
A Differentiable Monte Carlo path tracer

20183477 이현우

20184364 유한결

20187050 박주호

2019. 5. 30.

Team 3

Review

2

Modern renderer produce realistic images

3D scene image

render

light simulation
(games, movies)

From Tzu-Mao’s SIGGRAPH slides

Review

3

Inverse rendering

3D scene image

inverse
render

From Tzu-Mao’s SIGGRAPH slides

Review

4

Render and compare approach

3D scene:
triangle positions

camera pose
materials

…

image

target

∇ loss

From Tzu-Mao’s SIGGRAPH slides

Review

5

Gradients update the 3D scene

3D scene:
triangle positions

camera pose
materials

…

image

target

∇ loss

From Tzu-Mao’s SIGGRAPH slides

Review

6

Goal: compute the rendering gradient

3D scene image

rendering

gradient?

target

∇ loss

From Tzu-Mao’s SIGGRAPH slides

Review

7

Goal: compute the rendering gradient

3D scene image

rendering

gradient?

target

∇ loss

gradient w.r.t.
camera pos

From Tzu-Mao’s SIGGRAPH slides

Review

8

Goal: compute the rendering gradient

3D scene image

rendering

gradient?

target

∇ loss

gradient w.r.t.
camera pos

gradient w.r.t.
table color

From Tzu-Mao’s SIGGRAPH slides

Review

9

Goal: compute the rendering gradient

3D scene image

rendering

gradient?

target

∇ loss

gradient w.r.t.
camera pos

gradient w.r.t.
table color

gradient w.r.t.
light brightness

From Tzu-Mao’s SIGGRAPH slides

Review

10

Camera pose & material Light translation & rotation

Object translation Camera pose

From Tzu-Mao’s SIGGRAPH slides

Our plan

11

• Interpenetrating triangles

• Motion blur

• Pixel prediction

• Fast convergence by denoising

Interpenetrating two triangles

12

• Derivatives of interpenetrating objects require mesh splitting.

• However, strange thing happened:

–Optimization of interpenetrating two triangles succeeded without

mesh splitting

initial guess optimization target

Interpenetrating two triangles

13

• Interestingly, reverse optimization fails!

• Unfortunately we couldn’t figure out why it works for forward

optimization but fails for reverse situation.

initial guess optimization target

Motion blur

• Supporting motion blur effect was one of our plans

• Clarifying the goal, we arrived at two possibilities.
• First, give motion blur effect of certain image by per-pixel gradient of

moving objects.

• Second, compute gradient of motion blurred image.

• First one is application of the technique. (similar to pixel
prediction)

• Second one is way of improving technique.

Computing gradient of motion blurred image

• It was hard to formalize ..

• Python (high level, loss design and optimization) and C++ (low
level, rendering and back propagation)

• C++ code was complicated..

Pixel prediction by per-pixel gradient

• Two problems

• 1. Technical Problem

• Pytorch Autograd library does not support forward mode AD

• 2. Intrinsic limitation

• Gradient does not tell the future

• Pixel prediction cannot really predict any kind of external influence.

Pixel prediction

I i, j (Φ1)

+ × dΦ=

I[i, j] Φ0 𝛻I i, j Φ0 ∙ dΦ= +

We need forward mode AD!

• Pytorch Autograd does not support forward mode.

… …Scene parameter

Φ
Output =

Loss(Image)

I = Render(Φ)

We need forward mode AD!

• Pytorch Autograd does not support forward mode.

… …

𝜕 I [𝑖, 𝑗]

𝜕Φ
Scene parameter

Φ
Output =

Loss(Image)

I = Render(Φ)

We need forward mode AD!

• Pytorch Autograd does not support forward mode.

… …

𝜕 Output

𝜕 I [𝑖, 𝑗]

Only

backpropagation!

Scene parameter

Φ
Output =

Loss(Image)

I = Render(Φ)

Naïve approach to per-pixel gradient

Naïve approach to per-pixel gradient

R G B

R G B

Gradient does not tell the future

Φ1Φ0

Φ0 Φ1 Φ1
Per-pixel gradient cannot predict influence from the outside.

Future pixel Current pixel predicted pixel

Denoising intermediate images

What if we use images with less noise?

Our hypothesis:

Less noise may increase speed

of convergence.

Denoising Filter - tv Filter

Pose estimation

Local Minimum

Pose estimation

Denoised(Weight=0.1) Non-Denoised

Pose estimation

Pose estimation - Loss

Non-denoised Denoised

Specular Image

Specular Image

Denoised(Weight=0.1) Non-denoised

Huge fluctuation of loss

Denoised Non - denoisedWhy?

Huge fluctuation of loss

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠 Φ + 𝜖(𝑡, Φ)

Noise due to small sample

numbers significantly

contributes to loss than the

actual difference.

Time Consumption

Denoised

Version

Non-denoised

Version

Pose Estimation 717 572

Specular Image 1362 1150

Summary

• Interpenetrating triangles

- We found interesting example that this paper couldn’t succeed to optimize

• Motion blur

- We couldn’t try this due to a lack of time

• Pixel prediction

- Technical issue: PyTorch doesn’t support forward mode AD

- Intrinsic issue: Per pixel gradient doesn’t tell the situation outside the pixel

• Fast convergence by denoising

- Our denoising method prevents falling into a local minimum

- Also reduces convergence time

- We had a discussion about fluctuating loss graph

Contribution

• Things that we did altogether

- Presentation prepare, Discussion on the issues

• Hangyeol Yu

- Theoretical background, (motion blur and pixel prediction), library build

• Hyunwoo Lee

- Implementation, (denoising), experiment

• Juho Park

- Topic suggestion, (intersecting two triangles issue), library build

