
CS380: Computer Graphics
Triangle Rasterization

Sung-Eui Yoon
(윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/CG/

2

Class Objectives (Ch. 7)
● Understand triangle rasterization using

edge-equations
● Understand mechanics for parameter

interpolations
● Realize benefits of incremental algorithms

3

Coordinate Systems
model

world

eye

clip

NDC

window

M

V
Modelview matrix

P

Divide by w

Viewport transformation

4

● Rasterization converts vertex representation to
pixel representation

● Coverage determination
● Computes which pixels (samples) belong to a

primitive
● Parameter interpolation

● Computes parameters at covered pixels from
parameters associated with primitive vertices

Primitive Rasterization

5

● Coverage is a 2D sampling problem
● Possible coverage criteria:

● Distance of the primitive
to sample point
(often used with lines)

● Percent coverage of
a pixel (used to be popular)

● Sample is inside the primitive
(assuming it is closed)

Coverage Determination

6

● Triangles are convex

● Why is convexity important?
● Regardless of a triangle’s orientation on the

screen a given scan line will contain only a
single segment or span of that triangle

● Simplify rasterization processes

Why Triangles?

7

● Arbitrary polygons can be decomposed into
triangles

● Decomposing a convex n-sided polygon is trivial
● Suppose the polygon has ordered vertices {v0, v1, ... vn}
● It can be decomposed into triangles {(v0,v1,v2),

{v0,v2,v3), (v0,vi,vi+1), ... (v0,vn-1,vn)}

● Decomposing a non-convex polygon is non-trivial
● Sometimes have to introduce new vertices

Why Triangles?

8

● Triangles can approximate any 2-dimensional
shape (or 3D surface)

● Polygons are a locally linear (planar) approximation

● Improve the quality of fit by increasing the
number edges or faces

Why Triangles?

9

Scanline Triangle Rasterizer
● Walk along edges and process one scanline

at a time; also called edge walk method
● Rasterize spans between edges

10

Scanline Triangle Rasterizer
● Walk along edges and process one scanline

at a time
● Rasterize spans between edges

11

Scanline Triangle Rasterizer
● Walk along edges and process one scanline

at a time
● Rasterize spans between edges

12

Scanline Triangle Rasterizer
● Walk along edges and process one scanline

at a time
● Rasterize spans between edges

13

Scanline Triangle Rasterizer
● Walk along edges and process one scanline

at a time
● Rasterize spans between edges

14

Scanline Triangle Rasterizer
● Walk along edges and process one scanline

at a time
● Rasterize spans between edges

15

Scanline Rasterization
● Advantages:

● Can be made quite fast
● Low memory usage for small scenes
● Do not need full 2D z-buffer (can use 1D z-

buffer on the scanline)
● Disadvantages:

● Does not scale well to large scenes
● Lots of special cases

16

Rasterizing with Edge Equations
● Compute edge equations from vertices
● Compute interpolation equations from vertex parameters
● Traverse pixels evaluating the edge equations
● Draw pixels for which all edge equations are positive
● Interpolate parameters at pixels

17

Edge Equation Coefficients
● The cross product between 2 homogeneous

points generates the line between them

● A pixel at (x,y) is “inside” an edge if
E(x,y)>0

0v

1v

0 1

t t
0 0 1 1

0 1 1 0 0 1 1 0

e v v

[x y 1] [x y 1]

[(y y) (x x) (x y x y)]

= ×

= ×
= − − −

 ̅
, = ̅ , = + +

18

Shared Edges
● Suppose two triangles share an edge.

Which covers the pixel when the edge
passes through the sample (E(x,y)=0)?

● Both
● Pixel color becomes dependent on order of

triangle rendering
● Creates problems when rendering transparent objects -

“double hitting”

● Neither
● Missing pixels create holes in otherwise solid surface

● We need a consistent tie-breaker!

triangle 1

triangle 2

19

Shared Edges
● A common tie-breaker:

● Coverage determination becomes
if(E(x,y) >0 || (E(x,y)==0 && t))

pixel is covered

A 0 if A 0
bool t

B 0 otherwise

> ≠= >

triangle 1

triangle 2

(A,B)

20

Shared Vertices

● Use “inclusion direction” as a
tie breaker

● Any direction can be used

● Snap vertices to subpixel grid
and displace so that no vertex
can be at the pixel center

Pixel center

Snapped vertex

21

Interpolating Parameters
● Specify a parameter, say redness (r) at

each vertex of the triangle
● Linear interpolation creates a planar function

x
y

22

Solving for Linear Interpolation
Equations
● Given the redness of the three vertices, we can set up the

following linear system:

with the solution:

[] []
0 1 2

0 1 2 r r r 0 1 2

x x x

r r r A B C y y y

1 1 1

 =

[] []

1 2 2 1 1 2 2 1

0 2 2 0 0 2 2 0

0 1 1 0 0 1 1 0
r r r 0 1 2

0 1 2

0 1 2

(y y) (x x) (x y x y)

(y y) (x x) (x y x y)

(y y) (x x) (x y x y)
A B C r r r

x x x

det y y y

1 1 1

− − −
 − − −

− − − =

23

Triangle Area

0 1 2

1
2 0 1 2

1
2 1 2 2 1 0 2 2 0 0 1 1 0

1
2 0 1 2

x x x

Area det y y y

1 1 1

((x y x y) (x y x y) (x y x y))

(C C C)

 =

= − − − + −
= + +

● Area = 0 means that the triangle is not
visible

● Area < 0 means the triangle is back facing:
● Reject triangle if performing back-face culling
● Otherwise, flip edge equations by multiplying

by -1

// they are from edge equations

24

Interpolation Equation
● The parameter plane equation is just a

linear combination of the edge equations

[] []
0

r r r 0 1 2 1

2

e
1

A B C r r r e
2 area

e

 = ⋅

25

Z-Buffering
● When rendering multiple triangles we

need to determine which triangles are
visible

● Use z-buffer to resolve visibility
● Stores the depth at each pixel

● Initialize z-buffer to 1 (far value)
● Post-perspective z values lie between 0 and 1

● Linearly interpolate depth (ztri) across
triangles

● If ztri(x,y) < zBuffer[x][y]
write to pixel at (x,y)
zBuffer[x][y] = ztri(x,y) im

ag
e

fro
m

 w
ik

ip
ed

ia
.c

om

26

Traversing Pixels

● Free to traverse pixels
● Edge and interpolation equations can be

computed at any point

● Try to minimize work
● Restrict traversal to primitive bounding box
● Hierarchical traversal

●Knock out tiles of pixels (say 4x4) at a time
●Test corners of tiles against equations
●Test individual pixels of tiles not entirely
inside or outside

27

Incremental Algorithms
● Some computation can be saved by

updating the edge and interpolation
equations incrementally:

● Equations can be updated with a single
addition!

E(x,y) Ax By C

E(x ,y) A(x) By C

E(x,y) A

E(x,y) Ax B(y) C

E(x,y) B

= + +
+ Δ = + Δ + +

= + ⋅Δ
+ Δ = + + Δ +

= + ⋅Δ

28

Triangle Setup
● Compute edge equations

● 3 cross products
● Compute triangle area

● A few additions
● Cull zero area and back-facing triangles

and/or flip edge equations
● Compute interpolation equations

● Matrix/vector product per parameter

29

Massive Models
100,000,000 primitives

1,000,000 pixels_____
100 visible primitives/pixel

● Cost to render a single triangle
● Specify 3 vertices
● Compute 3 edge equations
● Evaluate equations one

St. Mathew models consisting of
about 400M triangles

(Michelangelo Project)

30

Multi-Resolution or Levels-of-
Detail (LOD) Techniques
● Basic idea

● Render with fewer triangles when model is
farther from viewer

● Methods
● Polygonal simplification

Viewer Lower
resolution

31

Polygonal Simplification
● Method for reducing the polygon count of

mesh

Edge Collapse
Va

Vb

VaVc

Vertex Split

Static LODs

50,000 faces10,000 faces2,000 faces

pop pop

● Pre-compute discrete simplified meshes
● Switch between them at runtime
● Has very low LOD selection overhead

Excerpted from Hoppe’s slides

Dynamic Simplification
● Provides smooth and varying LODs over

the mesh [Hoppe 97]
1st person’s view 3rd person’s view

Play video

View-Dependent Rendering
[Yoon et al., SIG 05]

Pentium 4

GeForce Go
6800 Ultra

1GB RAM

30 Pixels of
error

What if there are so many
objects?

From “cars”, a Pixar movie

What if there are so many
objects?

From a Pixar movie

Stochastic Simplification of
Aggregate Detail
Cook et al., ACM SIGGRAPH 2007

38

Occlusion Culling with Occlusion
Queries

● Render objects visible in previous frame
● Known as occlusion representation or occlusion

map

39

Occlusion Culling with Occlusion
Queries
● Turn off color and depth writes
● Render object bounding boxes with occlusion

queries
● An occlusion query returns

the number of visible pixels

newly visible

40

Occlusion Culling with Occlusion
Queries

● Re-enable color writes
● Render newly visible objects

41

Class Objectives were:
● Understand triangle rasterization using

edge-equations
● Understand mechanics for parameter

interpolations
● Realize benefits of incremental algorithms

42

Next Time
● Illumination and shading
● Texture mapping

43

Homework
● Go over the next lecture slides before the

class
● Watch 2 SIGGRAPH videos and submit your

summaries before every Tue. class
● Just one paragraph for each summary

44

Any Questions?
● Come up with one question on what we

have discussed in the class and submit at
the end of the class
● 1 for already answered questions
● 2 for typical questions
● 3 for questions with thoughts or that surprised

me

● Submit at least four times during the whole
semester

45

Figs

46

̅̅
̅

47

triangle 1

triangle 2

(A,B)

Pixel center

Snapped vertex

