A Differentiable Monte Carlo path tracer

Team 3

Hﬁ

20183477 O|

—_

o
(=]
Z
=
=)

20184364 S5l
|:| ~
—| T

20187050

2019. 5. 30.



Review

Modern renderer produce realistic images

rE———

render I'@‘uﬁ
-

3Dscene light simulation image
(games, movies)

From Tzu-Mao’s SIGGRAPH slides



Review

Inverse rendering

Inverse
render

3D scene Image

From Tzu-Mao’s SIGGRAPH slides



Review

Render and compare approach

3D scene:
triangle positions
camera pose
materials

target

From Tzu-Mao’s SIGGRAPH slides



Review

Gradients update the 3D scene

3D scene:
triangle positions
camera pose
materials

target

From Tzu-Mao’s SIGGRAPH slides



Review

Goal: compute the rendering gradient

rendering ’ “ ‘

gradient?

3D scene

target

From Tzu-Mao’s SIGGRAPH slides



eview

Goal: compute the rendering gradient

gradient w.r.t. |§
camera pos

ta rget
From Tzu-Mao’s SIGGRAPH slides



Review

Goal: compute the rendering gradient

gradient w.r.t. G gradient w.r.t.
camera pos table color

ta rget
From Tzu-Mao’s SIGGRAPH slides



Review

Goal: compute the rendering gradient

gradient w.r.t. (il gradient w.rt. Al gradient w.r.t.
camera pos table color light brightness

ta rget
From Tzu-Mao’s SIGGRAPH slides



view

Camera pose & material

Light translation & rotation

From Tzu-Mao’s SIGGRAPH slides

10



Our plan

* Interpenetrating triangles
* Motion blur
* Pixel prediction

» Fast convergence by denoising

11



Interpenetrating two triangles

 Derivatives of interpenetrating objects require mesh splitting.

* However, strange thing happened:

—Optimization of interpenetrating two triangles succeeded without
mesh splitting

initial guess optimization target 12



Interpenetrating two triangles

* Interestingly, reverse optimization faills!

» Unfortunately we couldn’t figure out why it works for forward
optimization but fails for reverse situation.

)4

initial guess optimization target

13



Motion blur

« Supporting motion blur effect was one of our plans

 Clarifying the goal, we arrived at two possibllities.

* First, give motion blur effect of certain image by per-pixel gradient of
moving objects.

e Second, compute gradient of motion blurred image.

* First one Is application of the technique. (similar to pixel
prediction)

« Second one Is way of improving technique.



Computing gradient of motion blurred image

|t was hard to formalize ..

 Python (high level, loss design and optimization) and C++ ( low
level, rendering and back propagation)

« C++ code was complicated..



Pixel prediction by per-pixel gradient

* Two problems
1. Technical Problem
« Pytorch Autograd library does not support forward mode AD
« 2. Intrinsic limitation
» Gradient does not tell the future

 Pixel prediction cannot really predict any kind of external influence.



Pixel prediction

? =




We need forward mode AD!

« Pytorch Autograd does not support forward mode.

Scene parameter ] S Output =
o . . Loss(Image)

| = Render(d)



We need forward mode AD!

« Pytorch Autograd does not support forward mode.

611]

Scene parameter Output =
Loss(Image)

| = Render(d)




We need forward mode AD!

« Pytorch Autograd does not support forward mode.

Only
backpropagation!
Scene parameter S Output =
P . . Loss(Image)
d Output
o01]i,j]

| = Render(d)



Nailve approach to per-pixel gradient

range(img.size 8 ):
range(img.size 1
range({img.siz

JFi
I

LJ

("1
L L

[ ]

img[i, j, k].backward{retain_graph= )

grad_img[i, j, k] = torch.sgrt(euler_angles.grad.pow 2 .sum
euler_angles.grad.data.zero_()

translation params.grad.data.zero ()

+ translation_params.grad.pow 2 .sum




Nailve approach to per-pixel gradient
G




Gradient does not tell the future

Dy Dy

Current pixel Future pixel

[ 1]

Dy 1 b4

Per-pixel gradient cannot predict influence from the outside.



Denoising intermediate images

I R B A R S
-, &ﬁ;»‘:} :)r:{ 2 SN "\ ;

"‘5‘,,')'\‘ A
e

What if we use images with less noise?

Our hypothesis:

Less noise may increase speed
of convergence.




Denoising Filter - tv Filter

* denoiseln:
denoisedInage=tenolse tv chambolle(ing.data.numpy ,denolselleight,multichannel=
ing. data=torch. tensor(denoisedInage)




Pose estimation

L ocal Minimum



Pose estimation




Pose estimation

Denoised(Weight=0.1) Non-Denoised



Pose estimation - Loss

200 200

175 - 175 -
150 - 150 -
125 - 125 -
100 - 100 -
75 A 75
50 A 50 -
25 - 25 |

01— . . . . . . ; . 01— . . . . . . ;
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

Non-denoised Denoised



Specular Image




ecular Image

Denoised(Weight=0.1) Non-denoised



Huge fluctuation of loss

24500 A

24000 A

23500 A

23000 A

22500 -

22000 -

22500 A

22000 A

21500 A

21000 A

20500 A

20000 A

0 50 100 150 200 250

Denoised

300 350 400

Why?

0 50 100 150 200 250 300 350 400

Non - denoised




Huge fluctuation of loss
Loss = Loss(®) + e(t) D)

Noise due to small sample
numbers significantly
contributes to loss than the

actual difference.



Time Consumption

Denoised Non-denoised
Version Version

Pose Estimation 717 572

Specular Image 1362 1150



Summary

* Interpenetrating triangles
- We found interesting example that this paper couldn’t succeed to optimize

* Motion blur
- We couldn’t try this due to a lack of time

* Pixel prediction
- Technical issue: PyTorch doesn’t support forward mode AD
- Intrinsic issue: Per pixel gradient doesn't tell the situation outside the pixel

» Fast convergence by denoising
- Our denoising method prevents falling into a local minimum
- Also reduces convergence time
- We had a discussion about fluctuating loss graph



Contribution

 Things that we did altogether

- Presentation prepare, Discussion on the issues

« Hangyeol Yu

- Theoretical background, (motion blur and pixel prediction), library build

* Hyunwoo Lee

- Implementation, (denoising), experiment

e Juho Park

- Topic suggestion, (intersecting two triangles issue), library build



