
CS380: Computer Graphics
Interacting with a 3D World

Sung-Eui Yoon
(윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/CG/

2

Announcement
●Mid-term exam

● 4:00pm ~ 5:40pm, Apr-18 (Tue.)

3

Class Objectives
●Read a mesh representation
●Understand a selection method and a

virtual-trackball interface
●Understand the modeling hierarchy

●Related chapter: Chapter 5, Interaction

4

●How do we specify 3D objects?
● Simple mathematical functions, z = f(x,y)
● Parametric functions, (x(u,v), y(u,v), z(u,v))
● Implicit functions, f(x,y,z) = 0

● Build up from simple primitives
● Point – nothing really to see
● Lines – nearly see through
● Planes – a surface

Primitive 3D

5

Simple Planes
● Surfaces modeled as connected planar

facets
● N (>3) vertices, each with 3 coordinates
● Minimally a triangle

6

Specifying a Face
● Face or facet

Face [v0.x, v0.y, v0.z] [v1.x, v1.y, v1.z] … [vN.x, vN.y, vN.z]

● Sharing vertices via indirection
Vertex[0] = [v0.x, v0.y, v0.z]

Vertex[1] = [v1.x, v1.y, v1.z]

Vertex[2] = [v2.x, v2.y, v2.z]

:

Vertex[N] = [vN.x, vN.y, vN.z]

Face v0, v1, v2, … vN

v0

v1
v2

v3

7

Vertex Specification
● Where

● Geometric coordinates [x, y, z]

● Attributes
● Color values [r, g, b]
● Texture Coordinates [u, v]

● Orientation
● Inside vs. Outside
● Encoded implicitly in ordering

● Geometry nearby
● Often we’d like to “fake” a more complex shape than our true

faceted (piecewise-planar) model

8

Normal Vector
● Often called normal, [nx, ny, nz]

● Normal to a surface is a vector perpendicular to
the surface
●Will be used in illumination

●
● Normalized:

2
z

2
y

2
x

zyx

nnn

]n,n,n[n̂
++

=

9

Drawing Faces in OpenGL
glBegin(GL_POLYGON);
foreach (Vertex v in Face) {
glColor4d(v.red, v.green, v.blue, v.alpha);
glNormal3d(v.norm.x, v.norm.y, v.norm.z);
glTexCoord2d(v.texture.u, v.texture.v);
glVertex3d(v.x, v.y, v.z);

}
glEnd();

● Heavy-weight model
● Attributes specified for every vertex

● Redundant
● Vertex positions often shared by at least 3 faces
● Vertex attributes are often face attributes (e.g. face

normal)

10

Decoupling Vertex and Face
Attributes via Indirection

● Works for many cases
● Used with vertex array or vertex buffer objects in

OpenGL

● Exceptions:
● Regions where the surface changes materials
● Regions of high curvature (a crease)

11

3D File Formats
● MAX – Studio Max
● DXF – AutoCAD

● Supports 2-D and 3-D; binary
● 3DS – 3D studio

● Flexible; binary
● VRML – Virtual reality modeling language

● ASCII – Human readable (and writeable)
● OBJ – Wavefront OBJ format

● ASCII
● Extremely simple
● Widely supported

12

OBJ File Tokens
● File tokens are listed below

some text
Rest of line is a comment

v float float float
A single vertex’s geometric position in space

vn float float float
A normal

vt float float
A texture coordinate

13

OBJ Face Varieties
f int int int ... (vertex only)

or
f int/int int/int int/int . . . (vertex & texture)

or
f int/int/int int/int/int int/int/int … (vertex,

texture, & normal)

● The arguments are 1-based indices into the
arrays
● Vertex positions
● Texture coordinates
● Normals, respectively

14

OBJ Example
● Vertices followed by faces

● Faces reference previous
vertices by integer index

● 1-based

A simple cube
v 1 1 1
v 1 1 -1
v 1 -1 1
v 1 -1 -1
v -1 1 1
v -1 1 -1
v -1 -1 1
v -1 -1 -1
f 1 3 4
f 5 6 8
f 1 2 6
f 3 7 8
f 1 5 7
f 2 4 8

15

OBJ Sources
● Avalon – Viewpoint

(http://avalon.viewpoint.com/)
old standards

● 3D Café –
(http://www.3dcafe.com/asp/meshes.asp)
Nice thumbnail index

● Others
● Most modeling programs will export .OBJ files
● Most rendering packages will read in .OBJ files

16

Picking and Selection
● Basic idea: Identify objects selected by the user

● Click-selection: select one object at a time
● Sweep-selection: select objects within a bounding

rectangle

Demo
(click h)

17

Picking and Selection

● Several ways to implement selection:
● Find screen space bounding boxes contained in pick

region
● Compute a pick ray and ray trace to find intersections
● OpenGL selection buffers
● Render to back buffer using colors that encode object

IDs and return ID under pick point

18

Selection with the Back Buffer
● Selects only objects that are

visible
● Render objects to back buffer

with color that encodes ID
● Use glReadPixels() to read the

pixel at the pick point
● Back buffer is never seen

19

An Example of Reading the Back
Buffer
void onMouseButton(int button, int state, int x, int y)
{ ...
if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)

{
printf("Left mouse click at (%d, %d)\n", x, y);
selectMode = 1;
display();
glReadBuffer(GL_BACK);
unsigned char pixel[3];
glReadPixels(x, y, 1, 1, GL_RGB, GL_UNSIGNED_BYTE, pixel);
printf("pixel = %d\n", unmunge(pixel[0],pixel[1],pixel[2]));
selectMode = 0;

}
…
}

20

Buffer Operations in OpenGL
• Still supported in OpenGL 4.3

• glReadBuffer (mode)
• GL_FRONT, GL_BACK, etc.

• glReadPixels(x, y, w, h, pixel_format, data_type, * buffers)
• Pixel_format: GL_RGB, GL_RGBA, GL_RED, etc.
• Data_type: GL_UNSIGNED_BYTE, GL_FLOAT, etc.

• Other related APIs
• glDrawPixels

21

Interaction Paradigms
● Can move objects or camera

● Object moving is most intuitive if the object
“sticks” to the mouse while dragging

22

Interaction Paradigms
●Move w.r.t. to camera frame

● Pan – move in plane perpendicular to view
direction

● Dolly – move along the view direction
● Zoom - looks like dolly: objects get bigger, but

position remains fixed
● Rotate

●up/down controls elevation angle
●left/right controls azimuthal angle

● Roll – spin about the view direction
● Trackball – can combine rotate and roll

23

Interaction Paradigms
● Move w.r.t to modeling (or world) frame

● Maya combines both
● Presents a frame where you can drag

w.r.t the world axes
● Dragging origin moves w.r.t. to camera

frame

24

Interaction - Trackball
● A common UI for manipulating objects
● 2 degree of freedom device
● Differential behavior provides a intuitive rotation

specification

Trackball demo

25

A Virtual Trackball
● Imagine the viewport as floating above, and just

touching an actual trackball
● You receive the coordinates in screen space of the

MouseDown() and MouseMove() events
● What is the axis of rotation?
● What is the angle of rotation?

26

Computing the Rotation

a

● Construct a vector from the center of rotation of the
virtual trackball to the point of the MouseDown() event

● Construct a 2nd vector from the center of rotation for
a given MouseMove() event

● Normalize , and , and then compute
● Then find the and construct

b

a

b

a
aâ

=
b
bb̂

= b̂âaxis ×=
1 ˆˆangle cos (a b)−= ⋅

axis

axis
axisRot at e(angle,)=R

a

27

Transformation Hierarchies
● Many models are

composed of independent
moving parts

● Each part defined in its
own coordinate system
● Compose transforms to

position and orient the
model parts

● A simple “One-chain”
example

http://www.imanishi.com

28

Code Example (Take One)
public void Draw() {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();
gluLookat(0, 0,-60, 0,0,0, 0,1,0); // world-to-camera transform

glColor3d(0,0,1);
glRotated(-90, 1, 0, 0); // base-to-world transform
Draw(Lamp.BASE);
Draw(Lamp.BODY);
Draw(Lamp.NECK);
Draw(Lamp.HEAD);
glFlush();

}

29

Code Example (Take Two)
public void Draw() {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();
glTranslated(0.0, 0.0, -60.0); // world-to-view transform
glColor3d(0,0,1);
glRotated(-90, 1, 0, 0); // base-to-world transform

Draw(Lamp.BASE);
glTranslated(0,0,2.5); // body-to-base transform

Draw(Lamp.BODY);
glTranslated(12,0,0); // neck-to-body transform

Draw(Lamp.NECK);
glTranslated(12,0,0); // head-to-neck transform

Draw(Lamp.HEAD);
glFlush();

}

30

Code Example (Take Three)
public void Draw() {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();
glTranslated(0.0, -12.0, -60.0); // world-to-view transform
glColor3d(0,0,1);
glRotated(-90, 1, 0, 0); // base-to-world transform

Draw(Lamp.BASE);
glTranslated(0,0,2.5); // body-to-base transform
glRotated(-30, 0, 1, 0); // rotate body at base pivot

Draw(Lamp.BODY);
glTranslated(12,0,0); // neck-to-body transform
glRotated(-115, 0, 1, 0); // rotate neck at body pivot

Draw(Lamp.NECK);
glTranslated(12,0,0); // head-to-neck transform
glRotated(180, 1, 0, 0);// rotate head at neck pivot

Draw(Lamp.HEAD);
glFlush();

}

31

Class Objectives were:
●Read a mesh representation
●Understand a selection method and a

virtual-trackball interface
●Understand the modeling hierarchy

32

Program Assignment 4
●Use the previous skeleton codes

33

Figs

34

: transform from the base to the world

: transform from the part to the base

