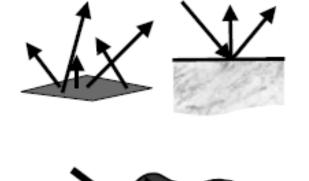
CS580: Rendering Equation

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/GCG

Light and Material Interactions

- Physics of light
- Radiometry
- Material properties

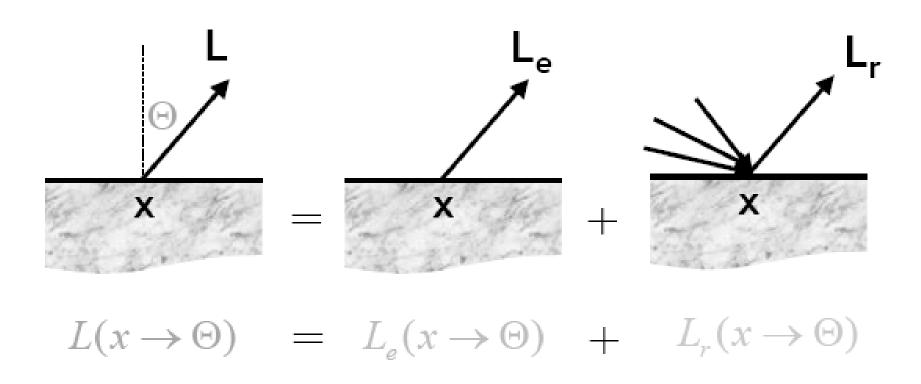


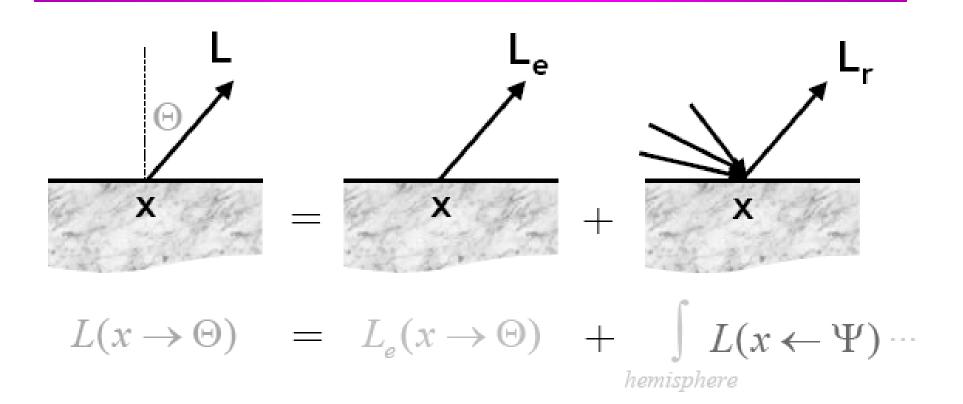
Rendering equation

Light Transport

- Goal
 - Describe steady-state radiance distribution in the scene
- Assumptions
 - Geometric optics
 - Achieves steady state instantaneously

- Describes energy transport in the scene
- Input
 - Light sources
 - Surface geometry
 - Reflectance characteristics of surfaces
- Output
 - Value of radiances at all surface points in all directions





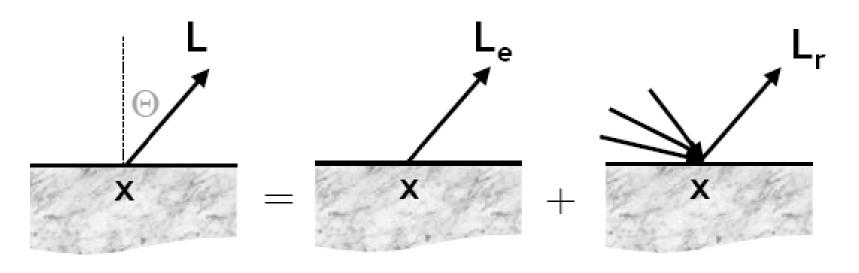
Cavita Bala, Computer Science, Cornell University

$$f_r(x, \Psi \leftrightarrow \Theta) = \frac{dL(x \to \Theta)}{dE(x \leftarrow \Psi)}$$

$$dL(x \to \Theta) = f_r(x, \Psi \leftrightarrow \Theta) dE(x \leftarrow \Psi)$$

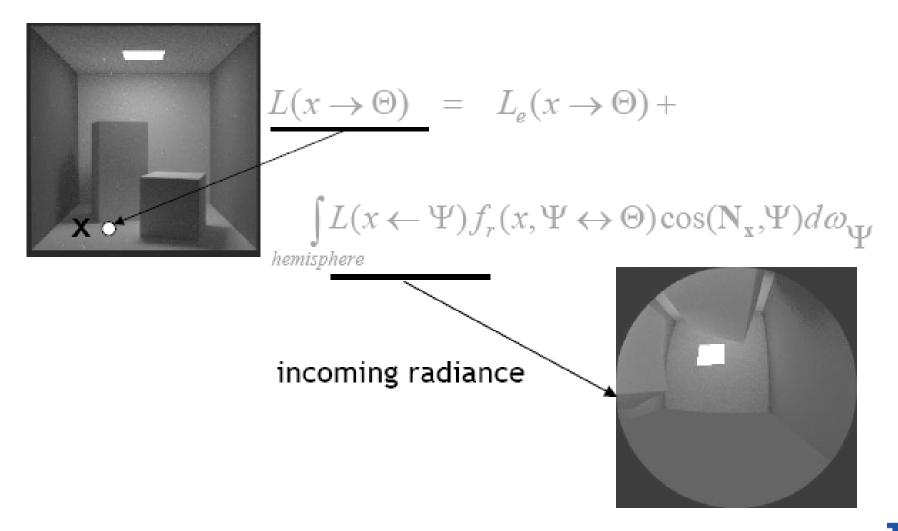
 $dL(x \to \Theta) = f_r(x, \Psi \leftrightarrow \Theta) L(x \leftarrow \Psi) \cos(N_x, \Psi) d\omega_{\Psi}$

$$L_r(x \to \Theta) = \int_{hemisphere} f_r(x, \Psi \leftrightarrow \Theta) L(x \leftarrow \Psi) \cos(N_x, \Psi) d\omega_{\Psi}$$



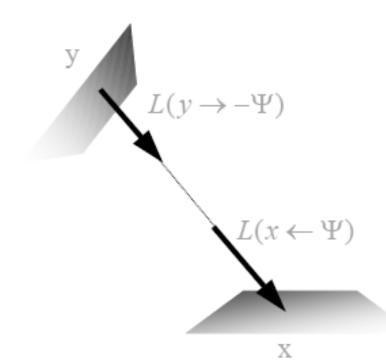
$$L(x \to \Theta) = L_e(x \to \Theta) + \int L(x \leftarrow \Psi) f_r(x, \Psi \leftrightarrow \Theta) \cos(\mathbb{N}_x, \Psi) d\omega_{\Psi}$$
hemisphere

Applicable for each wavelength



Rendering Equation: Area Formulation

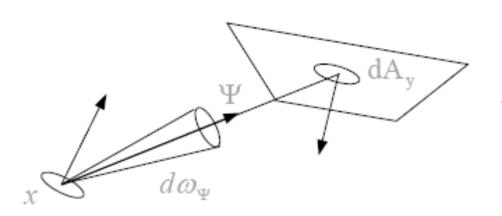
$$L(x \to \Theta) = L_e(x \to \Theta) + \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_x \cdot d\omega_{\Psi}$$



Ray-casting function: what is the nearest visible surface point seen from x in direction Ψ ?

 $y = vp(x, \Psi)$ $L(x \leftarrow \Psi) = L(vp(x, \Psi) \rightarrow -\Psi)$

$$L(x \to \Theta) = L_e(x \to \Theta) + \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_x \cdot d\omega_{\Psi}$$



$$y = vp(x, \Psi)$$

$$L(x \leftarrow \Psi) = L(vp(x, \Psi) \rightarrow -\Psi)$$

$$d\omega_{\Psi} = \frac{dA_y \cos \theta_y}{r_{xy}^2}$$

Rendering Equation: Visible Surfaces

$$L(x \to \Theta) = L_e(x \to \Theta) + \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_x \cdot d\omega_{\Psi}$$

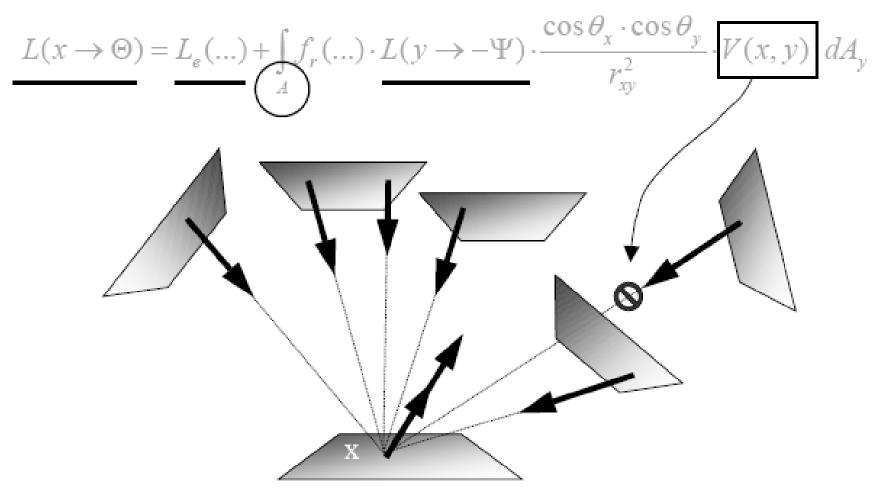
Coordinate transform
$$L(x \to \Theta) = L_e(x \to \Theta) + \int_{\substack{y \text{ on} \\ \text{all surfaces}}} f_r(\Psi \leftrightarrow \Theta) \cdot L(y \to -\Psi) \cos \theta_x \cdot \frac{\cos \theta_y}{r_{xy}^2} \cdot dA_y$$

$$y = vp(x, \Psi)$$

Integration domain = visible surface points y

 Integration domain extended to ALL surface points by including visibility function

Rendering Equation: All Surfaces



Two Forms of the Rendering Equation

Hemisphere integration

$$L(x \to \Theta) = L_{e}(x \to \Theta) + \int_{\Omega_{x}} f_{r}(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_{x} \cdot d\omega_{\Psi}$$

• Area integration

$$L(x \to \Theta) = L_e(x \to \Theta) + \int_A f_r(\Psi \leftrightarrow \Theta) \cdot L(y \to -\Psi) \cdot \frac{\cos \theta_x \cdot \cos \theta_y}{r_{xy}^2} \cdot V(x, y) \cdot dA_y$$

Speaking of Rendering Equation

- "The rendering equation is derived similarly to the radiosity equation, but I noticed that its main difference is at considering incoming radiance and BRDF."
- "I can also derive the rendering equation based on areas of triangles, not on incoming solid angles."

Next Time

Monte Carlo ray tracing

Any Questions?

- Come up with one question on what we have discussed in the class and submit at the end of the class
 - 1 for already answered questions
 - 2 for typical questions
 - 3 for questions with thoughts
 - 4 for questions that surprised me

