
CS380: Computer Graphics

Viewing Transformation

Sung-Eui Yoon

(윤성의)

Course URL:

http://sglab.kaist.ac.kr/~sungeui/CG/

2

Class Objectives

● Know camera setup parameters

● Understand viewing and projection
processes

● Related to Ch. 4: Camera Setting

3

Viewing Transformations

● Map points from world spaces to eye
space
● Can be composed from rotations and

translations

4

● Goal: specify position and orientation of our
camera
● Defines a coordinate frame for eye space

Viewing Transformations

5

“Framing” the Picture

● A new camera coordinate
● Camera position at the origin

● Z-axis aligned with the view direction

● Y-axis aligned with the up direction

● More natural to think of camera as an
object positioned in the world frame

6

Viewing Steps

● Rotate to align the two coordinate frames
and, then, translate to move world space
origin to camera’s origin

7

An Intuitive Specification

● Specify three quantities:
● Eye point (e) - position of the camera

● Look-at point (p) - center of the image

● Up-vector () - will be oriented upwards in
the image

au

8

Deriving the Viewing
Transformation

● First compute the look-at vector and
normalize

● Compute right vector and normalize
● Perpendicular to the look-at and up vectors

● Compute up vector
● is only approximate direction

● Perpendicular to right and look-at vectors

epl

l

l
l

ˆ

aulr

r

r
r

ˆ

au

lru ˆˆˆ

9

Rotation Component

● Map our vectors to the cartesian coordinate axes

● To compute we invert the matrix on the right
● This matrix M is orthonormal (or orthogonal) – its rows are

orthonormal basis vectors: vectors mutually orthogonal

and of unit length

● Then,

● So,

 vRlur

100

010

001
ˆˆˆ

vR

T-1 MM

t

t

t

l

u

r

R

ˆ

ˆ

ˆ

v

10

Translation Component

● The rotation that we just derived is specified about
the eye point in world space

● Need to translate all world-space coordinates so that the

eye point is at the origin

● Composing these transformations gives our viewing

transform, V

ev

tt ew
 TR

1000

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

1000

100

010

001

1000

0ˆˆˆ

0ˆˆˆ

0ˆˆˆ

el

eu

er

l

u

r

e

e

e

lll

uuu

rrr

z

y

x

zyx

zyx

zyx

ev TRV

Transform a world-space point into a point in the eye-space

11

Viewing Transform in OpenGL

● OpenGL utility (glu) library provides a
viewing transformation function:

gluLookAt (double eyex, double eyey, double eyez,

double centerx, double centery, double centerz,

double upx, double upy, double upz)

● Computes the same transformation that we
derived and composes it with the current matrix

Same to glm::gtc::matrix_transform::lookAt (..)

12

Example in the Skeleton Codes
of PA2

void setCamera ()

{ …

// initialize camera frame transforms

for (i=0; i < cameraCount; i++)

{

double* c = cameras[i];

wld2cam.push_back(FrameXform());

glPushMatrix();

glLoadIdentity();

gluLookAt(c[0],c[1],c[2], c[3],c[4],c[5], c[6],c[7],c[8]);

glGetDoublev(GL_MODELVIEW_MATRIX, wld2cam[i].matrix());

glPopMatrix();

cam2wld.push_back(wld2cam[i].inverse());

}

….

}

13

Projections

● Map 3D points in eye space to 2D points in
image space

● Two common methods
● Orthographic projection

● Perspective projection

14

Orthographic Projection

● Projects points along lines parallel to z-axis
● Also called parallel projection

● Used for top and side views in drafting and
modeling applications

● Appears unnatural due to lack of
perspective foreshortening

Notice that the parallel lines

of the tiled floor remain

parallel after orthographic

projection!

15

Orthographic Projection

● The projection matrix for orthographic projection
is very simple

● Next step is to convert points to NDC

1

z

y

x

1000

0000

0010

0001

1

z

y

x

16

View Volume and Normalized
Device Coordinates

● Define a view volume

● Compose projection with a scale and a
translation that maps eye coordinates to
normalized device coordinates

17

Orthographic Projections to NDC

Some sanity checks:

1

z

y

x

1000

00

00

00

1

z

y

x

nearfar

near)(far

nearfar
2

bottomtop

bottom)(top

bottomtop
2

leftright

left)(right

leftright
2

1xleftx leftright
leftright

leftright
leftright

leftright
left2

1xrightx leftright
leftright

leftright
leftright

leftright
right2

Scale the z

coordinate in

exactly the same

way .Technically,

this coordinate is

not part of the

projection. But,

we will use this

value of z for

other purposes

18

Orthographic Projection in
OpenGL

● This matrix is constructed by the following
OpenGL call:

void glOrtho(double left, double right,
double bottom, double top,
double near, double far);

Same to glm::gtc::matrix_transform::ortho (..)

19

Perspective Projection

● Artists (Donatello, Brunelleschi, Durer, and Da Vinci) during

the renaissance discovered the importance of perspective for

making images appear realistic

● Perspective causes objects nearer to the viewer to appear

larger than the same object would appear farther away

● Homogenous coordinates allow perspective projections using

linear operators

20

Signs of Perspective

● Lines in projective space always intersect
at a point

21

Perspective Projection for a
Pinhole Camera

View planeImage sensor

plane

22

Perspective Projection Matrix

● The simplest transform for perspective
projection is:

● We divide by w to make the fourth
coordinate 1
● In this example, w = z

● Therefore, x’ = x / z, y’ = y / z, z’ = 0

10100

0000

0010

0001

z

y

x

w

zw

yw

xw

23

● As in the orthographic case, we map to
normalized device coordinates

Normalized Perspective

NDC

24

NDC Perspective Matrix

● The values of left, right, top, and bottom are specified at the

near depth. Let’s try some sanity checks:

1

z

y

x

0100

00

00

00

w

zw

yw

xw

nearfar
nearfar2

nearfar
nearfar

bottomtop

bottom)(top

bottomtop
near2

leftright

left)(right

leftright
near2

1
near

x
nearz

leftx
near
nearleftright

)leftright(near

leftright
leftnear2

1
near

x
nearz

rightx
near
nearleftright

)leftright(near

leftright
rightnear2

25

NDC Perspective Matrix

● The values of left, right, top, and bottom are specified at the

near depth. Let’s try some sanity checks:

1

z

y

x

0100

00

00

00

w

zw

yw

xw

nearfar
nearfar2

nearfar
nearfar

bottomtop

bottom)(top

bottomtop
near2

leftright

left)(right

leftright
near2

1
far

far
zfarz far

nearfar
nearfar2

nearfar
nearfar

nearfar
)nearfar(far

1
near

near
znearz near

nearfar
nearfar2

nearfar
nearfar

nearfar
)farnear(near

26

Perspective in OpenGL

● OpenGL provides the following function to define
perspective transformations:

void glFrustum(double left, double right,
double bottom, double top,
double near, double far);

● Some think that using glFrustum() is nonintuitive.
So OpenGL provides a function with simpler, but
less general capabilities

void gluPerspective(double vertfov, double aspect,
double near, double far);

27

● Substituting the extents into glFrustum()

gluPerspective()

Simple “camera-

like” model

Can only specify

symmetric

frustums

29

Example in the Skeleton Codes
of PA2

void reshape(int w, int h)

{

width = w; height = h;

glViewport(0, 0, width, height);

glMatrixMode(GL_PROJECTION); // Select The Projection Matrix

glLoadIdentity(); // Reset The Projection Matrix

// Define perspective projection frustum

double aspect = width/double(height);

gluPerspective(45, aspect, 1, 1024);

glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix

glLoadIdentity(); // Reset The Projection Matrix

}

30

Class Objectives were:

● Know camera setup parameters

● Understand viewing and projection
processes

31

Homework

● Watch SIGGRAPH Videos

● Go over the next lecture slides

32

PA3

● PA2: perform the transformation at the modeling
space

● PA3: perform the transformation at the viewing
space

33

Next Time

● Interaction

34

figs

35

