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Review

« Spectral and Decomposition Tracking for Rendering Heterogeneous Volumes
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Review

* Lighting Grid Hierarchy for Self-illuminating Explosions

1. Building LGH
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Simulation Grid and Sg

Fig. 2. Our lighting grid hierarchy for explosion rendering. We begin with the explosion simulation grid and generate point lights (shown as black dots) in
voxels with high temperature values. We place the highest resolution (level 1) lighting grid, such that vertices of the grid are aligned with voxel centers. For
each vertex of the lighting grid at any level, we keep the illumination center, shown as black dots along with offset arrows from their grid vertices.
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2. Estimating lighting

How to shade with so many point lights?




| Problem

Why do we need Denoising?
* Noise with Monte Carlo Rendering
* To reduce Noise, more sampling — long time

* Instead, low sampling and denoising — short time
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[Moon et. al.] Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings, SIGGRAPH 2017
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[Moon et. al.] Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings, SIGGRAPH 2017



Adaptive
Polynomial Rendering

1. Previous work and Goal
2. Methods
3. Result




| Adaptive Polynomial Rendering

* Follow-up study

Xroads cf Discovery

@ SIGGRAPH2015 | Jearsnmoseotcomys moscuno:

Adaptive Rendering based on Weighted Local Regression

Bochang Moon' Nathan Carr  Sung-Eui Yoon'
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[Moon et. al.] Adaptive Rendering based on Weighted Loss Regression, SIGGRAPH 2015



| Previous work and Goal

Local Regression

® MC input

* Previous work(Learned In class)
Predict the local value by approximating the Linear Equation

* New method

Predict the local value by approximating the High dimensional Equation
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[Moon et. al.] Adaptive Rendering based on Weighted Loss Regression, SIGGRAPH 2015 T '_:Il I- = e’

Local Regression

® MC input

E9l local valueE =4,

ZAFE £} local value =4,



I Goal - Find appropriate Order of Polynomial Approximation

Best order!

(b) Inset of (a) (c) Result

using order O

(d) Result
using order 2

(e) Result
using order 4

(f) Input () Inset of (f) (h) Result
32 spp using order O

Err 300 Err 50 Err 100

Higher order does not guarantee higher performance. Therefore, We need find out the optimal order.

(i) Result
using order 2

(J) Result
using order 4
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[Moon et. al.] Adaptive Polynomial Rendering, ACM Transactions on Graphics 2016



] Method

1. Express our reconstruction bias and variance

2. Propose a robust estimation process for the error terms



| In mathematics - PASS!

* Taylor Polynomials y(i) = p(i) + (i),
* Least square optimization Vp(e)
. Normal equation uli) = Vo(fe) (fimfe) T p(e)+ 3 3= (=0T, @)
1<a<k
2
* Reconstruction output
p Z (y(i) — O’(f?; - fc)T - ﬁ[l - Z ﬁa((i — C)G)T) Rrh(i)*
e, 1<a<k

In(c) = er(XEW X)X Wy,

ik = Xe(XEWXp)XF Wy = H(k)y,

G = KL(Diki)/ Y K@),
JEf); jef;

[Moon et. al.] Adaptive Polynomial Rendering, ACM Transactions on Graphics 2016



| In mathematics - PASS!

 Reconstruction Error
 Bias and Variance
* Bias to hat matrix

« Variance approximation

[Moon et. al.] Adaptive Polynomial Rendering, ACM Transactions on Graphics 2016
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EEQ

E (gx(i) — p(i))? = bias® (gr (i) + o (9x(1)).

E(ii(i) — p(i)) = Y Hi;(k)E(y(5)) — p(i)
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] Method

1. Express error with bias and variance

« We cannot know actual error. so we combute error bv usina bias and variance
kope = argmin > Ku(i) (B (91 (i) = p(1))* + 0™ (41()) .

1eQ,
2. Propose a robust estimation process for the error terms
« To compute fast, we compute robust estimation with iteration step.

Eu(in(i) — p(i)) & > Hi(k)gi—1(5) — 9i-1(i), or (Uk(i)) = Y (Hi; (k) 6i-1(u(4)),

jEﬂc JEfde

(a) MC Input (b) Inset of (a) (c) Estim (d) Estimated order (e) () (g) Reference
64 spp iteration 1 iteration 2 iteration 3 32K spp

[Moon et. al.] Adaptive Polynomial Rendering, ACM Transactions on Graphics 2016



Ours, 31 spp (155.3s) ALP, 35 spp (159.5 s)
rMSE 0.00768 rMSE 0.01079 rMSE 0.00768

¥

Ours, 30 spp (65.8 s) ALP, 36 spp (67.0 s) Ours, 30 spp (65.8 s) Reference, 64K spp
rMSE 0.00029 rMSE 0.00047 rMSE 0.00029

[Moon et. al.] Adaptive Polynomial Rendering, ACM Transactions on Graphics 2016



Kernel-Predicting
Convolutional Networks
for Denoising

Monte Carlo Renderings

. Image Filter
. Machine Learning
. Methods

. Result




Kernel-Predicting Convolutional Networks
for Denoising Monte Carlo Renderings

* Denoising with Machine Learning Techinque



| Image Filter

1.,

CS484 Introduction to Computer Vision Lecture Slide

Element-wise Multiplication and Sum

nl...




| Image Filter

1.

CS484 Introduction to Computer Vision Lecture Slide

Element-wise Multiplication and Sum
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| Blurring with kernel(filter)

1 1 1 1
* 111 =
9
1 1 1
Input * Kernel = Output

CS484 Introduction to Computer Vision Lecture Slide



| Denoising with kernel(filter)




I Machine Learning(ML)

Classical Programming

inputs —
Computer — outputs
program-—

Machine Learning

https://www.slideshare.net/Jinwonlee9/ss-70446412


https://www.slideshare.net/JinwonLee9/ss-70446412

I Machine Learning(ML)

 Predict denoising Image filter as ML output
+ Image filter = Kernel
« 21*21size
« ML method: CNN(Convolutional Neural Network)




| Data format(EXR image data)

« Data consists of many channels, not only RGB channels

RGB Diffuse

Specular Depth



Method

* Previous Method

« Accumulated prediction
with single network

* Proposed Method

MC
renderer

Scene mean
primary features
=l

Local mean

k

Secondary
feature
extractor

XN

M}Jitilayer perceptron

P brimary features

1. Decompose channels into Diffuse Component and Specular Component

2. Denoising by Kernel-Prediction Convolutional Network (KPCN)
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[Kalantari et. al.] A Machine Learning Approach for Filtering Monte Carlo Noise, SIGGRAPH 2015
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| Decomposition
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[Bako et. al.] Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings, SIGGRAPH 2017



Why Decomposition?

Input (32 spp) Ref. (1K spp)

Vanilla CNN

» The various components of the image have different noise characteristics and spatial
structure. This leads the single network model into the low quality and overblurring.

x'20rct £/80] 2t noised]| L A2 CHE S4S Z=Ct. [KEtA
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[Bako et. al.] Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings, SIGGRAPH 2017



DPCN

Noisy Image

DPCN predicts the color value directly

Clear Image



Noisy Image *

KPCN predicts the Kernel

Kernel

Kernel

Clear Image



] Result

APR : Adaptive Polynomial Regression (just previous one)
LBF-RF : Previous Learning Based Denosing

Ref. (1K-4K spp)

Ours

Input (32 spp) APR (log) LBF-RF (log)

relative {5 9.21e- 2.66€ .15e- 1.16e-3
1 — SSIM s 5 : 0.032

relative {5 14.92e-3 1.68e-3 1.71e-2 0.97e-2
1 — SSIM 0.360 0.059 0.057 0.045

[Bako et. al.] Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings, SIGGRAPH 2017



] Result
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— KPCN —— KPCN
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Fig. 9. Comparison of optimization speed between the DPCN and KPCN
architectures. Although both approaches converge to a similar error on the
Cars 3 validation set, the KPCN system converges 5-6X faster.

[Bako et. al.] Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings, SIGGRAPH 2017



Thanks a lot!



| Quiz

1. What is purpose of Adaptive Polynomial Rendering?
(1) Compute image with bias and variance

(2) Find appropriate order of local polynomial regression

2. Which is better performance in second paper?
(1) Direct-Prediction Convolutional Network (DPCN)
(2) Kernel-Prediction Convolutional Network (KPCN)
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