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Review

Modern renderer produce realistic images

rE———

render I'@‘uﬁ
-

3Dscene light simulation image
(games, movies)

From Tzu-Mao’s SIGGRAPH slides



Review

Inverse rendering

Inverse
render

3D scene Image
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Review

Render and compare approach
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triangle positions
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materials
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Review

Gradients update the 3D scene
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Review

Goal: compute the rendering gradient
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eview

Goal: compute the rendering gradient

gradient w.r.t. |§
camera pos
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Review

Goal: compute the rendering gradient

gradient w.r.t. G gradient w.r.t.
camera pos table color
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Review

Goal: compute the rendering gradient

gradient w.r.t. (il gradient w.rt. Al gradient w.r.t.
camera pos table color light brightness

ta rget
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view

Camera pose & material

Light translation & rotation

From Tzu-Mao’s SIGGRAPH slides
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Our plan

* Interpenetrating triangles
* Motion blur
* Pixel prediction

» Fast convergence by denoising
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Interpenetrating two triangles

 Derivatives of interpenetrating objects require mesh splitting.

* However, strange thing happened:

—Optimization of interpenetrating two triangles succeeded without
mesh splitting

initial guess optimization target 12



Interpenetrating two triangles

* Interestingly, reverse optimization faills!

» Unfortunately we couldn’t figure out why it works for forward
optimization but fails for reverse situation.

)4

initial guess optimization target
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Motion blur

« Supporting motion blur effect was one of our plans

 Clarifying the goal, we arrived at two possibllities.

* First, give motion blur effect of certain image by per-pixel gradient of
moving objects.

e Second, compute gradient of motion blurred image.

* First one Is application of the technique. (similar to pixel
prediction)

« Second one Is way of improving technique.



Computing gradient of motion blurred image

|t was hard to formalize ..

 Python (high level, loss design and optimization) and C++ ( low
level, rendering and back propagation)

« C++ code was complicated..



Pixel prediction by per-pixel gradient

* Two problems
1. Technical Problem
« Pytorch Autograd library does not support forward mode AD
« 2. Intrinsic limitation
» Gradient does not tell the future

 Pixel prediction cannot really predict any kind of external influence.



Pixel prediction
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We need forward mode AD!

« Pytorch Autograd does not support forward mode.

Scene parameter ] S Output =
o . . Loss(Image)

| = Render(d)



We need forward mode AD!

« Pytorch Autograd does not support forward mode.

611]

Scene parameter Output =
Loss(Image)

| = Render(d)




We need forward mode AD!

« Pytorch Autograd does not support forward mode.

Only
backpropagation!
Scene parameter S Output =
P . . Loss(Image)
d Output
o01]i,j]

| = Render(d)



Nailve approach to per-pixel gradient

range(img.size 8 ):
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img[i, j, k].backward{retain_graph= )

grad_img[i, j, k] = torch.sgrt(euler_angles.grad.pow 2 .sum
euler_angles.grad.data.zero_()

translation params.grad.data.zero ()

+ translation_params.grad.pow 2 .sum




Nailve approach to per-pixel gradient
G




Gradient does not tell the future

Dy Dy

Current pixel Future pixel
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Per-pixel gradient cannot predict influence from the outside.



Denoising intermediate images
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What if we use images with less noise?

Our hypothesis:

Less noise may increase speed
of convergence.




Denoising Filter - tv Filter

* denoiseln:
denoisedInage=tenolse tv chambolle(ing.data.numpy ,denolselleight,multichannel=
ing. data=torch. tensor(denoisedInage)




Pose estimation

L ocal Minimum



Pose estimation




Pose estimation

Denoised(Weight=0.1) Non-Denoised



Pose estimation - Loss
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Specular Image




ecular Image

Denoised(Weight=0.1) Non-denoised



Huge fluctuation of loss
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Huge fluctuation of loss
Loss = Loss(®) + e(t) D)

Noise due to small sample
numbers significantly
contributes to loss than the

actual difference.



Time Consumption

Denoised Non-denoised
Version Version

Pose Estimation 717 572

Specular Image 1362 1150



Summary

* Interpenetrating triangles
- We found interesting example that this paper couldn’t succeed to optimize

* Motion blur
- We couldn’t try this due to a lack of time

* Pixel prediction
- Technical issue: PyTorch doesn’t support forward mode AD
- Intrinsic issue: Per pixel gradient doesn't tell the situation outside the pixel

» Fast convergence by denoising
- Our denoising method prevents falling into a local minimum
- Also reduces convergence time
- We had a discussion about fluctuating loss graph



Contribution

 Things that we did altogether

- Presentation prepare, Discussion on the issues

« Hangyeol Yu

- Theoretical background, (motion blur and pixel prediction), library build

* Hyunwoo Lee

- Implementation, (denoising), experiment

e Juho Park

- Topic suggestion, (intersecting two triangles issue), library build



