CS580: Radiosity

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/GCG

Class Objective

Understand radiosity

- Radiosity equation
- Solving the equation

History

Problems with classic ray tracing

- Not realistic
- View-dependent
- Radiosity (1984)
 - Global illumination in diffuse scenes
- Monte Carlo ray tracing (1986)
 - Global illumination for any environment

Radiosity

- Physically based method for diffuse environments
 - Support diffuse interactions, color bleeding, indirect lighting and penumbra
 - Account for very high percentage of total energy transfer
 - Finite element method

Key Idea #1: Diffuse Only

From kavita's slides

Radiance independent of direction

- Surface looks the same from any viewpoint
- No specular reflection

Diffuse Surfaces

- Diffuse emitter
 - $L(x \rightarrow \Theta) = \text{constant over } \Theta$

- Diffuse reflector
 - Constant reflectivity

From kavita's slides

Key Idea #2: Constant Polygons

Radiosity is an approximation

• Due to discretization of scene into patches

From kavita's slides

• Subdivide scene into small polygons

Constant Radiance Approximation

From kavita's slides

- Radiance is constant over a surface element
 - L(x) = constant over x

Radiosity Equation

Emitted radiosity = self-emitted radiosity + received & reflected radiosity

$$Radiosity_i = Radiosity_{self,i} + \sum_{j=1}^{N} a_{j \rightarrow i} Radiosity_j$$

© Kavita Bala, Computer Science, Cornell University

Radiosity Equation

Radiosity equation for each polygon i

$$\begin{aligned} Radiosity_{1} &= Radiosity_{self,1} + \sum_{j=1}^{N} a_{j \rightarrow 1} Radiosity_{j} \\ Radiosity_{2} &= Radiosity_{self,2} + \sum_{j=1}^{N} a_{j \rightarrow 2} Radiosity_{j} \end{aligned}$$

10. OC. 10.

$$Radiosity_{N} = Radiosity_{self,N} + \sum_{j=1}^{N} a_{j \to N} Radiosity_{j}$$

N equations; N unknown variables

Radiosity Algorithm

- Subdivide the scene in small polygons
- Compute a constant illumination value for each polygon
- Choose a viewpoint and display the visible polygon
 - Keep doing this process

From Donald Fong's slides

Radiosity Result

Theatre Scene

Compute Form Factors

$$F(j \to i) = \frac{1}{A_j} \int_{A_i A_j} \frac{\cos \theta_x \cdot \cos \theta_y}{\pi \cdot r_{xy}^2} \cdot V(x, y) \cdot dA_y \cdot dA_x$$

© Kavita Bala, Computer Science, Cornell University

Radiosity Equation

Radiosity for each polygon i

$$\forall i : B_i = B_{e,i} + \rho_i \sum_{j=1}^N B_j F(i \to j)$$

- Linear system
 - B_i : radiosity of patch i (unknown)
 - B_{e,i} : emission of patch i (known)
 - $-\rho_{I}$: reflectivity of patch i (known)
 - $F(i \rightarrow j)$: form-factor (coefficients of matrix)

Linear System of Radiosity Equations

How to Solve Linear System

- Matrix inversion
 - Takes O(n³)
- Gather methods
 - Jacobi iteration
 - Gauss-Seidel
- Shooting
 - Southwell iteration

Iterative Approaches

Jacobi iteration

- Start with initial guess for energy distribution (light sources)
- Update radiosity of all patches based on the previous guess

$$B_{i} = B_{e,i} + \rho_{i} \sum_{j=1}^{N} B_{j} F(i \rightarrow j)$$

new value

old values

- Repeat until converged
- Guass-Seidel iteration
 - New values used immediately

Multi-Resolution Approach

• A Rapid Hierarchical Radiosity Algorithm, Hanrahan, et al, SIGGRAPH 1991

Block diagram of the form factor matrix

Hybrid and Multipass Methods

- Ray tracing
 - Good for specular and refractive indirect illumination
 - View-dependent
- Radiosity
 - Good for diffuse
 - Allows interactive rendering
 - Does not scale well for massive models
- Hybrid methods
 - Combine both of them in a way

Instant Radiosity

- Use the concept of Radiosity
- Map its functions to those of classic rendering pipeline
 - Utilize fast GPU
- Additional concepts
 - Virtual point lights
 - Shadow maps

Micro-Rendering for Scalable, Parallel Final Gathering (Video)

- Tobias Ritschel, Thomas Engelhardt, Thorsten Grosch, Hans-Peter Seidel, Jan Kautz, Carsten Dachsbacher
- ACM Trans. Graph. 28(5) (Proc. SIGGRAPH Asia 2009), 2009.

Class Objectives were:

Understand radiosity

- Radiosity equation
- Solving the equation

Any Questions?

- Come up with one question on what we have discussed in the class and submit at the end of the class
 - 1 for already answered questions
 - 2 for typical questions
 - 3 for questions with thoughts
 - 4 for questions that surprised me

Homework

- Go over the next lecture slides before the class
- Watch 2 SIGGRAPH videos and submit your summaries every Tue. class
 - Just one paragraph for each summary

Example:

Title: XXX XXXX XXXX

Abstract: this video is about accelerating the performance of ray tracing. To achieve its goal, they design a new technique for reordering rays, since by doing so, they can improve the ray coherence and thus improve the overall performance.

Next Time

Radiometry

