
CS380: Computer Graphics
Ray Tracing

Sung-Eui Yoon
(윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/CG/

2

Class Objectives
● Understand overall algorithm of recursive

ray tracing
● Ray generations
● Intersection tests and acceleration methods
● Basic sampling methods

● Related chapter
● Part II, Ray Tracing

3

Various Visibility Algorithm
● Scan-line algorithm; briefly touched before
● Z-buffer
● Ray casting, etc.

4

Ray Casting

● For each pixel, find closest object along
the ray and shade pixel accordingly

● Advantages
● Conceptually simple
● Can be extended to handle global

illumination effects

● Disadvantages
● Renderer must have access to entire retained model
● Hard to map to special-purpose hardware
● Less efficient than rasterization in terms of utilizing spatial

coherence

5

Recursive Ray Casting
● Ray casting generally dismissed early on

because of aforementioned problems

● Gained popularity in when
Turner Whitted (1980) showed this image
● Show recursive

ray casting could be used
for global illumination
effects

6

Ray Casting and Ray Tracing
● Trace rays from eye into scene

● Backward ray tracing
● Ray casting used to compute visibility at

the eye
● Perform ray tracing for arbitrary rays

needed for shading
● Reflections
● Refraction and transparency
● Shadows

7

Basic Algorithms of Ray Tracing
● Rays are cast from the eye point through

each pixel in the image

From kavita’s slides

8

Shadows
● Cast ray from the intersection point to each

light source
● Shadow rays

From kavita’s slides

9

Reflections
● If object specular, cast secondary reflected

rays

From kavita’s slides

10

Refractions
● If object tranparent, cast secondary

refracted rays

From kavita’s slides

11

An Improved Illumination Model
[Whitted 80]
● Phong model

● Whitted model

● S and T are intensity of light from reflection
and transmission rays

● Ks and Kt are specular and transmission
coefficient

=

•+•+=
numLights

1j

nj
s
j
sj

j
d
j
d

j
a
j
ar))RV(Ik)LN(IkI(kI sˆˆˆˆ

TkSk))LN(IkI(kI ts
1j

j
j
d
j
d

j
a
j
ar ++•+=

=

e_Lightsnum_Visibl
ˆˆ

12

An Improved Illumination Model
[Whitted 80]

TkSk))LN(IkI(kI ts

numLights

1j
j

j
d
j
d

j
a
j
ar ++•+=

=

ˆˆ

Computing reflection and
transmitted/refracted rays is
based on Snell’s law

13

Ray Tree

eye

s0

b

a

dc

f
e

s1s2

eye

a bs0

e fs2 c bs1

R T

R R TT

14

Overall Algorithm of Ray Tracing
● Per each pixel, compute a ray, R

Def function RayTracing (R)
● Compute an intersection against objects
● If no hit,

● Return the background color
● Otherwise,

● Compute shading, c
● General secondary ray, R’
● Perform c’ = RayTracing (R’)
● Return c+c’

15

Ray Representation
● We need to compute the first surface hit

along a ray
● Represent ray with origin and direction
● Compute intersections of objects with ray
● Return the closest object

p(t) o td= +

pd

o

16

Generating Primary Rays

l

d

o

17

Generating Secondary Rays
● The origin is the intersection point p0
● Direction depends on the type of ray

● Shadow rays – use direction to the light source
● Reflection rays – use incoming direction and

normal to compute reflection direction
● Transparency/refraction – use snell’s law

18

Intersection Tests
Go through all of the objects in the scene to

determine the one closest to the origin of
the ray (the eye).

Strategy: Solve of the intersection of the Ray
with a mathematical description of the
object

19

Simple Strategy
● Parametric ray equation

● Gives all points along the ray as a function of
the parameter

● Implicit surface equation
● Describes all points on the surface as the zero

set of a function

● Substitute ray equation into surface
function and solve for t

p(t) o td= +

0)p(f =

0)dto(f =+

20

Ray-Plane Intersection
●Implicit equation of a plane:

●Substitute ray equation:

●Solve for t:

n p d 0⋅ − =

n (o td) d 0⋅ + − =

t (n d) d n o

d n o
t

n d

⋅ = − ⋅
− ⋅=

⋅

21

Generalizing to Triangles
● Find of the point of intersection on the plane

containing the triangle
● Determine if the point is inside the triangle

● Barycentric coordinate method
● Many other methods

v1

v2v3
p

o

22

Barycentric Coordinates
● Points in a triangle have positive

barycentric coordinates: v1

v2v3
p

)()(02010 vvvvvp −+−+= γβ

210)1(vvvp γβγβ ++−−=

210 vvvp γβα ++= 1=++ γβα,where

v0
v1

v2

p

23

Barycentric Coordinates
● Points in a triangle have positive

barycentric coordinates:

● Benefits:
● Barycentric coordinates can be used for interpolating

vertex parameters (e.g., normals, colors, texture
coordinates, etc)

v1

v2v3
p

210 vvvp γβα ++= 1=++ γβα,where

24

Ray-Triangle Intersection
● A point in a ray intersects with a triangle

● Three unknowns, but three equations
● Compute the point based on t
● Then, check whether the point is on the

triangle

v1

v2v3
p

)()()(02010 vvvvvtp −+−+= γβ

25

Pros and Cons of Ray Tracing
Advantages of Ray Tracing:
● Very simple design
● Improved realism over

the graphics pipeline

Disadvantages:
● Very slow per pixel calculations
● Only approximates full global illumination
● Hard to accelerate with special-purpose H/W

26

Acceleration Methods
● Rendering time for a ray tracer depends on the

number of ray intersection tests per pixel
● The number of pixels X the number of primitives in the scene

● Early efforts focused on accelerating the ray-
object intersection tests

● More advanced methods required to make ray
tracing practical
● Bounding volume hierarchies
● Spatial subdivision

27

Bounding Volumes
● Enclose complex objects within a simple-to-

intersect objects
● If the ray does not intersect the simple object then its contents

can be ignored
● The likelihood that it will strike the object depends on how

tightly the volume surrounds the object.

Potentially tighter fit,
but with higher computation

28

Hierarchical Bounding Volumes
● Organize bounding volumes as a tree
● Each ray starts with the root BV of the tree

and traverses down through the tree

r

29

Spatial Subdivision
Idea: Divide space in to subregions
● Place objects within a subregion into a list
● Only traverse the lists of subregions that the ray

passes through
● “Mailboxing” used to avoid multiple test with

objects in multiple regions
● Many types

● Regular grid
● Octree
● BSP tree
● kd-tree

30

Kd-tree: Example

31

Kd-tree: Example

32

Kd-tree: Example

33

Example

34

Kd-tree: Example

What about triangles overlapping the split?

35

Kd-tree: Example

36

Other Optimizations
● Shadow cache
● Adaptive depth control
● Lazy geometry loading/creation

37

Distributed Ray Tracing [Cook et
al. 84]
● Cook et al. realized that ray-tracing, when

combined with randomized sampling, which they
called “jittering”, could be adapted to address a
wide range of rendering problems:

38

Soft Shadows
● Take many samples from area light source

and take their average
● Computes fractional visibility leading to

penumbra

39

Antialiasing
● The need to sample is problematic because

sampling leads to aliasing
● Solution 1: super-sampling

● Increases sampling rate, but does not completely eliminate
aliasing

● Difficult to completely eliminate aliasing without prefiltering
because the world is not band-limited

40

Antialiasing
● Solution 2: distribute the samples randomly

● Converts the aliasing energy to noise which is less
objectionable to the eye

Instead of casting one
ray per pixel, cast several
sub- sampling.

Instead of uniform sub-
sampling, jitter the pixels
slightly off the grid.

41

Jittering Results for Antialiasing

2x2
sub-sampling

42

Depth-of-Field
● Rays don’t have to all originate from a single point.
● Real cameras collects rays over an aperture

● Can be modeled as a disk
● Final image is blurred away from the focal plane
● Gives rise to depth-of-field effects

43

Depth of Field

lens
image
plane

focal plane

44

Depth of Field
● Start with normal eye ray and find

intersection with focal plane
● Choose jittered point on lens and trace line

from lens point to focal point

lens
focal plane

45

Motion Blur

● Jitter samples through time
● Simulate the finite interval that a shutter is

open on a real camera

46

Motion Blur

47

Complex Interreflection
● Model true reflection behavior as described by a full

BRDF
● Randomly sample rays over the hemisphere, weight

them by their BRDF value, and average them
together

● This technique is called “Monte Carlo Integration”

48

Related Courses
● CS580: Advanced Computer Graphics

● Focus on rendering techniques that generate
photo-realistic images

● CS482: Interactive Computer Graphics
● Interactive global illumination implemented by

rasterization approaches
● Techniques used in recent games
● I’ll teach it at Fall of 2018

