Light Transport for Participating Media

20193512 Joowon Lim (임주원)
CS580 Computer graphics 2019 Spring
 Review - Denoising (by Lee CheolMin)

Adaptive polynomial rendering
Kernel-predicting convolutional network

Specular
Depth

Review - MLP using inverse mapping (by Park Juho)

Reversible Jump MLT using inverse mapping

Charted Metropolis light transport

- Allow swap bidirectional sampling techniques
- Unlike RJMLT, path sampling function need not be invertible
- Get out of local maxima to other sampling techniques

Participate media

Participate media

- Participating media is a material that absorb, emit and/or scatter light.
- It includes cloud, smoke, liquid etc.

(a) Absorption (b) Out-scattering (c) In scattering (d) Emission

Participate media

- Point based light transport method
- Beyond the point: light beam, light plane, light volume

Point-based light transport for Participate media with refractive boundaries

Point-based Light Transport for Participating

 Media with Refractive Boundaries- Participate media with refractive boundaries.

Inside : absorption, scattering
Surface : refracting

- Idea is to apply PBGI to participate media.

Point Based Global Illumination(PBGI)

- A two step rendering algorithm to calculate the indirect lighting in a diffuse scene.

Step 1. Generate a diffuse pointcloud from the scene.

Step 2. Calculates the global illumination.

Point Based Global Illumination(PBGI)

- Diffuse pointcloud is a point-base representation of the reflected direct light(indirect light source) in the scene. Use 'surfel'.

Point Based Global Illumination(PBGI)

- The incoming indirect lighting of a certain point can be generated by projecting all the individual surfels on the hemisphere of that point.

Physical phenomena of the target is divided into four part

1. Boundary refraction
2. Single scattering

$$
\mathrm{L}=\sum_{k}\left(\text { single }\left(\mathrm{P}_{k}\right)+\text { double }\left(\mathrm{P}_{k}\right)+\text { mult. }\left(\mathrm{P}_{k}\right)+\text { bounced }\left(\mathrm{P}_{\mathrm{k}}\right)\right)
$$

- For representing light caustic where P_{k} indicates $\mathrm{k}^{\text {th }}$ ray sample.

3. Double scattering

- Not mentioned explicitly, but for more realistic rendering

4. Multiple scattering

- For representing material property
 1. Boundary reflection

 1. Boundary reflection

 1. Boundary reflection

 1. Boundary reflection

 1. Boundary reflection

$\mathrm{L}=\sum_{k}\left(\right.$ single $\left(\mathrm{P}_{\mathrm{k}}\right)+$ double $\left(\mathrm{P}_{\mathrm{k}}\right)+$ mult. $\left(\mathrm{P}_{\mathrm{k}}\right)+$ bounced $\left.\left(\mathrm{P}_{\mathrm{k}}\right)\right)$

2. Single scattering

For each ray sample, out-scattering radiance of volume sample that includes the ray sample is sum up.

$$
\mathrm{L}=\sum_{k}\left(\text { single }\left(\mathrm{P}_{\mathrm{k}}\right)+\text { double }\left(\mathrm{P}_{\mathrm{k}}\right)+\text { mult. }\left(\mathrm{P}_{\mathrm{k}}\right)+\text { bounced }\left(\mathrm{P}_{\mathrm{k}}\right)\right)
$$

2. Single scattering

$$
\mathrm{L}=\sum_{k}\left(\text { single }\left(\mathrm{P}_{k}\right)+\text { double }\left(\mathrm{P}_{k}\right)+\text { mult. }\left(\mathrm{P}_{k}\right)+\text { bounced }\left(\mathrm{P}_{\mathrm{k}}\right)\right)
$$

3. Double scattering

3. Double scattering

Phase function : angular distribution of light intensity scattered by a particle

4. Multiple scattering

- Use precomputed table.
- We take a point light source sending photons in a single direction in an infinite medium
- Then, simulate photon propagation and accumulates the results using Monte Carlo simulation.
- Represents some material property.

$$
\mathrm{L}=\sum_{k}\left(\text { single }\left(\mathrm{P}_{\mathrm{k}}\right)+\text { double }\left(\mathrm{P}_{k}\right)+\text { mult. }\left(\mathrm{P}_{\mathrm{k}}\right)+\text { bounced }\left(\mathrm{P}_{\mathrm{k}}\right)\right)
$$

5. Bounced multiple scattering

Our material is actually not an infinite medium. Light is bounced when it hits the refractive surface.

Bounced light is computed with surface samples. Accumulate all the radiance of surface samples, if light $V_{i} \mathrm{P}_{\mathrm{k}}$ can be scattered into camera direction.
$\mathrm{L}=\sum_{k}\left(\right.$ single $\left(\mathrm{P}_{\mathrm{k}}\right)+$ double $\left(\mathrm{P}_{\mathrm{k}}\right)+$ mult. $\left(\mathrm{P}_{\mathrm{k}}\right)+$ bounced $\left.\left(\mathrm{P}_{\mathrm{k}}\right)\right)$

Result : Individual component analysis

 Result - overall

Figure 9: Material: milk, $\alpha=\{0.9999,0.9997,0.9991\}, \ell=\{0.8422,0.7521,0.6848\}$. For this material, with a very large albedo and a small mean free path, multiple scattering effects dominate.

Beyond Points and Beams : Higher-Dimensional photon samples for volumetric light transport

Beyond Points and Beams: Higher-Dimensional photon samples for volumetric light transport

- Generalized theory of density estimation
- Theoretical error analysis

HIIIHIIHIIHIIIIIIHIIHIIHIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIII Photon mapping

1. Shoot "photons" and record any hit-points
2. Shoot viewing rays and collect information from stored photons.

Density estimation?

Estimation process to estimate density of outgoing radiance around the points seen from the camera.

(a) Point-point 3D

(b) Point-beam 2D

(c) Beam-beam 1D

Figure 10: Different volumetric photon density estimators and their corresponding kernel (i.e. blur) dimensionalities.

Shoot photon. Then it will scatter randomly with distance sampling.

Shoot camera ray. For given point, it estimates radiance of surrounding photons.

But the location of each photon is determined by the distance sampling.
\rightarrow Variance occurs

But the location of each photon is determined by the distance sampling.
\rightarrow Variance occurs

But the location of each photon is determined by the distance sampling.
\rightarrow Variance occurs

 decrease the variance.

If we keep decrease the sample distance, the limit would be...

Then, we can represent the photon mapping not only with point but also with the line segment.

More and More...

Variance reduces as the dimension of density estimator increases.
Additionally, the bias decreases.

Result

Thank you ©

QUIZ

1. What does the author used to represent the refraction of the surface?
(a) Refracted ray path
(b) Surface light sample
(c) Volume light sample
2. When the dimension of density estimator increases,
bias (increases/decreases) and variance (increases/decreases).
