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● We will discuss various parts of computer 
graphics

Overview of Computer Graphics

Modelling Simulation & Rendering Image

Computer vision inverts the process
Image processing deals with images
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Lecture 2: Screen Space & World 
Space
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Mapping from World to Screen

World

Screen

Window
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Screen Space

● Graphical image is 
presented by setting colors 
for a set of discrete samples 
called “pixels”

● Pixels displayed on screen in 
windows

● Pixels are addressed as 2D 
arrays
● Indices are “screen-

space” coordinates

(0,0) (width-1,0)

(width-1, height-1)(0,height-1)
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OpenGL Coordinate System
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Pixel Independence
● Often easier to structure graphical objects 

independent of screen or window sizes
● Define graphical objects in “world-space” 

800 cubits

500 cubits

2 meters

1.25 meters



8

Lecture: 2D Transformation
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2D Geometric Transforms
● Functions to map 

points from one place 
to another

● Geometric transforms 
can be applied to

● Drawing primitives
(points, lines, conics, 
triangles)

● Pixel coordinates of an 
image

Demo



10

Translation
● Translations have the following form: 

x' = x + tx
y' = y + ty

● inverse function: undoes the translation:
x = x' - tx
y = y' - ty

● identity: leaves every point unchanged
x' = x + 0
y' = y + 0 
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2D Rotations
● Another group - rotation about the origin:
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Rotations in Series
● We want to rotate the object 30 degree 

and, then, 60 degree
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● Euclidean Group
● Translations + rotations
● Rigid body transforms

● Properties: 
● Preserve distances 
● Preserve angles 
● How do you represent these functions?

Euclidean Transforms
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Problems with this Form
● Translation and rotation considered 

separately
● Typically we perform a series of rotations and 

translations to place objects in world space
● It’s inconvenient and inefficient in the 

previous form
● Inverse transform involves multiple steps 

● How can we address it?
● How can we represent the translation as a 

matrix multiplication?
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Homogeneous Coordinates
● Consider our 2D plane as a subspace within 

3D

(x, y) (x, y, z)
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Matrix Multiplications and 
Homogeneous Coordinates
● Can use any planar subspace that does not contain 

the origin
● Assume our 2D space lies on the 3D plane z = 1

● Now we can express all Euclidean transforms in matrix 
form:
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● S is a scaling factor

Scaling
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Frame Buffer
● Contains an image for the final 

visualization
● Color buffer, depth buffer, etc.

● Buffer initialization
● glClear(GL_COLOR_BUFFER_BIT);
● glClearColor (..);

● Buffer creation
● glutInitDisplayMode (GLUT_DOUBLE | 

GLUT_RGB);
● Buffer swap

● glutSwapBuffers();
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Lecture: Modeling 
Transformation
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The Classic Rendering Pipeline
● Object primitives defined by 

vertices fed in at the top
● Pixels come out in the display at 

the bottom
● Commonly have multiple 

primitives in various stages of 
rendering
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Modeling Transforms
● Start with 3D models defined in 

modeling spaces with their own 
modeling frames: 

● Modeling transformations orient models 
within a common coordinate frame 
called world space, 

● All objects, light sources, and the camera 
live in world space

● Trivial rejection
attempts to 
eliminate
objects that
cannot possibly
be seen

● An optimization
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Illumination
● Illuminate potentially visible objects
● Final rendered color is determined by 

object’s orientation, its material 
properties, and the light sources in the 
scene
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Viewing Transformations
● Maps points from world space to 

eye space:

● Viewing position is transformed to 
the origin

● Viewing direction is oriented along 
some axis

Vtt we  =
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Clipping and Projection
● We specify a volume called a viewing 

frustum
● Map the view frustum to the unit cube
● Clip objects against the view volume, 

thereby eliminating geometry not visible in 
the image

● Project objects 
into two-dimensions

● Transform from
eye space to 
normalized device 
coordinates
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Rasterization and Display
● Transform normalized device 

coordinates to screen space
● Rasterization converts objects pixels 

- Almost every step in the rendering 
pipeline involves a change of coordinate 
systems!
- Transformations are central to 
understanding 3D computer graphics
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Lecture: Interaction
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● How do we specify 3D objects?
● Simple mathematical functions, z = f(x,y)
● Parametric functions, (x(u,v), y(u,v), z(u,v))
● Implicit functions, f(x,y,z) = 0

● Build up from simple primitives
● Point – nothing really to see
● Lines – nearly see through
● Planes – a surface

Primitive 3D
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Simple Planes
● Surfaces modeled as connected planar 

facets
● N (>3) vertices, each with 3 coordinates
● Minimally a triangle
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Specifying a Face
● Face or facet

Face [v0.x, v0.y, v0.z] [v1.x, v1.y, v1.z] … [vN.x, vN.y, vN.z]

● Sharing vertices via indirection
Vertex[0] = [v0.x, v0.y, v0.z]

Vertex[1] = [v1.x, v1.y, v1.z]

Vertex[2] = [v2.x, v2.y, v2.z]

:

Vertex[N] = [vN.x, vN.y, vN.z]

Face v0, v1, v2, … vN

v0

v1
v2

v3
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Vertex Specification
● Where

● Geometric coordinates [x, y, z]

● Attributes
● Color values [r, g, b]
● Texture Coordinates [u, v]

● Orientation
● Inside vs. Outside
● Encoded implicitly in ordering

● Geometry nearby
● Often we’d like to “fake” a more complex shape than our true 

faceted (piecewise-planar) model
● Required for lighting and shading in OpenGL
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Normal Vector
● Often called normal, [nx, ny, nz]

● Normal to a surface is a vector perpendicular to 
the surface
●Will be used in illumination

●
● Normalized:
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Drawing Faces in OpenGL
glBegin(GL_POLYGON);
foreach (Vertex v in Face) {
glColor4d(v.red, v.green, v.blue, v.alpha);
glNormal3d(v.norm.x, v.norm.y, v.norm.z);
glTexCoord2d(v.texture.u, v.texture.v);
glVertex3d(v.x, v.y, v.z);

}
glEnd();

● Heavy-weight model 
● Attributes specified for every vertex

● Redundant 
● Vertex positions often shared by at least 3 faces 
● Vertex attributes are often face attributes (e.g. face 

normal)
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3D File Formats
● MAX – Studio Max
● DXF – AutoCAD

● Supports 2-D and 3-D; binary
● 3DS – 3D studio

● Flexible; binary
● VRML – Virtual reality modeling language

● ASCII – Human readable (and writeable)
● OBJ – Wavefront OBJ format

● ASCII 
● Extremely simple
● Widely supported
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OBJ File Tokens
● File tokens are listed below

# some text 
Rest of line is a comment 

v float float float 
A single vertex’s geometric position in space

vn float float float
A normal

vt float float
A texture coordinate
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OBJ Face Varieties
f int int int ... (vertex only)

or
f int/int  int/int  int/int . . . (vertex & texture)

or
f int/int/int   int/int/int   int/int/int … (vertex, 

texture, & normal)

● The arguments are 1-based indices into the 
arrays
● Vertex positions
● Texture coordinates
● Normals, respectively
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OBJ Example
● Vertices followed by faces

● Faces reference previous
vertices by integer index

● 1-based

# A simple cube
v 1 1 1
v 1 1 -1
v 1 -1 1
v 1 -1 -1
v -1 1 1
v -1 1 -1
v -1 -1 1
v -1 -1 -1
f 1 3 4
f 5 6 8
f 1 2 6
f 3 7 8
f 1 5 7
f 2 4 8
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Lecture: Rasterization
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● Rasterization converts vertex representation to 
pixel representation

● Coverage determination
● Computes which pixels (samples) belong to a 

primitive 
● Parameter interpolation

● Computes parameters at covered pixels from 
parameters associated with primitive vertices

Primitive Rasterization
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Why Triangles?
● Triangles are simple

● Simple representation for a surface element
(3 points or 3 edge equations)

● Triangles are linear (makes computations 
easier)

0v
1v

2v

1e 0e

2e

0 1 2

0 1 2

T (v ,v ,v )

T (e ,e,e )

=
=
  
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● Triangles can approximate any 2-dimensional 
shape (or 3D surface)

● Polygons are a locally linear (planar) approximation

● Improve the quality of fit by increasing the 
number edges or faces

Why Triangles?
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Z-Buffering
● When rendering multiple triangles we 

need to determine which triangles are 
visible

● Use z-buffer to resolve visibility
● Stores the depth at each pixel

● Initialize z-buffer to 1
● Post-perspective z values lie between 0 and 1 

● Linearly interpolate depth (ztri) across 
triangles

● If ztri(x,y) < zBuffer[x][y] 
write to pixel at (x,y)
zBuffer[x][y] = ztri(x,y) im
ag
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Lecture: Illumination
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Illumination Models
● Illumination

● Light energy transport from 
light sources between 
surfaces via direct and 
indirect paths 

● Shading
● Process of assigning

colors to pixels
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Illumination Models
● Physically-based

● Models based on the actual physics of light's 
interactions with matter 

● Empirical
● Simple formulations that approximate 

observed phenomenon 
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Two Components of Illumination
● Light sources:

● Emittance spectrum (color) 
● Geometry (position and direction) 
● Directional attenuation 

● Surface properties:
● Reflectance spectrum (color) 
● Geometry (position, orientation, and micro-

structure) 
● Absorption 
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● Describes the transport of irradiance to 
radiance

Bi-Directional Reflectance 
Distribution Function (BRDF)



47

Measuring BRDFs

● Goniophotometer
● One 4D measurement at a time (slow)
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How to use BRDF Data?

One can make direct use of acquired BRDFs
in a renderer
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Two Components of Illumination
● Simplifications used by most computer 

graphics systems:
● Compute only direct illumination from the 

emitters to the reflectors of the scene 
● Ignore the geometry of light emitters, and 

consider only the geometry of reflectors 
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Ambient Light Source
● A simple hack for indirect illumination 

● Incoming ambient illumination (Ii,a) is constant 
for all surfaces in the scene

● Reflected ambient illumination (Ir,a ) depends 
only on the surface’s ambient reflection 
coefficient (ka)  and not its position or 
orientation

● These quantities typically specified as (R, G, B) 
triples

r ,a a i,aI k I=
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Ideal Diffuse Reflection
● Ideal diffuse reflectors (e.g., chalk)

● Reflect uniformly over the hemisphere
● Reflection is view-independent
● Very rough at the microscopic level

● Follow Lambert’s cosine law
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Lambert’s Cosine Law
● The reflected energy from a small surface area 

from illumination arriving from direction     is 
proportional to the cosine of the angle between      
and the surface normal

L̂
L̂

L̂

N̂

θ

)LN(I   

cosθII

i

ir

ˆˆ •≈

≈
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Specular Reflection
● Specular reflectors have a bright, view 

dependent highlight
● E.g., polished metal, glossy car finish, a mirror
● At the microscopic level a specular reflecting 

surface is very smooth
● Specular reflection obeys Snell’s law

Image source: astochimp.com and wiki
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Snell’s Law
● The relationship between the angles of 

the incoming and reflected rays with the 
normal is given by:

● ni and no are the indices of refraction for the
incoming and outgoing ray, respectively

● Reflection is a special case where ni = no  so θo
= θi

● The incoming ray, the surface normal, and the 
reflected ray all lie in a common plane

L̂
N̂

oθ R̂
iθ

i i o on sin n sinθ θ=
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Non-Ideal Reflectors
● Snell’s law applies only to ideal specular 

reflectors
● Roughness of surfaces causes highlight to 

“spread out” 
● Empirical models try to simulate the 

appearance of this effect, without trying to 
capture the physics of it

L̂
N̂

R̂
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Phong Illumination
● One of the most commonly used 

illumination models in computer graphics
● Empirical model and does not have no physical 

basis

● is the direction to the viewer
● is clamped to [0,1]
● The specular exponent ns controls how quickly 

the highlight falls off
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Examples of Phong

varying light direction

varying specular exponent
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Putting it All Together


=
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From Wikipedia
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OpenGL’s Illumination Model


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●Problems with empirical models: 
● What are the coefficients for copper? 
● What are ka, ks, and ns? 

Are they measurable quantities? 
● Is my picture accurate? Is energy conserved? 
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● The simplest shading method
● Applies only one illumination calculation

per face

● Illumination usually computed at 
the centroid of the face:

● Issues:
● For point light sources the light direction

varies over the face 
● For specular reflections the viewer direction varies over 

the facet

Flat Shading
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● Performs the illumination model on vertices 
and interpolates the intensity of the 
remaining points on the surface

Gouraud Shading

Notice that facet artifacts are still visible
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● Surface normal is linearly interpolated 
across polygonal facets, and the 
illumination model is applied at every point
● Not to be confused with Phong’s illumination 

model

● Phong shading will usually result in a very 
smooth appearance
● However, evidence of the polygonal model can 

usually be seen along silhouettes

Phong Shading
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Local Illumination
● Local illumination models compute the colors of 

points on surfaces by considering only local 
properties:

● Position of the point
● Surface properties
● Properties of any light                                    sources that 

affect it

● No other objects in the scene 
are considered neither as light 
blockers nor as reflectors

● Typical of immediate-mode 
renders, such as OpenGL
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Global Illumination
● In the real world, light takes indirect paths

● Light reflects off of other materials (possibly multiple 
objects)

● Light is blocked by other objects
● Light can be scattered
● Light can be focused
● Light can bend

● Harder to model
● At each point we must

consider not only every light
source, but and other point
that might have reflected light
toward it
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Lecture: Texture Mapping



66

Texture Mapping
● Requires lots of geometry to fully represent 

complex shapes of models
● Add details with image representations

Excerpted from MIT EECS 6.837, 
Durand and Cutler
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The Quest for Visual Realism
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Photo-Textures

Excerpted from MIT EECS 6.837, 
Durand and Cutler
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Texture Maps in OpenGL

● Specify normalized texture 
coordinates at each of the 
vertices (u, v)

● Texel indices
(s,t) = (u, v) ⋅ (width, 
height)

glBindTexture(GL_TEXTURE_2D, texID)
glBegin(GL_POLYGON)
glTexCoord2d(0,1); glVertex2d(-1,-1);
glTexCoord2d(1,1); glVertex2d( 1,-1);
glTexCoord2d(1,0); glVertex2d( 1, 1);
glTexCoord2d(0,0); glVertex2d(-1, 1);

glEnd()     

(x4,y4)
(u4,v4)

(x1,y1)
(u1,v1)

(x2,y2)
(u2,v2)

(x3,y3)
(u3,v3)
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Light

Shadow Maps

Eye

Point in shadow 
visible to the eye, 
but not visible to 

the light

Use the depth map in the 
light view to determine if 
sample point is visible
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Environment Maps
● Simulate complex mirror-like 

objects
● Use textures to capture 

environment of objects
● Use surface normal to compute 

texture coordinates
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Environment Maps - Example

T1000 in Terminator 2 from Industrial Light and Magic
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Cube Maps
● Maps a viewing direction b and returns an 

RGB color
● Use stored texture maps
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Lecture: Ray Tracing
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Ray Casting

● For each pixel, find closest object along 
the ray and shade pixel accordingly

● Advantages
● Conceptually simple
● Can support CSG
● Can take advantage of spatial

coherence in scene
● Can be extended to handle global 

illumination effects (ex: shadows and reflectance)

● Disadvantages
● Renderer must have access to entire retained model
● Hard to map to special-purpose hardware
● Visibility computation is a function of resolution 
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Recursive Ray Casting
● Ray casting generally dismissed early on:

● Takes no advantage of screen space coherence 
● Requires costly visibility computation 
● Only works for solids 
● Forces per pixel illumination evaluations

● Gained popularity in when
Turner Whitted (1980)
recognized that recursive 
ray casting could be used
for global illumination 
effects 
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Overall Algorithm of Ray Tracing
● Per each pixel, compute a ray, R

function RayTracing (R)
● Compute an intersection against objects
● If no hit,

● Return the background color
● Otherwise,

● Compute shading, c
● General secondary ray, R’
● Perform c’ = RayTracing (R’)
● Return c+c’
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Ray Representation
● We need to compute the first surface hit 

along a ray
● Represent ray with origin and direction
● Compute intersections of objects with ray
● Return closest object

p(t ) o td= +



pd


o
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Generating Primary Rays

l


d


o
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Intersection Tests
Go through all of the objects in the scene to 

determine the one closest to the origin of 
the ray (the eye).

Strategy: Solve of the intersection of the Ray 
with a mathematical description of the 
object
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Simple Strategy
● Parametric ray equation

● Gives all points along the ray as a function of 
the parameter 

● Implicit surface equation
● Describes all points on the surface as the zero 

set of a function

● Substitute ray equation into surface 
function and solve for t

p(t ) o td= +




0)p(f =

0)dto(f =+



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Ray-Plane Intersection
●Implicit equation of a plane:

●Substitute ray equation:

●Solve for t:

n p d 0⋅ − =


n (o td) d 0⋅ + − =
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

t (n d) d n o

d n o
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n d
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⋅
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Generalizing to Triangles
● Find of the point of intersection on the plane 

containing the triangle
● Determine if the point is inside the triangle

● Barycentric coordinate method
● Many other methods

v1

v2v3
p

o
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Barycentric Coordinates
● Points in a triangle have positive 

barycentric coordinates: v1

v2v3
p

)()( 02010 vvvvvp  −+−+= γβ

210)1( vvvp  γβγβ ++−−=

210 vvvp  γβα ++= 1=++ γβα,where

v0
v1

v2

p
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Barycentric Coordinates
● Points in a triangle have positive 

barycentric coordinates:

● Benefits:
● Barycentric coordinates can be used for interpolating 

vertex parameters (e.g., normals, colors, texture 
coordinates, etc)

v1

v2v3
p

210 vvvp  γβα ++= 1=++ γβα,where



86

Ray-Triangle Intersection
● A point in a ray intersects with a triangle

● Three unknowns, but three equations
● Compute the point based on t
● Then, check whether the point is on the 

triangle
● Refer to Sec. 9.3.2 in the textbook for the detail 

equations

v1

v2v3
p

)()()( 02010 vvvvvtp  −+−+= γβ


