
Summary of Under. CG related to
CS580

Sung-Eui Yoon
(윤성의)

Course URL:
http://sgvr.kaist.ac.kr/~sungeui/

2

● We will discuss various parts of computer
graphics

Overview of Computer Graphics

Modelling Simulation & Rendering Image

Computer vision inverts the process
Image processing deals with images

3

Lecture 2: Screen Space & World
Space

4

Mapping from World to Screen

World

Screen

Window

5

Screen Space

● Graphical image is
presented by setting colors
for a set of discrete samples
called “pixels”

● Pixels displayed on screen in
windows

● Pixels are addressed as 2D
arrays
● Indices are “screen-

space” coordinates

(0,0) (width-1,0)

(width-1, height-1)(0,height-1)

6

OpenGL Coordinate System

7

Pixel Independence
● Often easier to structure graphical objects

independent of screen or window sizes
● Define graphical objects in “world-space”

800 cubits

500 cubits

2 meters

1.25 meters

8

Lecture: 2D Transformation

9

2D Geometric Transforms
● Functions to map

points from one place
to another

● Geometric transforms
can be applied to

● Drawing primitives
(points, lines, conics,
triangles)

● Pixel coordinates of an
image

Demo

10

Translation
● Translations have the following form:

x' = x + tx
y' = y + ty

● inverse function: undoes the translation:
x = x' - tx
y = y' - ty

● identity: leaves every point unchanged
x' = x + 0
y' = y + 0









+








=













y

x

'

'

t

t

y

x

y

x

11

2D Rotations
● Another group - rotation about the origin:

12

Rotations in Series
● We want to rotate the object 30 degree

and, then, 60 degree

























=













y

x

cos(30) sin(30)

sin(30)- cos(30)

cos(60) sin(60)

sin(60)- cos(60)

y

x
'

'

















=













y

x

cos(90) sin(90)

sin(90)- cos(90)

y

x
'

'

We can merge
multiple rotations into

one rotation matrix

13

● Euclidean Group
● Translations + rotations
● Rigid body transforms

● Properties:
● Preserve distances
● Preserve angles
● How do you represent these functions?

Euclidean Transforms

14

Problems with this Form
● Translation and rotation considered

separately
● Typically we perform a series of rotations and

translations to place objects in world space
● It’s inconvenient and inefficient in the

previous form
● Inverse transform involves multiple steps

● How can we address it?
● How can we represent the translation as a

matrix multiplication?

15

Homogeneous Coordinates
● Consider our 2D plane as a subspace within

3D

(x, y) (x, y, z)

16

Matrix Multiplications and
Homogeneous Coordinates
● Can use any planar subspace that does not contain

the origin
● Assume our 2D space lies on the 3D plane z = 1

● Now we can express all Euclidean transforms in matrix
form:

17

● S is a scaling factor

Scaling
































=

















1

y

x

s

s

y

x
'

'

100
00
00

1

18

Frame Buffer
● Contains an image for the final

visualization
● Color buffer, depth buffer, etc.

● Buffer initialization
● glClear(GL_COLOR_BUFFER_BIT);
● glClearColor (..);

● Buffer creation
● glutInitDisplayMode (GLUT_DOUBLE |

GLUT_RGB);
● Buffer swap

● glutSwapBuffers();

19

Lecture: Modeling
Transformation

20

The Classic Rendering Pipeline
● Object primitives defined by

vertices fed in at the top
● Pixels come out in the display at

the bottom
● Commonly have multiple

primitives in various stages of
rendering

21

Modeling Transforms
● Start with 3D models defined in

modeling spaces with their own
modeling frames:

● Modeling transformations orient models
within a common coordinate frame
called world space,

● All objects, light sources, and the camera
live in world space

● Trivial rejection
attempts to
eliminate
objects that
cannot possibly
be seen

● An optimization

t
n

t
2

t
1 m,...,m,m 

tw

22

Illumination
● Illuminate potentially visible objects
● Final rendered color is determined by

object’s orientation, its material
properties, and the light sources in the
scene

23

Viewing Transformations
● Maps points from world space to

eye space:

● Viewing position is transformed to
the origin

● Viewing direction is oriented along
some axis

Vtt we  =

24

Clipping and Projection
● We specify a volume called a viewing

frustum
● Map the view frustum to the unit cube
● Clip objects against the view volume,

thereby eliminating geometry not visible in
the image

● Project objects
into two-dimensions

● Transform from
eye space to
normalized device
coordinates

25

Rasterization and Display
● Transform normalized device

coordinates to screen space
● Rasterization converts objects pixels

- Almost every step in the rendering
pipeline involves a change of coordinate
systems!
- Transformations are central to
understanding 3D computer graphics

26

Lecture: Interaction

27

● How do we specify 3D objects?
● Simple mathematical functions, z = f(x,y)
● Parametric functions, (x(u,v), y(u,v), z(u,v))
● Implicit functions, f(x,y,z) = 0

● Build up from simple primitives
● Point – nothing really to see
● Lines – nearly see through
● Planes – a surface

Primitive 3D

28

Simple Planes
● Surfaces modeled as connected planar

facets
● N (>3) vertices, each with 3 coordinates
● Minimally a triangle

29

Specifying a Face
● Face or facet

Face [v0.x, v0.y, v0.z] [v1.x, v1.y, v1.z] … [vN.x, vN.y, vN.z]

● Sharing vertices via indirection
Vertex[0] = [v0.x, v0.y, v0.z]

Vertex[1] = [v1.x, v1.y, v1.z]

Vertex[2] = [v2.x, v2.y, v2.z]

:

Vertex[N] = [vN.x, vN.y, vN.z]

Face v0, v1, v2, … vN

v0

v1
v2

v3

30

Vertex Specification
● Where

● Geometric coordinates [x, y, z]

● Attributes
● Color values [r, g, b]
● Texture Coordinates [u, v]

● Orientation
● Inside vs. Outside
● Encoded implicitly in ordering

● Geometry nearby
● Often we’d like to “fake” a more complex shape than our true

faceted (piecewise-planar) model
● Required for lighting and shading in OpenGL

31

Normal Vector
● Often called normal, [nx, ny, nz]

● Normal to a surface is a vector perpendicular to
the surface
●Will be used in illumination

●
● Normalized:

2
z

2
y

2
x

zyx

nnn

]n,n,n[n̂
++

=

32

Drawing Faces in OpenGL
glBegin(GL_POLYGON);
foreach (Vertex v in Face) {
glColor4d(v.red, v.green, v.blue, v.alpha);
glNormal3d(v.norm.x, v.norm.y, v.norm.z);
glTexCoord2d(v.texture.u, v.texture.v);
glVertex3d(v.x, v.y, v.z);

}
glEnd();

● Heavy-weight model
● Attributes specified for every vertex

● Redundant
● Vertex positions often shared by at least 3 faces
● Vertex attributes are often face attributes (e.g. face

normal)

33

3D File Formats
● MAX – Studio Max
● DXF – AutoCAD

● Supports 2-D and 3-D; binary
● 3DS – 3D studio

● Flexible; binary
● VRML – Virtual reality modeling language

● ASCII – Human readable (and writeable)
● OBJ – Wavefront OBJ format

● ASCII
● Extremely simple
● Widely supported

34

OBJ File Tokens
● File tokens are listed below

some text
Rest of line is a comment

v float float float
A single vertex’s geometric position in space

vn float float float
A normal

vt float float
A texture coordinate

35

OBJ Face Varieties
f int int int ... (vertex only)

or
f int/int int/int int/int . . . (vertex & texture)

or
f int/int/int int/int/int int/int/int … (vertex,

texture, & normal)

● The arguments are 1-based indices into the
arrays
● Vertex positions
● Texture coordinates
● Normals, respectively

36

OBJ Example
● Vertices followed by faces

● Faces reference previous
vertices by integer index

● 1-based

A simple cube
v 1 1 1
v 1 1 -1
v 1 -1 1
v 1 -1 -1
v -1 1 1
v -1 1 -1
v -1 -1 1
v -1 -1 -1
f 1 3 4
f 5 6 8
f 1 2 6
f 3 7 8
f 1 5 7
f 2 4 8

37

Lecture: Rasterization

38

● Rasterization converts vertex representation to
pixel representation

● Coverage determination
● Computes which pixels (samples) belong to a

primitive
● Parameter interpolation

● Computes parameters at covered pixels from
parameters associated with primitive vertices

Primitive Rasterization

39

Why Triangles?
● Triangles are simple

● Simple representation for a surface element
(3 points or 3 edge equations)

● Triangles are linear (makes computations
easier)

0v
1v

2v

1e 0e

2e

0 1 2

0 1 2

T (v ,v ,v)

T (e ,e,e)

=
=
  

40

● Triangles can approximate any 2-dimensional
shape (or 3D surface)

● Polygons are a locally linear (planar) approximation

● Improve the quality of fit by increasing the
number edges or faces

Why Triangles?

41

Z-Buffering
● When rendering multiple triangles we

need to determine which triangles are
visible

● Use z-buffer to resolve visibility
● Stores the depth at each pixel

● Initialize z-buffer to 1
● Post-perspective z values lie between 0 and 1

● Linearly interpolate depth (ztri) across
triangles

● If ztri(x,y) < zBuffer[x][y]
write to pixel at (x,y)
zBuffer[x][y] = ztri(x,y) im
ag

e
fr

om
 w

ik
ip

ed
ia

.c
om

42

Lecture: Illumination

43

Illumination Models
● Illumination

● Light energy transport from
light sources between
surfaces via direct and
indirect paths

● Shading
● Process of assigning

colors to pixels

44

Illumination Models
● Physically-based

● Models based on the actual physics of light's
interactions with matter

● Empirical
● Simple formulations that approximate

observed phenomenon

45

Two Components of Illumination
● Light sources:

● Emittance spectrum (color)
● Geometry (position and direction)
● Directional attenuation

● Surface properties:
● Reflectance spectrum (color)
● Geometry (position, orientation, and micro-

structure)
● Absorption

46

● Describes the transport of irradiance to
radiance

Bi-Directional Reflectance
Distribution Function (BRDF)

47

Measuring BRDFs

● Goniophotometer
● One 4D measurement at a time (slow)

48

How to use BRDF Data?

One can make direct use of acquired BRDFs
in a renderer

49

Two Components of Illumination
● Simplifications used by most computer

graphics systems:
● Compute only direct illumination from the

emitters to the reflectors of the scene
● Ignore the geometry of light emitters, and

consider only the geometry of reflectors

50

Ambient Light Source
● A simple hack for indirect illumination

● Incoming ambient illumination (Ii,a) is constant
for all surfaces in the scene

● Reflected ambient illumination (Ir,a) depends
only on the surface’s ambient reflection
coefficient (ka) and not its position or
orientation

● These quantities typically specified as (R, G, B)
triples

r ,a a i,aI k I=

51

Ideal Diffuse Reflection
● Ideal diffuse reflectors (e.g., chalk)

● Reflect uniformly over the hemisphere
● Reflection is view-independent
● Very rough at the microscopic level

● Follow Lambert’s cosine law

52

Lambert’s Cosine Law
● The reflected energy from a small surface area

from illumination arriving from direction is
proportional to the cosine of the angle between
and the surface normal

L̂
L̂

L̂

N̂

θ

)LN(I

cosθII

i

ir

ˆˆ •≈

≈

53

Specular Reflection
● Specular reflectors have a bright, view

dependent highlight
● E.g., polished metal, glossy car finish, a mirror
● At the microscopic level a specular reflecting

surface is very smooth
● Specular reflection obeys Snell’s law

Image source: astochimp.com and wiki

54

Snell’s Law
● The relationship between the angles of

the incoming and reflected rays with the
normal is given by:

● ni and no are the indices of refraction for the
incoming and outgoing ray, respectively

● Reflection is a special case where ni = no so θo
= θi

● The incoming ray, the surface normal, and the
reflected ray all lie in a common plane

L̂
N̂

oθ R̂
iθ

i i o on sin n sinθ θ=

55

Non-Ideal Reflectors
● Snell’s law applies only to ideal specular

reflectors
● Roughness of surfaces causes highlight to

“spread out”
● Empirical models try to simulate the

appearance of this effect, without trying to
capture the physics of it

L̂
N̂

R̂

56

Phong Illumination
● One of the most commonly used

illumination models in computer graphics
● Empirical model and does not have no physical

basis

● is the direction to the viewer
● is clamped to [0,1]
● The specular exponent ns controls how quickly

the highlight falls off

R̂L̂
N̂

φ
V̂

s

s

n
is

n
isr

)RV(Ik

)(cosIkI

ˆˆ •=

= φ

ˆ(V)
)RV(ˆˆ •

57

Examples of Phong

varying light direction

varying specular exponent

58

Putting it All Together


=

•+•+=
numLights

1j

nj
s

j
sj

j
d

j
d

j
a

j
ar ,0)))RVmax((Ik),0)LNmax((IkI(kI sˆˆˆˆ

From Wikipedia

59

OpenGL’s Illumination Model


=

•+•+=
numLights

1j

nj
s

j
sj

j
d

j
d

j
a

j
ar ,0)))RVmax((Ik),0)LNmax((IkI(kI sˆˆˆˆ

●Problems with empirical models:
● What are the coefficients for copper?
● What are ka, ks, and ns?

Are they measurable quantities?
● Is my picture accurate? Is energy conserved?

60

● The simplest shading method
● Applies only one illumination calculation

per face

● Illumination usually computed at
the centroid of the face:

● Issues:
● For point light sources the light direction

varies over the face
● For specular reflections the viewer direction varies over

the facet

Flat Shading

n

i
i 1

1
cent roid p

n =

=  

61

● Performs the illumination model on vertices
and interpolates the intensity of the
remaining points on the surface

Gouraud Shading

Notice that facet artifacts are still visible

62

● Surface normal is linearly interpolated
across polygonal facets, and the
illumination model is applied at every point
● Not to be confused with Phong’s illumination

model

● Phong shading will usually result in a very
smooth appearance
● However, evidence of the polygonal model can

usually be seen along silhouettes

Phong Shading

63

Local Illumination
● Local illumination models compute the colors of

points on surfaces by considering only local
properties:

● Position of the point
● Surface properties
● Properties of any light sources that

affect it

● No other objects in the scene
are considered neither as light
blockers nor as reflectors

● Typical of immediate-mode
renders, such as OpenGL

64

Global Illumination
● In the real world, light takes indirect paths

● Light reflects off of other materials (possibly multiple
objects)

● Light is blocked by other objects
● Light can be scattered
● Light can be focused
● Light can bend

● Harder to model
● At each point we must

consider not only every light
source, but and other point
that might have reflected light
toward it

65

Lecture: Texture Mapping

66

Texture Mapping
● Requires lots of geometry to fully represent

complex shapes of models
● Add details with image representations

Excerpted from MIT EECS 6.837,
Durand and Cutler

67

The Quest for Visual Realism

68

Photo-Textures

Excerpted from MIT EECS 6.837,
Durand and Cutler

69

Texture Maps in OpenGL

● Specify normalized texture
coordinates at each of the
vertices (u, v)

● Texel indices
(s,t) = (u, v) ⋅ (width,
height)

glBindTexture(GL_TEXTURE_2D, texID)
glBegin(GL_POLYGON)
glTexCoord2d(0,1); glVertex2d(-1,-1);
glTexCoord2d(1,1); glVertex2d(1,-1);
glTexCoord2d(1,0); glVertex2d(1, 1);
glTexCoord2d(0,0); glVertex2d(-1, 1);

glEnd()

(x4,y4)
(u4,v4)

(x1,y1)
(u1,v1)

(x2,y2)
(u2,v2)

(x3,y3)
(u3,v3)

70

Light

Shadow Maps

Eye

Point in shadow
visible to the eye,
but not visible to

the light

Use the depth map in the
light view to determine if
sample point is visible

71

Environment Maps
● Simulate complex mirror-like

objects
● Use textures to capture

environment of objects
● Use surface normal to compute

texture coordinates

72

Environment Maps - Example

T1000 in Terminator 2 from Industrial Light and Magic

73

Cube Maps
● Maps a viewing direction b and returns an

RGB color
● Use stored texture maps

74

Lecture: Ray Tracing

75

Ray Casting

● For each pixel, find closest object along
the ray and shade pixel accordingly

● Advantages
● Conceptually simple
● Can support CSG
● Can take advantage of spatial

coherence in scene
● Can be extended to handle global

illumination effects (ex: shadows and reflectance)

● Disadvantages
● Renderer must have access to entire retained model
● Hard to map to special-purpose hardware
● Visibility computation is a function of resolution

76

Recursive Ray Casting
● Ray casting generally dismissed early on:

● Takes no advantage of screen space coherence
● Requires costly visibility computation
● Only works for solids
● Forces per pixel illumination evaluations

● Gained popularity in when
Turner Whitted (1980)
recognized that recursive
ray casting could be used
for global illumination
effects

77

Overall Algorithm of Ray Tracing
● Per each pixel, compute a ray, R

function RayTracing (R)
● Compute an intersection against objects
● If no hit,

● Return the background color
● Otherwise,

● Compute shading, c
● General secondary ray, R’
● Perform c’ = RayTracing (R’)
● Return c+c’

78

Ray Representation
● We need to compute the first surface hit

along a ray
● Represent ray with origin and direction
● Compute intersections of objects with ray
● Return closest object

p(t) o td= +



pd


o

79

Generating Primary Rays

l


d


o

80

Intersection Tests
Go through all of the objects in the scene to

determine the one closest to the origin of
the ray (the eye).

Strategy: Solve of the intersection of the Ray
with a mathematical description of the
object

81

Simple Strategy
● Parametric ray equation

● Gives all points along the ray as a function of
the parameter

● Implicit surface equation
● Describes all points on the surface as the zero

set of a function

● Substitute ray equation into surface
function and solve for t

p(t) o td= +




0)p(f =

0)dto(f =+




82

Ray-Plane Intersection
●Implicit equation of a plane:

●Substitute ray equation:

●Solve for t:

n p d 0⋅ − =


n (o td) d 0⋅ + − =




t (n d) d n o

d n o
t

n d

⋅ = − ⋅
− ⋅=

⋅

 







83

Generalizing to Triangles
● Find of the point of intersection on the plane

containing the triangle
● Determine if the point is inside the triangle

● Barycentric coordinate method
● Many other methods

v1

v2v3
p

o

84

Barycentric Coordinates
● Points in a triangle have positive

barycentric coordinates: v1

v2v3
p

)()(02010 vvvvvp  −+−+= γβ

210)1(vvvp  γβγβ ++−−=

210 vvvp  γβα ++= 1=++ γβα,where

v0
v1

v2

p

85

Barycentric Coordinates
● Points in a triangle have positive

barycentric coordinates:

● Benefits:
● Barycentric coordinates can be used for interpolating

vertex parameters (e.g., normals, colors, texture
coordinates, etc)

v1

v2v3
p

210 vvvp  γβα ++= 1=++ γβα,where

86

Ray-Triangle Intersection
● A point in a ray intersects with a triangle

● Three unknowns, but three equations
● Compute the point based on t
● Then, check whether the point is on the

triangle
● Refer to Sec. 9.3.2 in the textbook for the detail

equations

v1

v2v3
p

)()()(02010 vvvvvtp  −+−+= γβ

