A Differentiable Monte Carlo path tracer

Team 3

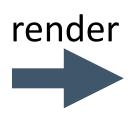
20183477 이현우

20184364 유한결

20187050 박주호

2019. 5. 30.

Modern renderer produce realistic images



3D scene

light simulation (games, movies)

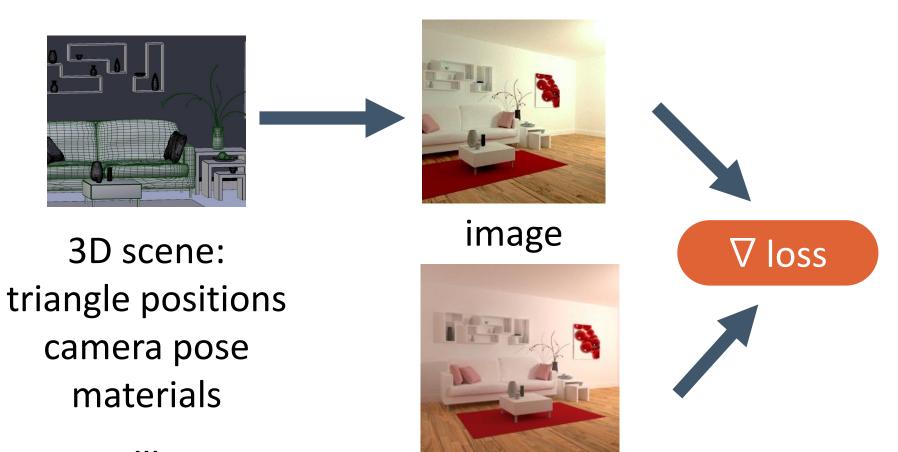
image

Inverse rendering

3D scene

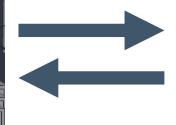
image

Render and compare approach



target

Gradients update the 3D scene



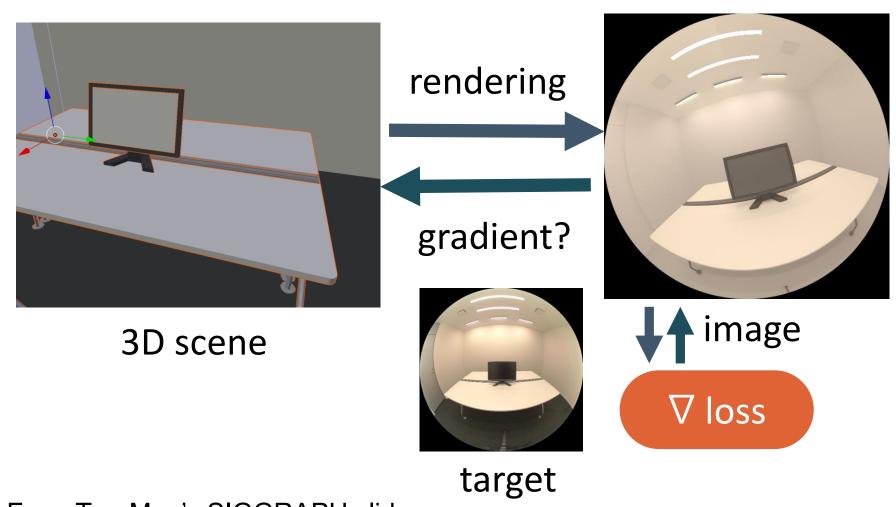
3D scene: triangle positions camera pose

materials

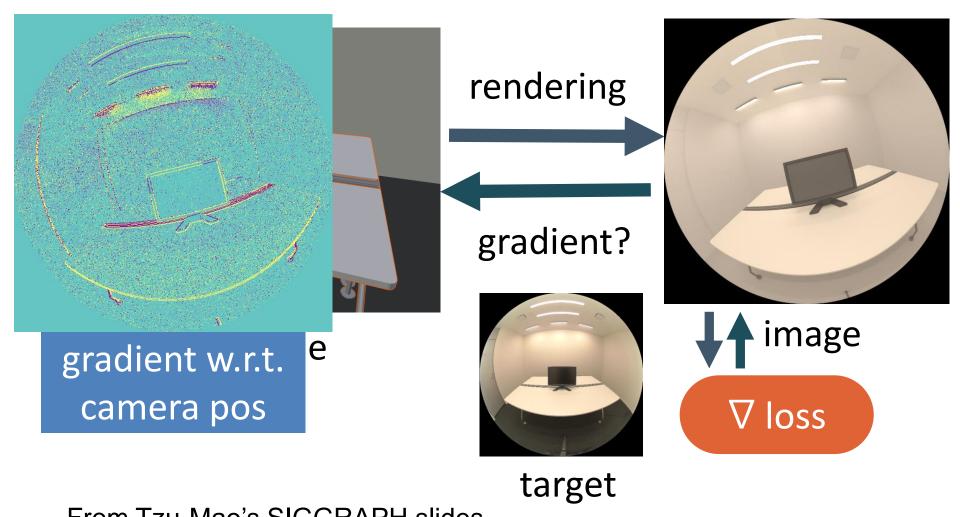
image

target

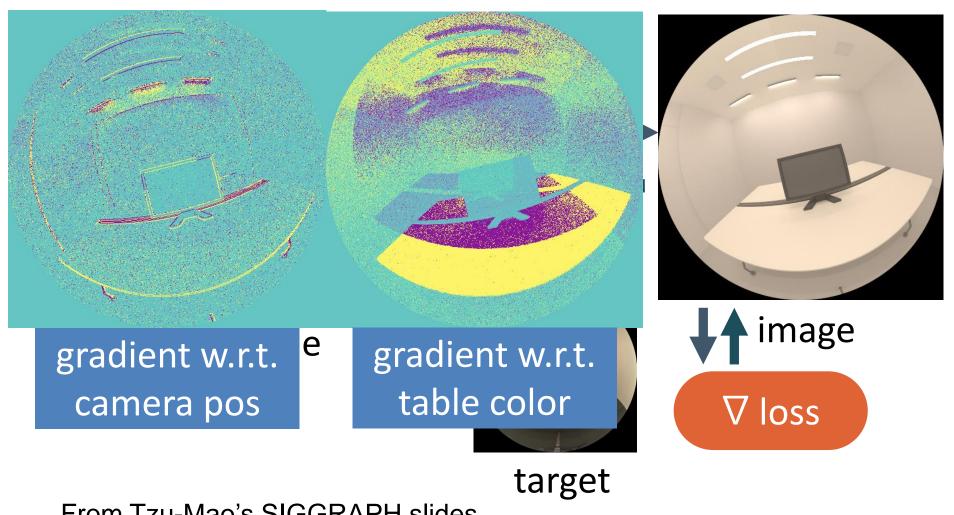
Goal: compute the rendering gradient



Goal: compute the rendering gradient

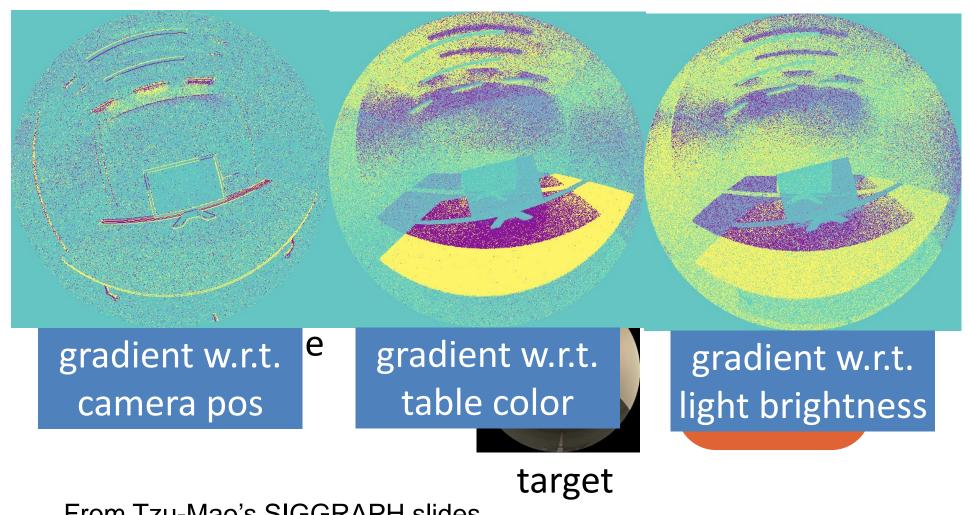


Goal: compute the rendering gradient



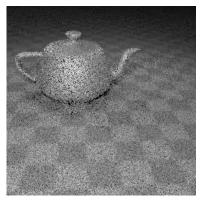
From Tzu-Mao's SIGGRAPH slides

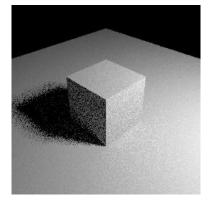
Goal: compute the rendering gradient

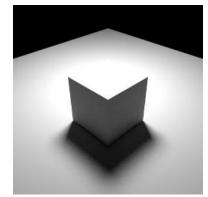


From Tzu-Mao's SIGGRAPH slides

Camera pose & material Light translation & rotation







Object translation

Camera pose

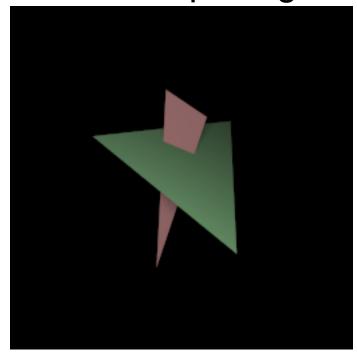
From Tzu-Mao's SIGGRAPH slides

Our plan

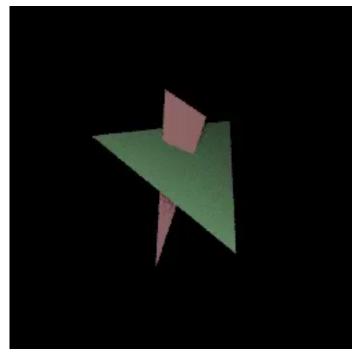
- Interpenetrating triangles
- Motion blur
- Pixel prediction
- Fast convergence by denoising

Interpenetrating two triangles

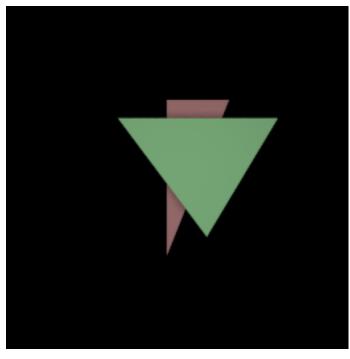
- Derivatives of interpenetrating objects require mesh splitting.
- However, strange thing happened:
 - Optimization of interpenetrating two triangles succeeded without mesh splitting



initial guess



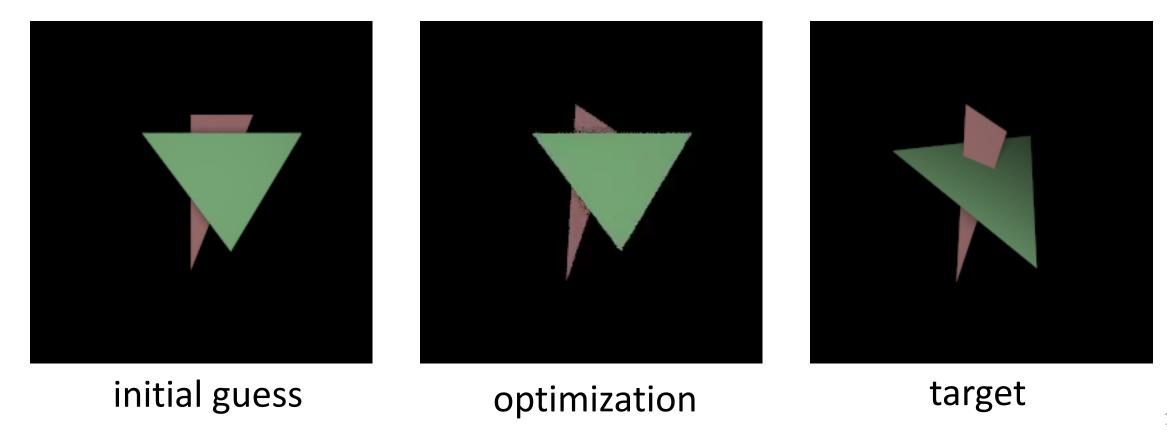
optimization



target

Interpenetrating two triangles

- Interestingly, reverse optimization fails!
- Unfortunately we couldn't figure out why it works for forward optimization but fails for reverse situation.



Motion blur

- Supporting motion blur effect was one of our plans
- Clarifying the goal, we arrived at two possibilities.
 - First, give motion blur effect of certain image by per-pixel gradient of moving objects.
 - Second, compute gradient of motion blurred image.
- First one is application of the technique. (similar to pixel prediction)
- Second one is way of improving technique.

Computing gradient of motion blurred image

It was hard to formalize ...

 Python (high level, loss design and optimization) and C++ (low level, rendering and back propagation)

C++ code was complicated...

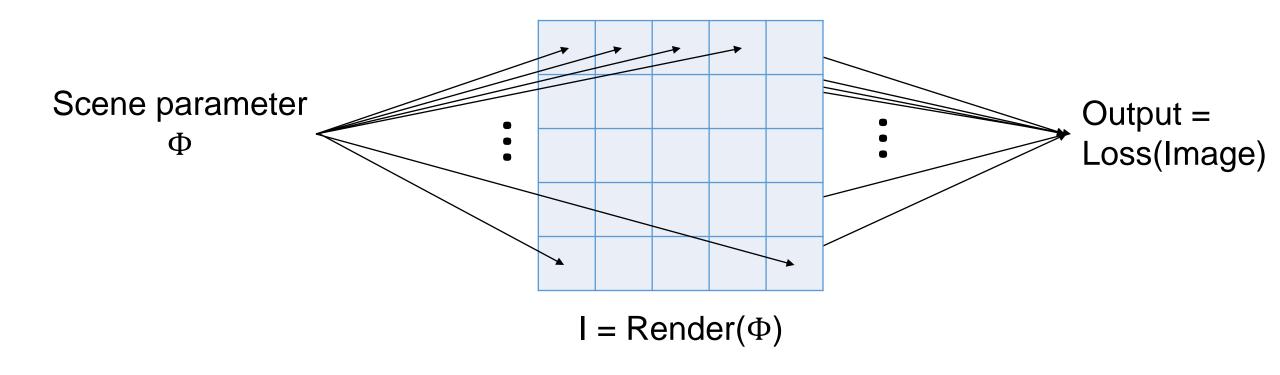
Pixel prediction by per-pixel gradient

- Two problems
 - 1. Technical Problem
 - Pytorch Autograd library does not support forward mode AD
 - 2. Intrinsic limitation
 - Gradient does not tell the future
 - Pixel prediction cannot really predict any kind of external influence.

Pixel prediction

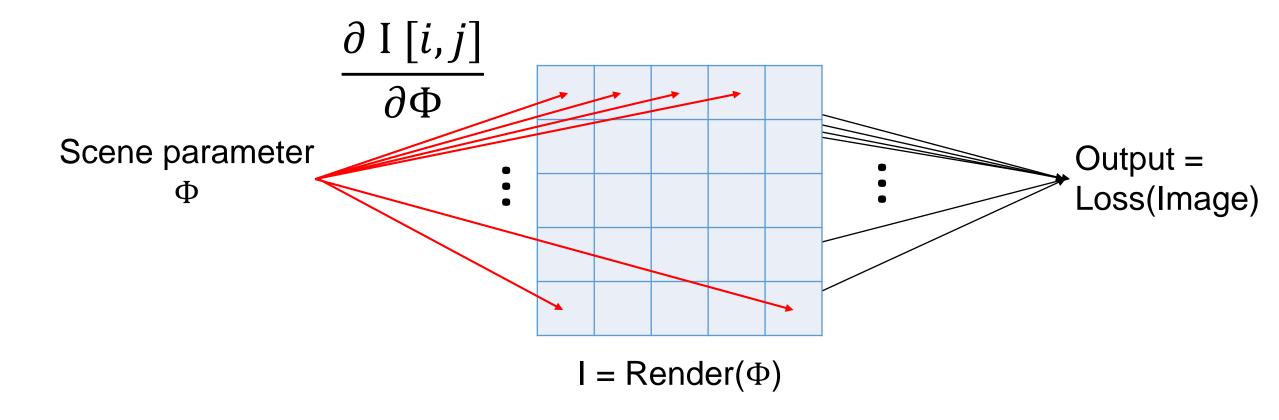
We need forward mode AD!

Pytorch Autograd does not support forward mode.



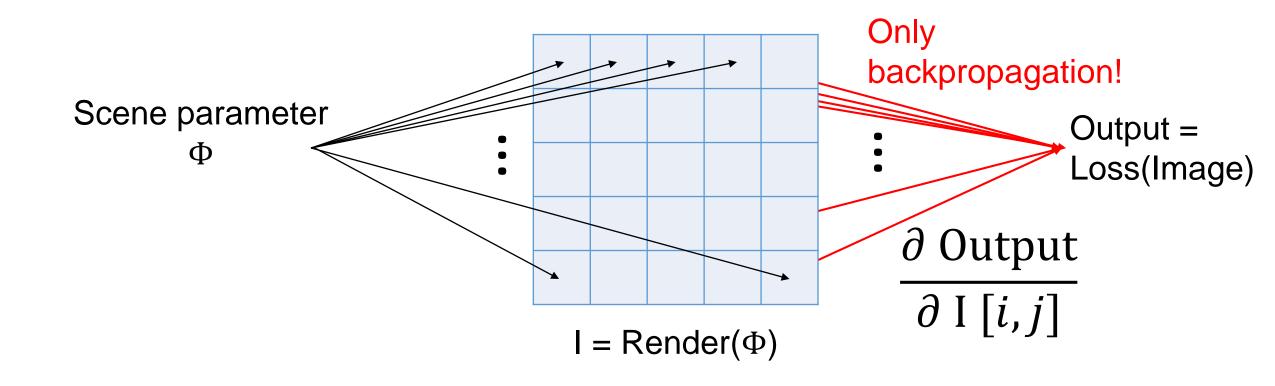
We need forward mode AD!

Pytorch Autograd does not support forward mode.



We need forward mode AD!

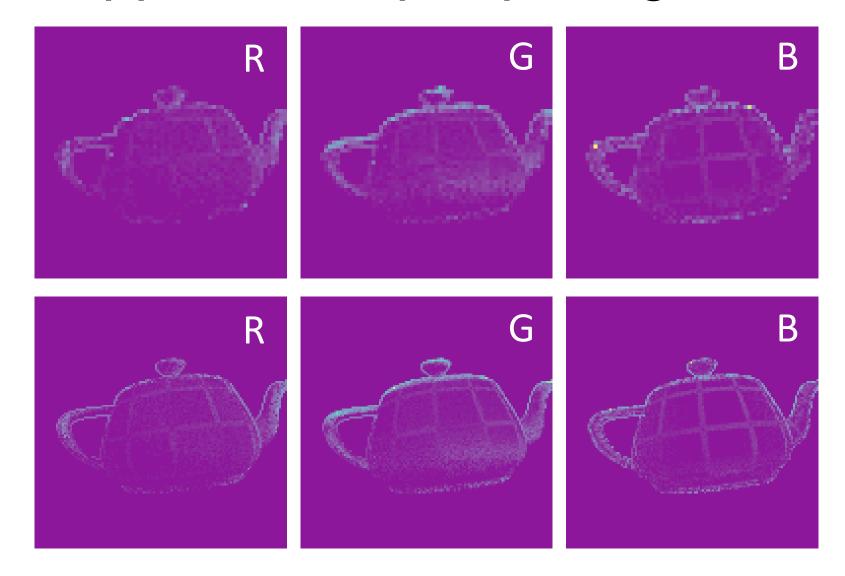
Pytorch Autograd does not support forward mode.



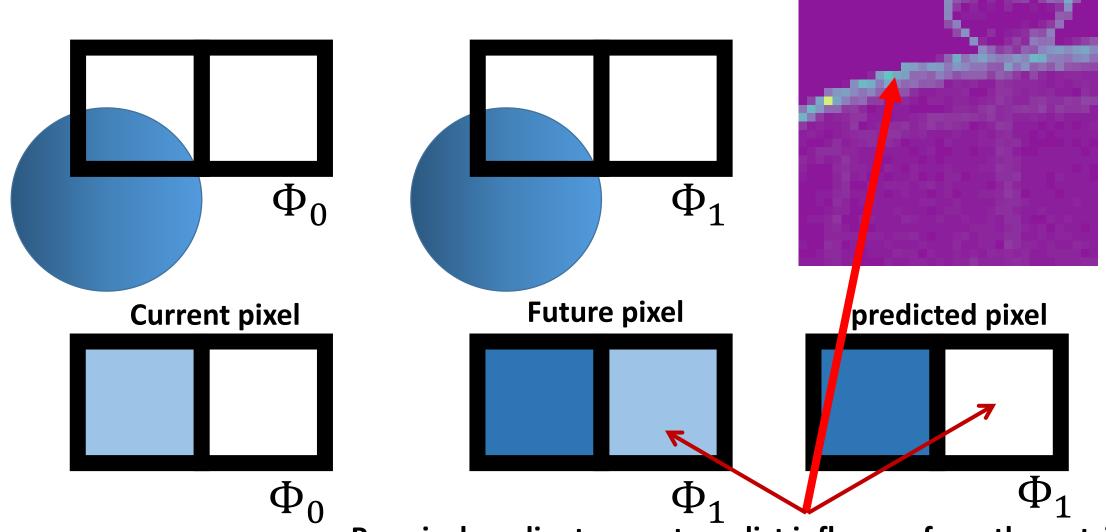
Naïve approach to per-pixel gradient

```
for i in range(img.size(0)):
for j in range(img.size(1)):
    for k in range(img.size(2)):
    # print('({}, {}, {}) translation_params.grad: {}, euler_angles.grad: {}'.format(i, j, k, translation_param # mask = torch.zeros_like(img)
    # mask[i, j, k] = 1
    # img.backward(mask, retain_graph=True)
    img[i, j, k].backward(retain_graph=True)
    grad_img[i, j, k] = torch.sqrt(euler_angles.grad.pow(2).sum() + translation_params.grad.pow(2).sum())
    euler_angles.grad.data.zero_()
    translation_params.grad.data.zero_()
```

Naïve approach to per-pixel gradient



Gradient does not tell the future



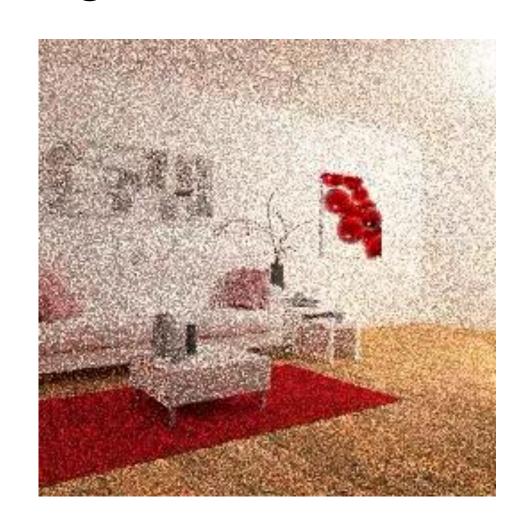
Per-pixel gradient cannot predict influence from the outside.

Denoising intermediate images

What if we use images with less noise?

Our hypothesis:

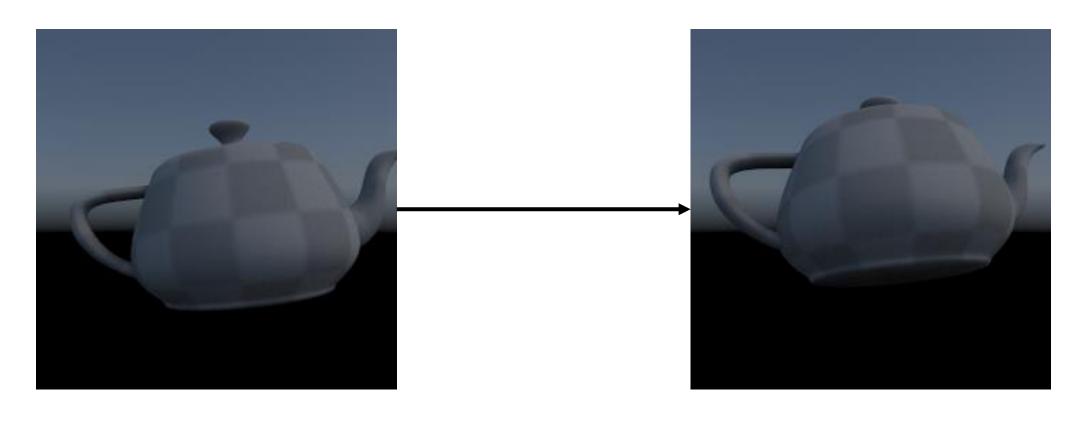
Less noise may increase speed of convergence.



Denoising Filter - tv Filter

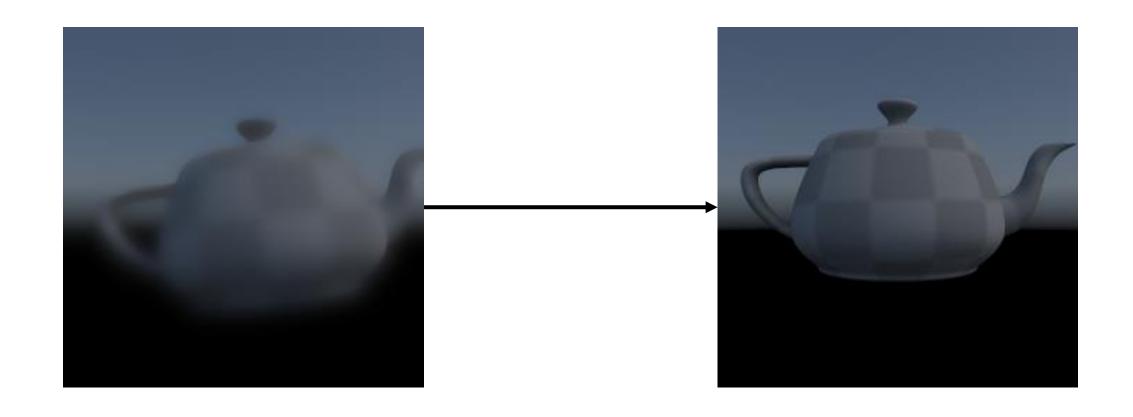
if denoiseOn: denoisedImage=denoise_tv_chambolle(img.data.numpy(),denoiseWeight,multichannel=True) img.data=torch.tensor(denoisedImage)

Pose estimation



Local Minimum

Pose estimation

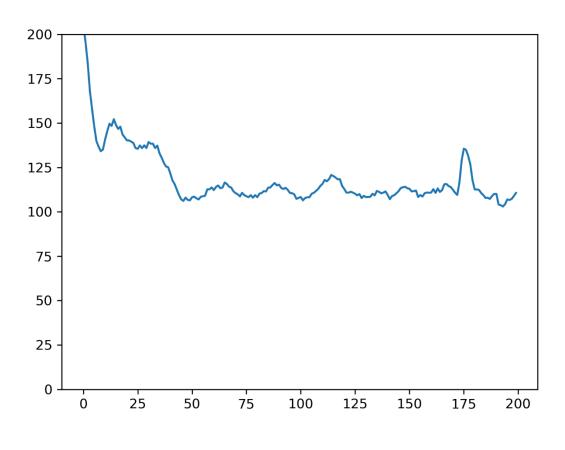


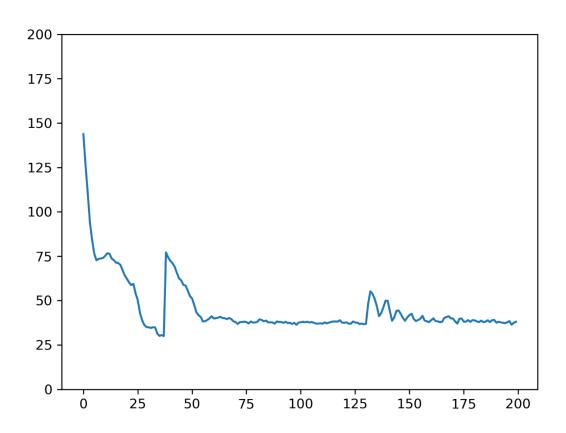
Pose estimation

Denoised(Weight=0.1)

Non-Denoised

Pose estimation - Loss

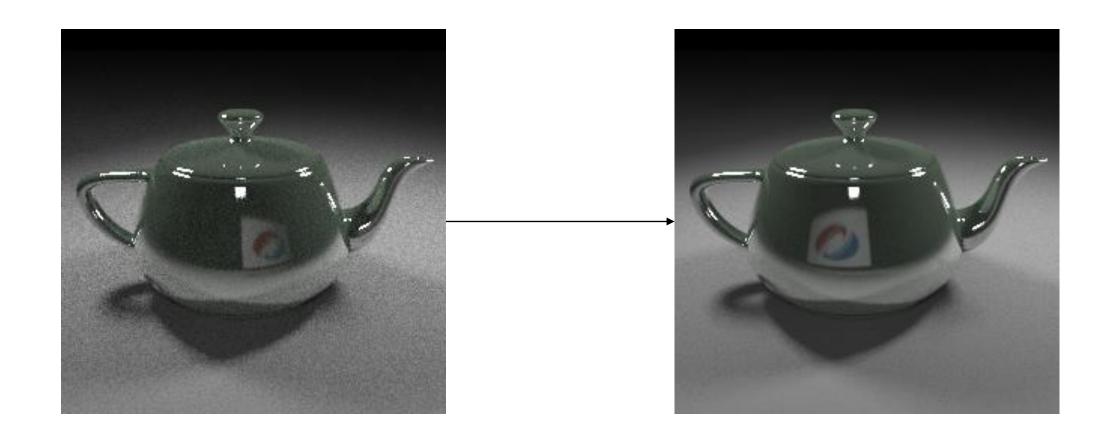




Non-denoised

Denoised

Specular Image

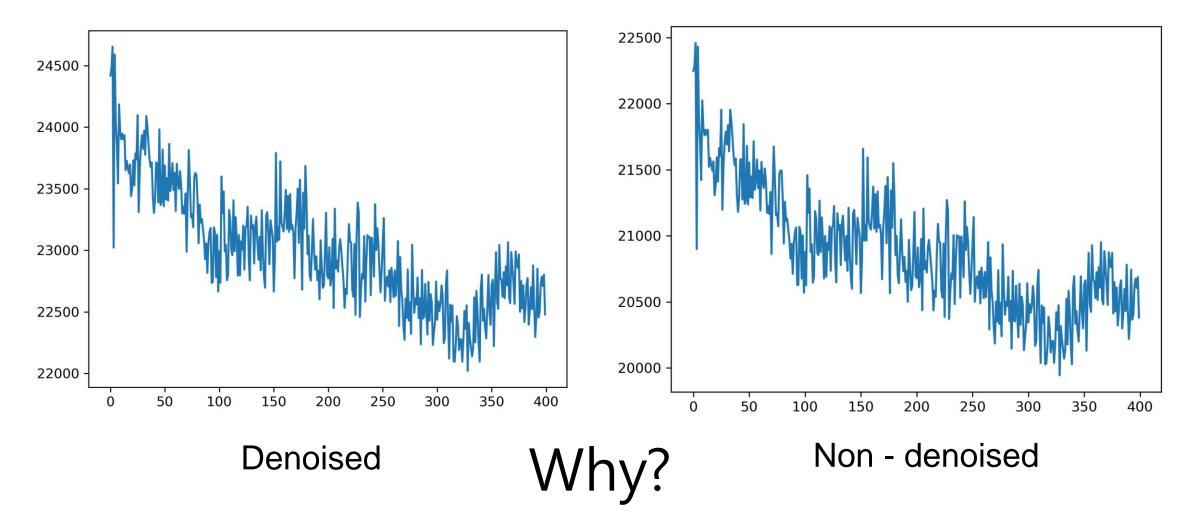


Specular Image

Denoised(Weight=0.1)

Non-denoised

Huge fluctuation of loss



Huge fluctuation of loss

$$Loss = Loss(\Phi) + \epsilon(t, \Phi)$$

Noise due to small sample numbers significantly contributes to loss than the actual difference.

Time Consumption

	Denoised Version	Non-denoised Version
Pose Estimation	717	572
Specular Image	1362	1150

Summary

- Interpenetrating triangles
 - We found interesting example that this paper couldn't succeed to optimize
- Motion blur
 - We couldn't try this due to a lack of time
- Pixel prediction
 - Technical issue: PyTorch doesn't support forward mode AD
 - Intrinsic issue: Per pixel gradient doesn't tell the situation outside the pixel
- Fast convergence by denoising
 - Our denoising method prevents falling into a local minimum
 - Also reduces convergence time
 - We had a discussion about fluctuating loss graph

Contribution

- Things that we did altogether
 - Presentation prepare, Discussion on the issues
- Hangyeol Yu
 - Theoretical background, (motion blur and pixel prediction), library build
- Hyunwoo Lee
 - Implementation, (denoising), experiment
- Juho Park
 - Topic suggestion, (intersecting two triangles issue), library build