

$$\dot{\mathbf{m}}_{1}^{t}\mathbf{c} \Rightarrow \dot{\mathbf{m}}_{1}^{t}\mathbf{M}\mathbf{c} = \dot{\mathbf{m}}_{1}^{t}\mathbf{c}'$$

 Transforms that relate a local model's frame to the scene's world frame

$$m_1^t \mathbf{c} \Rightarrow m_1^t \mathbf{M} \mathbf{c} = \mathbf{w}^t \mathbf{c}$$

 Usually, Euclidean transforms, 3D rigidbody transforms, are needed

Translations

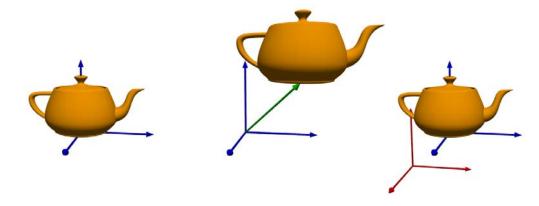
Translate points by adding offsets to their coordinates

ordinates
$$\dot{m}^t c \Rightarrow \dot{m}^t T c = \dot{m}^t c'$$

$$\dot{m}^t c \Rightarrow \dot{m}^t T c = \dot{w}^t c$$

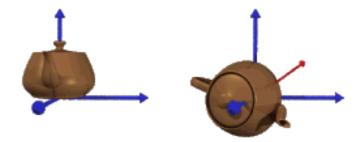
$$\dot{m}^t c \Rightarrow \dot{m}^t T c = \dot{w}^t c$$
where
$$T = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• The effect of this translation:



3D Rotations

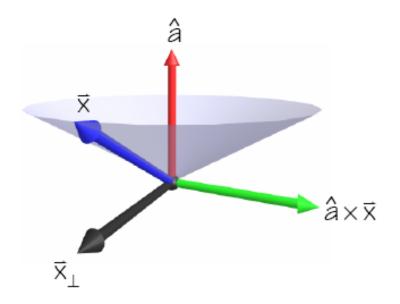
- More complicated than 2D rotations
 - Rotate objects along a rotation axis



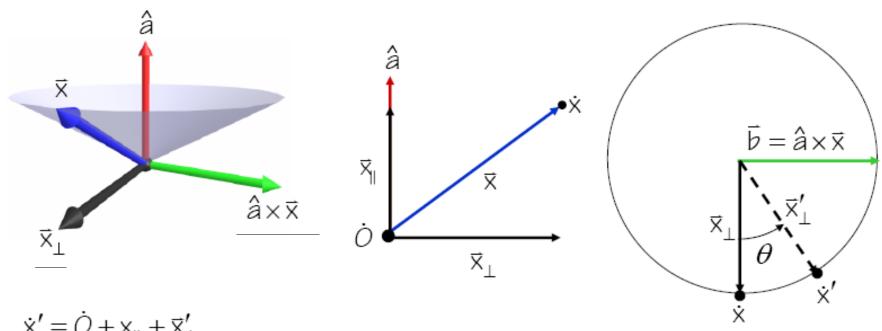
- Several approaches
 - Compose three canonical rotations about the axes
 - Quaternions

Geometry of a Rotation

- Natural basis for rotation of a vector about a specified axis:
 - ° â rotation axis (normalized)
 - ° âxx vector perpendicular to
 - ° \vec{X}_{\perp} perpendicular component of \vec{X} relative to \hat{a}



Geometry of a Rotation



$$\dot{x}' = \dot{O} + x_{\parallel} + \vec{x}'_{\perp}$$

$$\vec{x}'_{\perp} = \cos\theta \vec{x}_{\perp} + \sin\theta \vec{b}$$

$$\vec{x}_{\parallel} = \hat{a}(\hat{a} \cdot \vec{x})$$

$$\dot{x}' = \dot{O} + \cos\theta \vec{x} + (1 - \cos\theta)(\hat{a}(\hat{a} \cdot \vec{x})) + \sin\theta(\hat{a} \times \vec{x})$$

$$c_{\dot{x}'} = \mathbf{Mc}_{\dot{x}}$$

 $\vec{\mathbf{x}}^{\top} = \vec{\mathbf{x}} - \vec{\mathbf{x}}^{\parallel}$

$$\begin{aligned} \mathbf{M} &= \operatorname{diag}(\dot{O}) + \cos\theta \operatorname{diag}([1 \quad 1 \quad 1 \quad O]^{t}) \\ &+ (1 - \cos\theta) \mathbf{A}_{\otimes} + \sin\theta \mathbf{A}_{\times} \end{aligned}$$

Tensor Product (⊗)

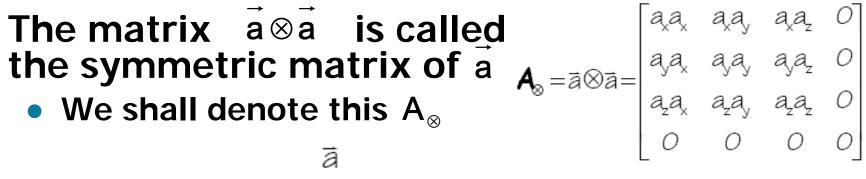
$$\vec{a} \otimes \vec{b} = \vec{a}\vec{b}^{t} = \begin{bmatrix} a_{x} \\ a_{y} \\ a_{z} \\ O \end{bmatrix} \begin{bmatrix} b_{x} & b_{y} & b_{z} & O \end{bmatrix} = \begin{bmatrix} a_{x}b_{x} & a_{x}b_{y} & a_{x}b_{z} & O \\ a_{y}b_{x} & a_{y}b_{y} & a_{y}b_{z} & O \\ a_{z}b_{x} & a_{z}b_{y} & a_{z}b_{z} & O \\ O & O & O & O \end{bmatrix}$$

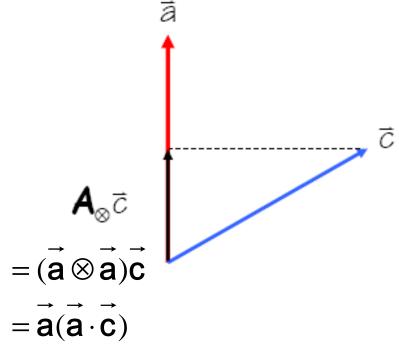
$$(\vec{a} \otimes \vec{b})\vec{c} = \begin{bmatrix} (b_{x}c_{x} + b_{y}c_{y} + b_{z}c_{z})a_{x} \\ (b_{x}c_{x} + b_{y}c_{y} + b_{z}c_{z})a_{y} \\ (b_{x}c_{x} + b_{y}c_{y} + b_{z}c_{z})a_{z} \end{bmatrix} = \vec{a}(\vec{b} \cdot \vec{c})$$

Creates a matrix that when applied to a vector c return a scaled by the project of c onto b

Tensor Product (⊗)

- Useful when $\vec{b} = \vec{a}$
- The matrix a⊗a is called





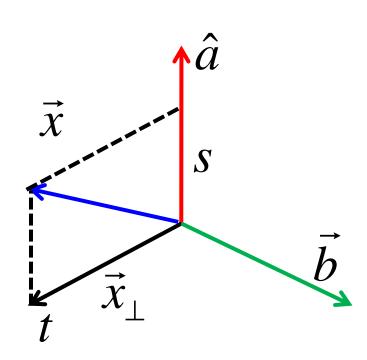
Sanity Check

Consider a rotation by about the x-axis

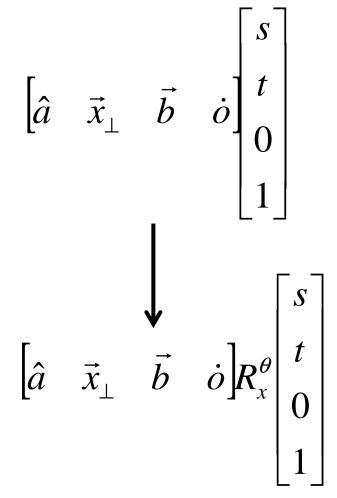
$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 You can check it in any computer graphics book, but you don't need to memorize it

Rotation using Affine Transformation



Assume that these basis vectors are normalized



Quaternion

- Developed by W. Hamilton in 1843
 - Based on complex numbers
- Two popular notations for a quaternion, q
 - w + xi + yj + zk, where $i^2 = j^2 = k^2 = ijk = -1$
 - [w, v], where w is a scalar and v is a vector
- Conversion from the axis, v, and angle, t
 - $q = [\cos (t/2), \sin (t/2) v]$
 - Can represent rotation
- Example: rotate by degree a along x axis: $q_x = [\cos (a/2), \sin(a/2) (1, 0, 0)]$

Basic Quaternion Operations

- Addition
 - q + q' = [w + w', v + v']
- Multiplication
 - qq' = [ww' v · v', v x v' + wv' + w'v]
- Conjugate
 - $q^* = [w, -v]$
- Norm
 - $N(q) = w^2 + x^2 + y^2 + z^2$
- Inverse
 - $q^{-1} = q^* / N(q)$

Basic Quaternion Operations

- q is a unit quaternion if N(q) = 1
 - Then $q^{-1} = q^*$
- Identity
 - [1, (0, 0, 0)] for multiplication
 - [0, (0, 0, 0)] for addition

Rotations using Quaternions

- Suppose that you want to rotate a vector/point v with q
- Then, the rotated v'
 - $v' = q r q^{-1}$, where r = [0, v])
- Compositing rotations
 - R = R2 R1 (rotation R1 followed by rotation R2)

Quaternion to Rotation Matrix

$$Q = W + xi + yj + zk$$

We can also convert a rotation matrix to a quaternion

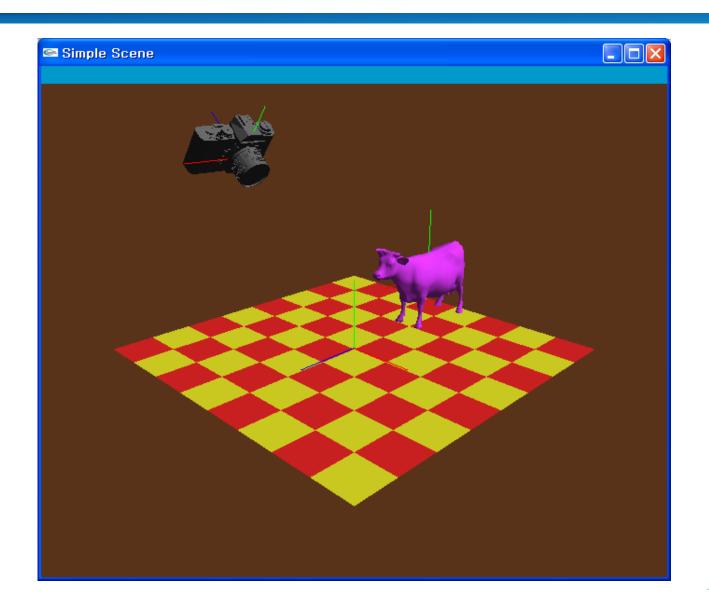
Advantage of Quaternions

- More efficient way to generate arbitrary rotations
- Less storage than 4 x 4 matrix
- Easier for smooth rotation
- Numerically more stable than 4x4 matrix (e.g., no drifting issue)
- More readable

Class Objectives were:

- Know the classic data processing steps, rendering pipeline, for rendering primitives
- Understand 3D translations and rotations

PA2: Simple Animation & Transformation



OpenGL: Display Lists

- Display lists
 - A group of OpenGL commands stored for later executions
 - Can be optimized in the graphics hardware
 - Thus, can show higher performance
 - Ver. 4.3: Vertex Array Object is much better
- Immediate mode
 - Causes commands to be executed immediately

An Example

```
void drawCow()
 if (frame == 0)
  cow = new WaveFrontOBJ( "cow.obj" );
  cowID = glGenLists(1);
  glNewList(cowID, GL_COMPILE);
  cow->Draw();
  glEndList();
 glCallList(cowID);
```


API for Display Lists

Gluint glGenLists (range)

- generate a continuous set of empty display lists

void glNewList (list, mode) & glEndList ()

: specify the beginning and end of a display list

void glCallLists (list)

: execute the specified display list

OpenGL: Getting Information from OpenGL

```
void main( int argc, char* argv[] )
 int rv,gv,bv;
 glGetIntegerv(GL_RED_BITS,&rv);
 glGetIntegerv(GL_GREEN_BITS,&gv);
 glGetIntegerv(GL_BLUE_BITS,&bv);
 printf( "Pixel colors = %d : %d : %d\n", rv, gv, bv );
void display () {
glGetDoublev(GL_MODELVIEW_MATRIX, cow2wld.matrix());
```

Homework

- Watch SIGGRAPH Videos
- Go over the next lecture slides

Next Time

Viewing transformations

