CS482: Interactive Computer Graphics

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/ICG

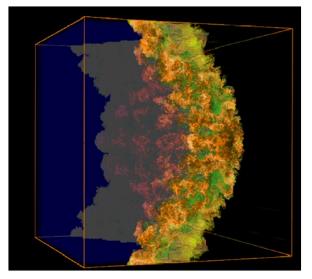
About the Instructor

- 2019: 차세대 과학자상 수상 (IT 부문)
- 2018~: ACM Senior member
- 2012~: IEEE Senior member
- 2011~2012: conf. and program co-chairs of ACM symp. on Interactive 3D Graphics and Games (I3D)
- Joined KAIST at 2007

Main research focus

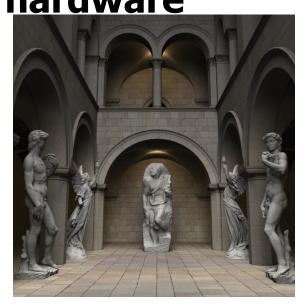
Rendering, robotics, and vision

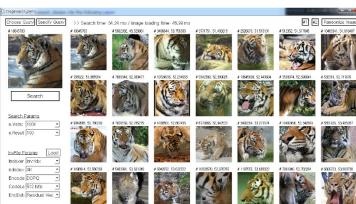
Past: Rendering Massive Geometric Data



Boeing 777, 470 M tri.

Large-scale virtual world, 83 M tri.


Over 3 Terabytes of geometric data


Scanned model, 372 M tri. (10 GB)

Present: Scalable Ray Tracing, Image Search, Motion Planning

• Designing *scalable and intelligent graphics and geometric algorithms* to efficiently handle massive models on commodity hardware

Photo-realistic rendering

Image search

Motion planning

About the Instructor

Contact info

- Email: sungeui@kaist.edu
- Office: 3432 at CS building (E3-1)
- Homepage: <u>http://sglab.kaist.ac.kr/~sungeui</u>

Class Information

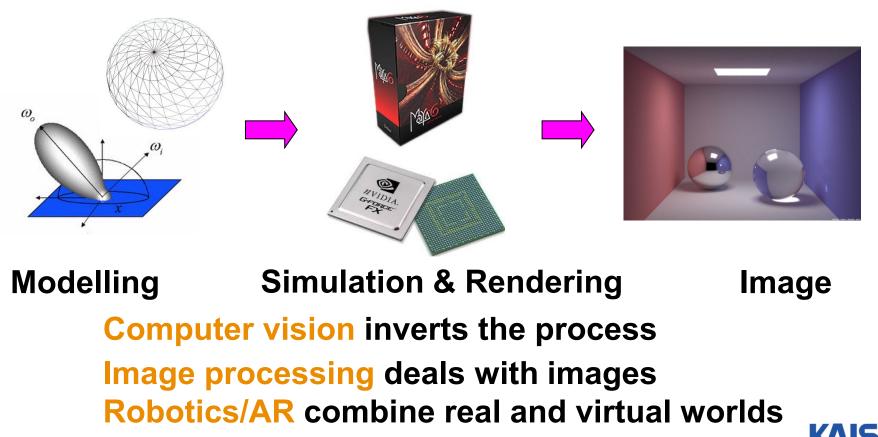
Class time

- 2:30pm ~ 4:15pm on MW
- Offline class in this semester

Office hours

- Right after class or
- KLMS board

TA Information


- Kyubeom Han (한규범)
 - <u>qbhan@kaist.ac.kr</u>
 - Office: 3443 at CS building (E3-1)
- To be determined: Jaeyoon Kim (김재윤)
 - kimjy2630@gmail.com
 - Office: 3443 at CS building (E3-1)

 Share questions on KLMS first, before sending emails to TAs

Overview

• We will discuss various parts of computer graphics, especially on interactive rendering

Applications of Computer Graphics

Games

- Augmented or virtual reality (AR/VR)
- Movies and film special effects
- Product design and analysis
- Medical applications
- Scientific visualization

Games

2D game

3D shooting game

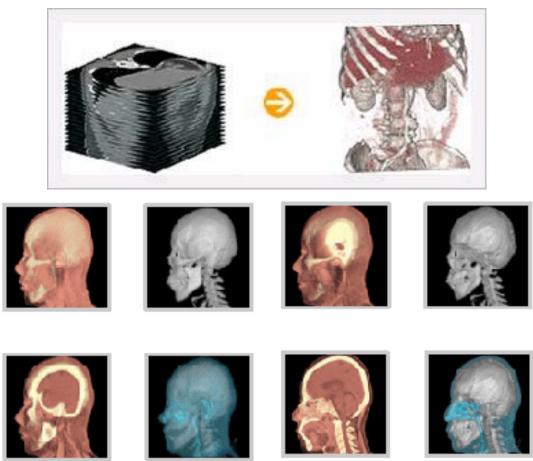
Movies and Film Special Effects

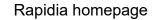
Toy story

Matrix

3D Movies

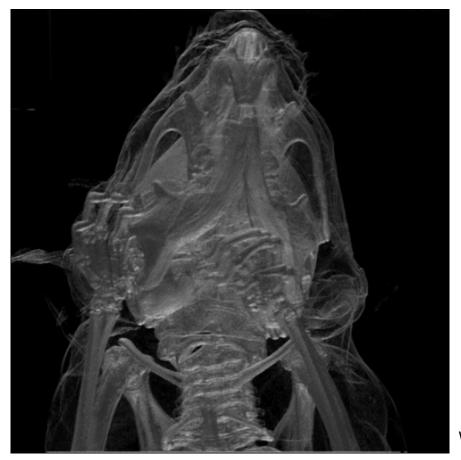
Avatar 1 and 2


Product Design and Analysis


Computer-aided design (CAD)

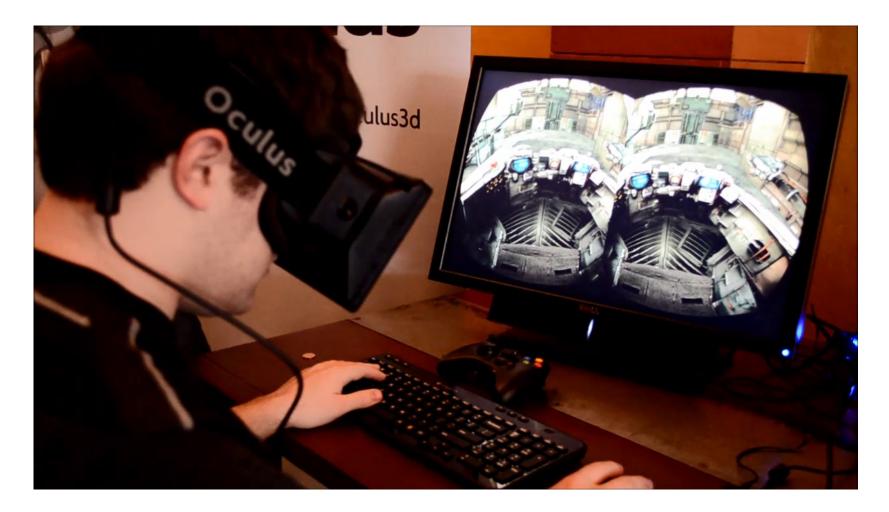
Medical Applications

• Visualizing data of CT, MRI, etc



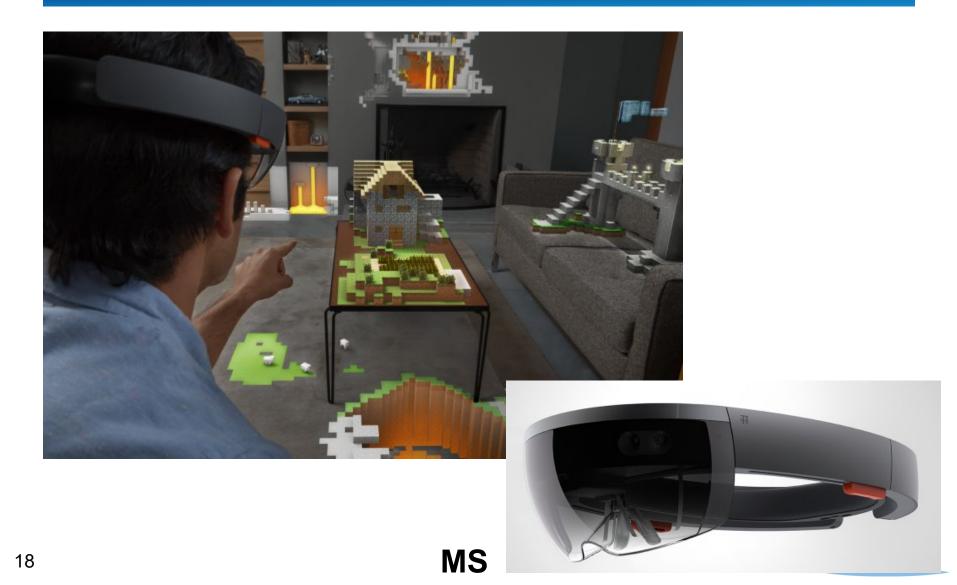
Medical Applications

• Visualizing data of CT, MRI, etc



Wikipedia

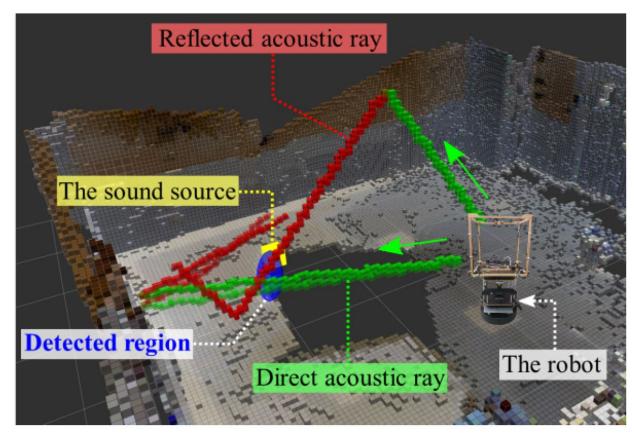
Mouse skull (CT)



Head-Mounted Display (HMD) for VR

HoloLens for Augmented Reality (AR)

Sound Rendering



Sound Localization

React to sound in AR applications

• Tightly couple real and simulated environments

About the Course

• We will focus on the following things:

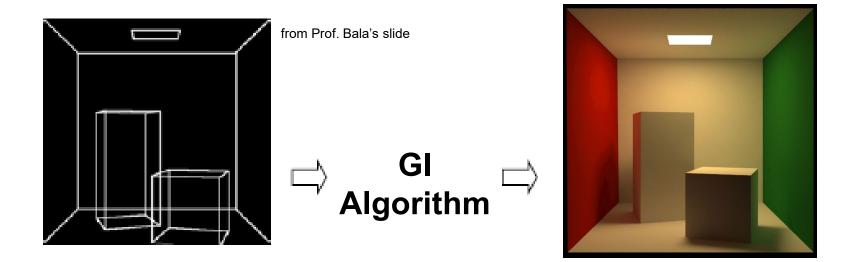
- Study basic concepts of physically-based rendering
- Study recent techniques, and discuss their pros and cons

Photo-Realistic Rendering

Achieved by simulating light and material interactions

from Prof. Bala's slide

Rendering equation


 Mathematical formulation of light and material interactions

Global Illumination (GI)

GI algorithms solve the rendering equation

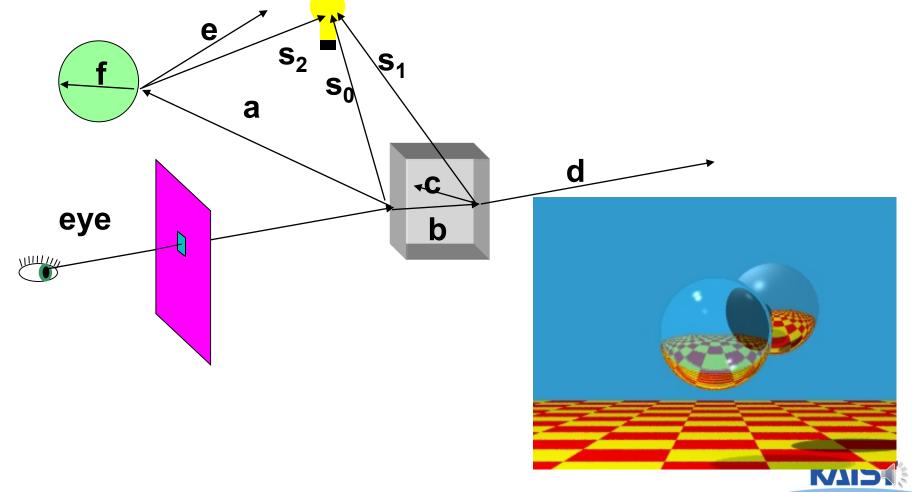
Generate 2D image from 3D scene

Emission (light sources) Geometry (objects) BRDF (materials)

Classic Methods of Gl

Ray tracing

Introdued by Whitted in 1980


Radiosity

Introduced in 1984

Monte Carlo rendering

Classic Ray Tracing

Assume perfect specular or diffuse material

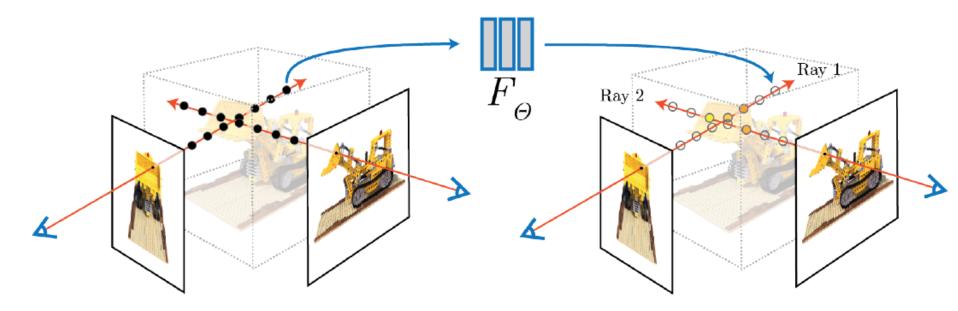
Classic Radiosity

Assume diffuse inter-reflections

Advanced Global Illumination

- Extend to handle more realistic materials than just perfect specular/diffuse
 - Classic ray tracing and classic radiosity are basic building blocks

from Pixar movie


from photon map paper

Sound and AR/VR Applications

- How can we interactively generate sounds?
- How can we effectively locate sound sources?
- How can we integrate them with AR/VR applications?

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF

Representing Scenes as Neural Radiance Fields for View Synthesis

Physics-based Inverse Rendering

Differential rendering is desirable for deep learning

Scene parameters

Inverse rendering $\boldsymbol{\theta} = \mathscr{R}^{-1}(\boldsymbol{I})?$

- Inverting physics-based forward rendering
- •Crucial to many applications

Rendered image

Scene: "bed classic" from Jiraniano

Geometry, materials, lighting, ...

Some of Topic Lists

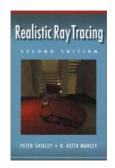
- Ray tracing
- Path tracing
- BRDF
- Rendering equations
- Monte Carlo method
- Textures
- Lighting and shading
- Radiosity
- Instant radiosity

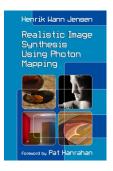
- GPU acceleration
- Sampling and reconstruction
- Sound rendering and localization
- Rendering for AR/VR
- Deep learning techniques

Prerequisites

- More or less CS380
- Basic programming skill
 - Basic understanding on data structures (e.g., stack) and linear algebra (e.g., matrix multiplication)
- Basic deep learning knowledge & programming
- If you are not sure, please consult the instructor at the end of the course discuss it at KLMS w/ TAs

Resource


Rendering


- 1st edition, July 2018, 148 pages
- Sung-eui Yoon, Copyright 2018
- https://sgvr.kaist.ac.kr/~sungeui/render/

Reference

- Physically based rendering, Matt Pharr et al.
- Advanced Global Illumination, Philip Dutre et al. 2nd edition
- Realistic Ray Tracing, 2nd edition, Peter Shirley et al.

SUNG-EULYOON, KAIST

Other Reference

Technical papers

- Graphics-related conference (SIGGRAPH, etc)
- http://kesen.huang.googlepages.com/
- SIGGRAPH (Asia), ISMAR, CVPR/ICCV, ICRA/IROS papers and tutorials
- Course homepages
- Google or Google scholar

Course Overview

- 1/2 of lectures and 1/2 of student presentations
 - Mid-term & final-term exams with a few quiz
 - A few programming assignments
 - A few paper presentations
 - Team project

What you will do

Paper presentation and final team project

- Make a team of two or three members
- Choose a topic for the team, and each team member presents a paper related to it
- All the team members implement techniques of a paper and improve them
 - Role of each team member should be clear
- Present what the team did for the team project

Course Awards

Best speaker and best project

- Lunch or dinner for awardees with me and TAs
- A high grade will be given to members of the best project

Grading

- Quiz, assignments, and exams: 40%
- Class presentations: 30%
- Final project: 30%
- Late policy
 - No score for late submissions
 - Submit your work before the deadline!
- Instructor/TA and students will evaluate presentations and projects
 - Instructor/TA: 50% weights
 - Students: 50% weights

Class Attendance Rule

- Late two times \rightarrow count as one absence
- Every two absences \rightarrow lower your grade (e.g., A- \rightarrow B+)
- To check attendance, I'll call your names or take pictures
- If you are in situations where you should be late, notify earlier

Honor Code

- Collaboration encouraged, but assignments must be your own work
- Cite any other's work if you use their code
- Classroom etiquette: help you and your peer to focus on the class
 - Turn off cell phones
 - Arrive to the class on time
 - Avoid private conversations
 - Be attentive in class

Official Language in Class

English

- I'll give lectures in English
- I may explain again in Korean if materials are unclear to you
- You are also recommended to use English, but not required

Schedule

Please refer the course homepage:

http://sglab.kaist.ac.kr/~sungeui/ICG/

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today and submit at the end of the class
 - 1 for typical questions
 - 2 for questions with thoughts or that surprised me
- Write a question more than 4 times on Sep./Oct.
 - Online submission is available at the course webpage

My Responses to Those Questions

- Identify common questions and address them at my book
- Some of questions will be discussed in the class
- If you want to know the answer of your question, ask me or TA on person
 - Feel free to ask questions in the class
- We are focusing on having good questions!
 - All of us are already well trained for answering questions

Homework

• Watch 2 SIGGRAPH or CVPR Videos

- EGSR, HPG and I3D are also possible
- ISMAR, ICRA, ECCV/ICCV are also possible
- Write their summary and submit it online before Mon. class

• Example of summary

• Just one paragraph for each summary

Title: XXX XXXX XXXX, Year: 2023 Abstract: this video is about accelerating the performance of ray tracing. To achieve its goal, they design a new technique for reordering rays, since by doing so, they can improve the ray coherence and thus improve the overall performance.

About You

- Name
- Your (non hanmail.net) email address
- What is your major?
- Previous graphics experience
- Any questions

Next Time

Ray tracing and radiosity

